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ABSTRACT

The equations for the equilibrium density and temperature pro-
files and the self consistent electric potential are derived for
mirror contained collisional distributions. The equations are solved
in two limiting cases: (a) the normal mirror reactor equilibrium
where the electrons are contained by the electrostatic potential
(e¢p » % mvg); (b) electron heated plasmas where e « %mVa. The
critical magnetic field scale length in the mirror throat necessary

for plasma wave absorption is found to be in case (a)
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Neither of these conditions should pose a serious problem for the

design of mirror reactors.
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1. INTRODUCTION

The problem of plasma wave reflection and absorption at the ends
of mirror plasmas is of great interest since all mirror equilibria are
unstable to convective waves'. The first discussion of plasma wave
reflection at the ends of mirrors was given by Aamodt and Book?.
These authors assumed that the plasma was locally Maxwellian and
found that the reflection coefficient was very small indeed. Several
other authors have since refined this basic theory but always taking
the distribution as locally Maxwellian and in all cases the reflection

coafficient was found to be quite small.

Recent work by Taylor'3 has questioned the assumption made in the
previous papers that the particle distributions are Maxwellian.
Taylor's® conclusian was that when the electron distribution function
f(g) has a sharp aut off in energy at the peak of the electrostatic
potential ¢y, plasma waves are reflected from the ends of the mirror.
Berk* has since shown that if the sharp ait off in f(g) is relaxed
to a linear fall off with energy (due to collisions) then the ends
may absorb plasma waves. The point which is made by both these papers
is that wave absorption will be critically dependent upon the shape

of the distribution.

In this paper we examine the absorption properties of collisional
disfributions in a mirror machine. In Sec.2 the velocity distribu-
tions and the self consistent electrostatic potential for a collision-
al mirror equilibrium are derived. In Sec.3 the absorption proper-
ties of mirror equilibria will be discussed for two limiting cases,
first the usual reactor collisional equilibrium where the electrons

are confined by the electrostatic forces (eg, » %mva) and second



electron heated plasmas where the electrons may be contained magneti-
cally (gmvg » e¢y). For each case the magnetic field scale lengths

required for absorption are given.

2. EQUILIBRIUM SOLUTION

The equilibrium distribution function in a mirror machine is
obtained by a solution of the relevant Fokker Planck equations and

Poisson's equation.

Most of the analytical and numerical work on the Fokker Planck
equation has been concerned with solutions in a mirror in which the
central field is uniform and at the mirrors there is a step function
in the magnetic field. This approximation which is known as the
square well approximation is thought to be a good approximation
since most of the_collisional processes take place in the central
higﬁ density region, the shape of the magnetic field at the mirrors
having only a small effect on the particle distributions in the
centre. A calculation by Marx® in which the variation in the mag-
netic field and electrostatic potential between the mirrors is taken
into account appears to agree quantitatively with the results of the
square well approximation. Bearing this in mind in this paper we
shall assume that the distribution at the centre of the machine is
determined by the solution of the Fokker Planck equations in the
square well approximation and then determine the distribution in the

mirror regions using the constants of energy and magnetic moment.

It has been shown by Watson® that a good analytic approximation
to the electron distribution is to take the distribution as a
Maxwellian for energies less than eg, and as a collisional loss-

cone distribution with effective mirror ratio Rg = Ro/(1 - egy/€)



for energies greater than eqp. The ions are assumed to be a colli-

sional loss-cone distribution with mirror ratio Rg.

For highmirror ratios (Ry > 1:5) the electron distribution

may be written in the form:

fele ,u) = K exp(-&/go) S(u) ees (1)
where
S(u) = 1+1oge(1 -u®)/loge Re for & > ¥
= = for € < Xm
is an approximate solution of Legendre'57 equation,

e=%m? + y=%mvi+ v3) + ep, e is the mean electron energy

and K 1is a normalising constant.

The expression for S(u) the solution of Legendre's given in
Eq.(1) is accurate to within 10% ovef the whole range of u for
mirror ratio's greater than 1.:5. For mirror ratio's less than 1.5
use is made of the series solution of Legendre's equation and to
obtain accuracy of 10% it is sufficient to consider the first two

terms only

R
S(u) =1 -=—2—u® for Rg < 1-5 ... (12)
Rg -1

In the remainder of this Section and Sec.3 to simplify the analysis
we discuss fully only the high mirror ratio case (distribution (1)),
however where it is appropriate the results for the low mirror ratio
distribution (1a) will be given.

In the discussion in the next Section on the absorption of plasma

waves the equilibrium rnumber density and mean parallel energy are

required. Using Eq.(1) the expressions for number density and mean

velocity are
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respectively, where u =% mvi/B, B, is the field in the centre of
the mirror. The lower limit of the p integration p; 1is zero if
e <¥m and py = (e - %m)/Bm if & > ¥y, the suffix m means maxi-
mum value. Splitting the e integration into two regions o0 < & < ¥

and ¥, < € < » and then completing the p integration gives

= \/ I:/ exp(-€/gy) (e - x)éds + f%z;;#(e“")}i

{loge< Za}d:l e (2
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€ = Xm
where o = [ TE_—X_)R and R is the local mirror ratio R = By/B.

The ions are assumed to be contained magnetically and hence the
ion velocity distribution will be identical to Eq.(1) for the elec-
tron velocity distribution with Re replaced by R,. The ion number

density can then be written in the form
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Finally completing the e integration then gives

%
nj = N, I:mge [' AT '/R)l] -2(1 - T/R)!é /Y s ees (4)
1 -0 -1/R)%

where

%
T = log, [1 + (1 - ]/RO), } - 2(1 - I/RO)!5 5
1= (1 - 1/Ry)*

For low mirror ratios (R, < 1-5) using distribution (1a) gives

3
/o
ni = No RLO (—}-—j—}%) ; ven (40)

From Eq.4, one may easily deduce simple useful analytic expressions
for the variation of n; with R at the centre and ends of the
mirror. At the centre of the mirror 1/R is small and expanding in
1/R gives n; o log 4R - 2. At the ends of the mirror R-»l hence
expanding in (1 - 1/R) we find that n; o (1 - l/'R)%. Thus the
density varies slowly with R in the central portion of the mirror

with a steeper variation at the ends.

To obtain the self consistent potential % as a function of R

and hence as a function of z the quasi-neutral approximation is

used
n: =n . www LB)

This approximation will be good as long as the scale length for the
variation of X 1is large compared with the electron debye length.

Using Eqs(2), (4) and (5) one may in principle obtain an expression



for % 1in terms of R. It is difficult to see though how one can
make further analytic progress with'Eq.(2) for general 7 and gg.
However, Eq.(2) may be considerably simplified in the limits of
either pure electrostatic confinement of electrons (x » &) or mag-
netic confinement of electrons (¥ « €o). The first limit (electro-
static confinement of electrons) is appropriate for reactor conditions
where the ion energy, electrostatic potential, and the electron energy
are in the ratio 1 :0-5:0-1 respectively. The magnetic confinement
approximation is applicable to some experimental conditions in which

the electrons are microwave heated.

A. Electrostatic Confinement of Electrons (¥p » €g)

For Xp » € the expressions for n and ngv5  (Egs.(2) and
(3)) may be considerably simplified. At the centre of the mirror

where Y% = 0,

Xm !

x
and

xm 3
nevy = %\/% K[ e™/%0(e — %) 72de + O(exp(-xp/eo)) -
X

At ends of the mirror where ¥-¥y, Eqs.(2) and (3) become

Z Kpexp(~xp/eo) 20X - X)Z/Q + 0 (xm = )()5/2 s
m> 3 L
... (8)
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where p(x) is a slowly varying function of 7,



p(x) =1 + log,logeleo/(Xy = %) 1.

For the usual reactor parameters (n = 10'®, B = 50 kG) p(x) varies
between 1 and 5. Using the equation of quasi-neutrality (5) and
Eqs.(4) and (6) we find the following relation between % and R

in the mirror region (R-1).
% %
Xm = X = (R = 1)eq exp(2/3 xp/eo)y °7° .

Hence Eqs.(6) and (7) may be written in the form

No(R - 1)€éy'1p ; .ee (8)

calvo

ne:

> 2 -% X%
vy, = 5(R - 1)eg/m exp(2x,/380)y “7° .

B. Magnetic Confinement of Electrons (¥, « €g)

In this limit %p = X = O, completing the integrals in Eqgs.(2)
and (3) and expanding in (R - 1) to determine the behaviour at the

mirrors gives

7
ne = No(R = 1)72y1 eee (9)
_R-1) o
ve T o Viig =
[ 0
V/
For the low mirror ratio case y in Eq.(9) is replaced by (Rq - 1)/,

In the next Section we discuss the wave absorption properties of

the mirror region for the two types of equilibrium solution.

3. ABSORPTION PROPERTIES OF MIRRORS

The dispersion equation for plasma waves in an inhomogeneous

media is

2 ) )
w k 1 w
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where the usual WKB approximation has been made ¢=:$(z)exp(ifkudz —-iwt)

and

. sis L11)

If the inequality (11) is violated reflection may occur and Eq.(10)
is no longer valid. In the following it will be assumed that inequality

(11) is satisfied and it will be shown that this is the case later.

We now calailate the reduction in wave amplitude caused by Landau
damping. Since the imaginary part of Eq.(10) is small one can solve

approximately for Kk

2 1
Imky = - _;ﬂeg w T2 exp(—w%e/ki vi) . sie L12)
K1 vy

Now the reduction in wave amplitude
&5 = exp(-/ Im k,dz) . ee. (13)

We may determine & for the two types of equilibrium by sub-
stituting in Eq.(13) for Ipky; given by Eq.(12) and using Eq.(8) to

determine Wpe and Vvi.

A. Electrostatic Confinement of Electrons

The decrement in wave amplitude

- o ) )
3} _ 3+ wpoup _ Wpo M3z
6 exp{ (e O/m)% exp (= ¥p/€o ) exp 2KGeg LT

wilen

..-.LT
X
exp <; % E%):}dz}

where we have assumed R =1 + 2z°/LF, Lg being the magnetic scale
length in the mirror region. Completing the integration over 2z and

ignoring the slow variation of p gives



(‘ 1 nL - m Jﬁ
T
& = exp tg.s fé’ = (Ti‘5§> exp(- xm/3so{JJ c ... (14)

B. Magnetic Confinement of Electrons

Repeating the similar calculation but using Eq.(9) for the

equilibrium qualities we find

1
Dy /Tj me\? L
& = exp [;;— (%; Ef) (R0 -1) } 5 ees (15)

1

One can see from (14) and (15) that the two expressions for
the decrement of wave amplitude & are very similar, and indeed for
reactor parameters (xm/eo ~ 5) we may ignore the exponential term
inside the square brackets of Eq.(16). Thus we see that a signifi-

cant reduction in amplitude of the wave will occur in the mirrors if

1
Ly e Mj\?
= b rmed e e (16)
i 8 7 Gi “‘e)

(n = 1) being the worst case). This is not a difficult condition to
satisfy and it should not place any severe restrictions on mirror

reactor design.

As mentioned earlier it must be shown that inequality (11) is

valid throughout the mirror throat. Using Eq.(8) we find that

1
1 d.k|| N (A-)pQZ'ﬁ

kf dz g,y

hence as R~»1 and z-0 1/k;dk;/kz-0, so the condition for the WKB

approximation to be valid is indeed satisfied in the mirror throat.
To summarise the conditions for absorption of plasma waves in

a mirror machine containing a collisional plasma have been derived

Eq.(16). This conditionshould be fairly easily satisfied in a mirror

reactor. In passing it should be mentioned that the results derived



in this paper are not applicable to the present generation of neutral

injection mirror machines PHEONIX II and Alice,since in both of these

machines the ion distribution is highly peaked in angle and certainly

not of the collisional type used here; also and probably more import-

ant the plasma is localised near the centre of the mirror.
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