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Two instability mechanisms which could occur under the
conditions found in a perpendicular collisionless shock wave
are considered. Both mechanisms are due to the negative
energy character of the electron Bernstein waves propagating
in the direction of the current flow in the shock. The
effect of the voltage jump through the shock, and the density
and magnetic field gradients at the shock front are consi-
dered. Both instability mechanisms occur only within a
definite band of k-values. The first mechanism is due to
a resonance between the ion acoustic wave and one of the
Bernstein harmonics and the second to resonant ions absorb-
ing energy from a negative energy Bernstein mode. The first
case requires Tg »Ti whereas the second case can occur for
arbitrary values of the ratio Ti/Te, although the maximum

effect occurs when this ratio is of order of unity.
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I. INTRODUCTION

There are two main schools of thought concerning collisionless
shock waves". The first of these seeks to explain their properties
entirely in terms of ordered non-lincar oscillations and the second
assumes that the anomalous dissipation at the front is related to
plasma turbulence. For the turbulence hypothesis there must be an
instability mechanism, In this paper we shall be concerned with

such a mechanism,

S‘;a‘t,cz,rcif_\ev'1 has suggested an ion wave instability and this idea has
been refined by Krall and Book ?” . They considered electrostatic
waves propagating perpendicularly to the magnetic field and the shock
front which were driven unstable by the drifts due to the gradients
of density and magnetic field. However, they did not include the
effect of the voltage jump at the front and also neglected the part
of the dispersion relation which gives rise to Bernstein waves.

Gary and Sanderson” pointed out that the Eo x B, drift due to the
voltage jump at the front is the dominant one .and they obtained an
instability with a larger growth rate by allowing for the effect of
this drift on the Bernstein waves. The reason for the importance of
the Bernstein waves is that in the presence of an Eo X Bo drift
Bernstein waves carry negative energys when 0 < w < kv, , where v,
is the ‘on/Boz drift velocity. Using this interpretation one
expects instability either when the negative energy Bernstein wave
comes into resonance with the ion acoustic wave or when it is Landau
damped by the ions . This latter mechanism is interesting because

it can give rise to instability even when T; > Iy.



Gary and Sanderson’ considered the first of these instability
mechanisms numerically and included the effect of the magnetic field
gradient but not the density gradient. anQT has also considered the
first of these mechanisms but he neglected all gradients. The present
authorﬁconsidered both mechanisms analytically but neglected the effect
of density and magnetic field gradients. The aim of this paper is to
include the effects of these gradients as well as the voltage jump at
the front. It will be found that the inclusion of the density gra-

dient is particularly important.

IT. EQUILIBRIUM

We consider the following slab model. The applied magnetic
field E% is taken as the z-axis and the gradients of plasma density
and applied magnetic field are in the x-direction. There is also a
uniform electric field Egx 1n the x-direction. These gradients
are intended as a model of the shock front which propagates in the

x-direction.

We take the following zero order magnetic field:

B, = By, (1 +ex) t, s ... (1)

which gives rise to a guiding centre drift of the electrons in the

y-direction:

B 5o , .. (2)

where W = ]eIBOZ/me is the electron cyclotron frequency. We also

assume a density profile:



n=n0 (1+€'X) ) (3)

which produces an electron diamagnetic drift in the y-direction:

e ’ kT

vg=- € -I-E-IE. coe (&)

From the Maxwell equation:

YxH=J+&8 —, e (5)

we can obtain the following relationship between the zero order

electric field E;, and the density and magnetic field gradients:

B2

EOXN—-?@‘ZE(E-F%E‘), Vel (6)

‘3 = 2“'0“0 KTe/BOQZ .

‘where

In order to obtain the unperturbed electron distribution func-
tion we must consider the orbit equations of the electrons. These

equations are: B

; S ef - wce)"(1+BX) (7)
v = W% (1 + X ) ... (8)
P ... (9)

The constants of the motion are:

E

2 042

¥, , ¥, * (vy +-§;) to order ¢
BB ¥ - Wgex (1 +52E )

y

We may now construct a zero order electron distribution function
which satisfies the unperturbed Vlasov equation to order & . The
function we take is similar to that used by Krall and Book”:

e v m, 3 hi+(%n-%f+va
£€ -n 41 - &' [ -x e expy - m, —
0 0 w 27 kT, e 2 kT

sea (10)




where on
v = - oo (11)

Following Krall and Book we use the approximate orbit solutions to

equations (5)-(7):

v v
lo . 18 .
x(t) = E:; SIn(wce t o+ ) - Py siny ... (12)
E va v v
Lo 10 10
) =2t -8 t - cos(w,  t + + — cos | e (13
Y0 =g b= e g b - ot con(uget + ¥) + (13)
z(t) = v, t esy LHA)
2
E Vio .
v&(t) = EE-_ € S * VLo sin(w,, t + V) ... (15)
Vx(t) =V, cos(mce t o+ V) ... (16)
vy (t) = v, ... (17)
where: 5 o " 1 Wir
Voo = Yo ® vyo , tan = ;f; y

and at t = 0 the electron is assumed to be at the origin in con-

figuration space with velocity components v V.

, , V : The
X0 yo zZ0

oscillatory terms of order & have been neglected in the above

solutions as have all other terms of higher order in & .

The treatment of the ions is simplified by the fact that the
transit time of the shock is much less than the ion cyclotron fre-
quency (but much greater than the electron cyclotron frequency) and
so we may take the ions to be unmagnetized as pointed out by Krall

and Book>. Ve therefore take the ion distribution to be Maxwellian.



ITI. THE DISPERSION RELATION

We start from the linearized Vlasov equation for electrons:

e e
af af afe arc

1 1 el 1 lel 0
—_— Y —— - E + vxB.)- = = E, - ... (18
It T (E, + vx3B,) v m Lo (18)

where we have used the electrostatic approximation:

E,=-Yo. ... (19)

Since we shall be concerned with very short wavelength Bernstein

modes such that:
2
k a » 1

where k is the wave number and a, is the electron Larmor radius,
equation (19) should be a good approximation even when f 1is not
smalla. For such short wavelength oscillations it should be a good
approximation to neglect the x-variation (i.é. k/e' ~ k/e » 1) of

the perturbed quantities and assume a variation of the form :

exp i(ky - wt) .
With the aid of equations (12) -(17) for the orbits and the method of

orbit integration we obtain the perturbed electron charge density:

= &2 n=ece
e e"n, He e
P, =~ =729 -7F ¢ (0 - kv, - kvg) S—\,ﬂn, ... (20)
e e _
n=- oo
where . (kwl->
i 2 J | w v, dv
In =/ e—IIJeVJ__/2 KTe n :e L L L. (21)
v
0 E{(vo-—%}—->—w+nw }
Pee ce

and we have neglected a term ~ (kzaao.eg)_1 since we shall always

assume kzag » 1 .
Now: |
e
;<VB> -
Vo




and so for B « 1 the drift due to the magnetic field can be neglec-
ted in comparison with that due to the electric field. This simpli-
fies the analysis enormously and enables a clear physical interpreta-
tion to be made of the resulting dispersion relation. The effect

of neglecting the drift due to the magnetic field gradient will bhe
considered later. However, with the neglect of this drift we

obtain the following expression for the perturbed electron charge

. < N=co
denSLL}é _. . (e = kvo _ kVZ )
Pa = 7 %T T ¥ ( kv - n o .. (22)
€ ¢ n;i o0 w - vo wce)
here: 2 2 2
where B, = exp(- k ag )]&l(k a:) sas LOF)

and In is the nth order modified Bessel function of the first
kind.

Using the fact that the ions can he lreated as unmagnetized and
as having a Maxwellian distribution we can easily obtain the perturbed

ion charge density.
2

3 n.e
pr=-—— 9 ( 1+ g z(ag) . (2n)

1

1
where (KTi/mi)z = VTi is the ion thermal velocity and &; = w/\|2 kVTi'
Substituting expressions (22) and (24) into Poisson's equation we

obtain the dispersion relation n=o

w i 2e w;e (w - kv, - kv&)
14225 (1 4 2.2(2.) ) + =S - - R 3_\ B, = 0
k vy, 1 1 K vp K3y 2
e

=
1 Nn==co (0.) —-kVo -nw

ce)
e



IV. STABILITY ANALYSIS

Before attempting to obtain unstable solutions of equation (25)
we will first of all consider the small signal energy. This is
important because it will indicate the conditions required for insta-
bility.

The small signal energy of an electrostatic wave is given by :

2 %5(“’ %(w,k)>€f0 ... (26)

where €, is the longitudinal dielectric constant of the plasma. In

all the cases of instability considered below the electron Bernstein

€=7%¢e |Es

waves will play a fundamental role. The reason for this (as already
mentioned) is that under certain conditions these waves may have
negative small signal energy. In order to discover these conditions

we consider the electron part of €y ¢

2 e
aeae W' (- k vy +11wce)
22 . (kv 4n )6, B . (27)

2
Te On—kvo-nwce)

where we have assumed that:

w - kv, xnwge ... (28)
and therefore take only one term in the expression for 85e . For
a perpendicular collisionless shock wave the density and magnetic

9
field gradients are of the same sign and almost equal , i.e.
efe’ =i, ... (29)

For the form of the gradients we have taken we then have:

v, >0 and vz <0 a3 C0)

From equation (27) we then obtain the following:

685‘3
miEl ® dw >0
de
n<0 w—28c0,
———— dw



provided
k vy > Inlwce -
and:

klvil < Infw, (32)

e
Equation (31) is the cundition obtained by considering only
the effect of the voltage jump and neglecting the density gradient.
Equation (31) gives the condition on the frequency 0 < w < kvb
For k > lﬂlwce/Vb the nt'h Bernstein harmonic has negative energy.
However, when the effect of the density gradient is allowed for we
see that as k increases the energy of the wave becomes positive
again, i.e. there is now a band of k inside which the Bernstein
harmonics (of negative n number ) have negative energy:

]nlwce/vo < ke In[wce/lvgl ... (33)

The significance of equation (33) lies in the fact that a negative
energy wave is a potentially active wave. If there is a positive
energy wave with which it can come into frequency resonance or a
sink to which it can lose its energy, instability will result. Thus
equation (33) gives the range of k inside which we can look for
instabilityio. We now obtain solutions to the dispersion relation,
first for the case of cold ions and secondly for the case of warm
ions.

For cold ions the dispersion equation can be written:

(wz . k2c:)(w - kvy + In]wce) = u?(w - kv, + klvgl)ﬁn v (34)

where we have assumed:
) 2
w=-k v, = - Inlwce , k Kde « 1,

d 2 =2
an k" a, » 1,



where hze = v% /w2 is the electron Debye length. The condition
e P

for instability is the resonance condition

ch = kVO - [nlwce . see (35)

Using a perturbation analysis on equation (34) we look for solutions:

w=ke, + dw , ... (36)

S

and obtain: 5 kcs
(8w)" = - == (Inlog, - kIv§l) 8, - gus AFE)

We therefore have instability provided
e
lnlwce > k|vd| .

This is just condition (32) again which states that when it
does not hold, the slow Bernstein wave (i,e, the mode for which

w < kvo) is a positive energy wave and so will not 'intersect' the

ion acoustic branch to produce instability, From equation (37) we
obtain the growth rate: a i
T /m )\ 2 k |vi| \2
i n e\ 2 d
ool g SR
ce  (8m*= 1 [nlwce
From the resonance condition (35) we see that:
vV, > Cg , ... (39)
and
k ag = lnl/(vo/vTe - °s/"Te Ys ... (40)

where the value of k obtained from equation (40) must lie in the

range given by equation (33). The condition for the validity of

T /m\ T klvz| 5
k a, >>-|-ILLT<—1> (1-— !nlw ) coe (21)
ce

this selution is:

(8 m)% \Me

3
The maximum growth rate calculated by Krall and Book was:

1
m 2
(—x—-)m z(-e—> a suw LU2)
wce ax ml



This is appreciably smaller than the growth rates given by equation (38).
At this point it is worth mentioning the effect of the drift due to

the magnetic field gradient, Since this drift depends on the perpen-
dicular velocity distribution it reduces the sharpness of the reson-
ance condition, given by equation (35). For B, ~ 0.4 Gary and
Sanderson”® have shown that the growth rate is reduced by a factor of

two approximately.
When the effect of warm ions is considered we obtain a new
instability® which can occur under conditions (Ti ~Te) where previous

authorsa’s’s’%redict stability. This instability is due to resonant

1ons absorbing energy from a negative energy Bernstein mode thus

causing it to grow. We expect the maximum effect for frequencies
such that:

kaV'Tl ...(11-3)
Taking &; = 1 the dispersion relation can be written in the form:**
B el i e
T +e (-1+in)r (w -kv, +|n]wce) = ﬁn-T; (w- kv0+-k|vd|) oo (44)

where we have assumed:
w =k v, -In]wce =

where n<O0,

and o 2
k" Ade « 1.

For k in the band of values given by equations (31) and (32) the
slow Bernstein wave has negative energy and we get instability as

can be seen from equation (44). The growth rate is given by:

a1
Te

= T. k,ve|
v _ In] g —1—1—<1- d ) . (45)
Wee |2 ( d.T- )2 Teo kag |n|mce
T +| e -1

For the validity of this solution we require (approximately):

7.\ 1 /m. '%‘
2 =2 i\2 i

k' a »|=— == .
L (Te> (me)

SR T



The maximum growth rate of this instability occurs for T; =T,.
The larger T; the larger the range of unstable k-values. For

Ti . Te the unstable k-values are in the vicinity of:

A
2

k a, » ]n]/[vo/vTe = (2 me/mi) ] ... (46)

Using equation (45) and taking VO/VT = 01 we obtain:
e

i

w
ce

= 0-02 .

The significant point about this instability is that it can occur for

arbitrary values of T, and in particular for T; > T,.

V. CONCLUSIONS

We have considered some high frequency (w » wci) electrostatic
instabilities which may occur in a collisionless perpendicular shock
wave. In all cases the instability was due to the presence of a
negative energy Bernstein wave. Instability was produced either
when the negative energy Bernstein wave came into frequency resonance
with the ion acoustic wave or when resonant ions ahsorbed energy from
the negative energy Bernstein wave. The former case gave rise to
the larger growth rates but required T; « T,. The latter case
could occur for arbitrary T; although the maximum growth rate was

for T. =T .
i e

In a shock wave the density and magnetic field gradients are
in the same direction and almost equal. Consequently the drifts
due to the magnetic field and density gradients are in the opposite
direction to the - Ej, Boz drift. As a result only half of the
Bernstein harmonics could have negative energy and so only these

gave rise to instability. Also, the negative energy property was

- 11 =



only satisfied within a band of k-values so that instability (of the
type discussed in this paper) only occurred for k-values within this
band.

An interesting point about the resonant ion instability is that
in contrast to the corresponding case for a positive energy wave, the
ions continually gain energy as the negative energy wave grows in

amplitude.

Finally, since the instabilities discussed in this paper have
growth rates similar to or greater than those discussed by Krall and
Book they may well be connected with the anomalous resistivity,

observed in a collisionless shock wave.

=12 =
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