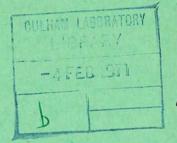
This document is intended for publication in a journal, and is made available on the understanding that extracts or references will not be published prior to publication of the original, without the consent of the authors



REFERENCE CIVEY

United Kingdom Atomic Energy Authority

RESEARCH GROUP

Preprint

PLASMA DIFFUSION IN TWO DIMENSIONS

J. B. TAYLOR
B. McNAMARA

Culham Laboratory Abingdon Berkshire Enquiries about copyright and reproduction should be addressed to the Librarian, UKAEA, Culham Laboratory, Abingdon, Berkshire, England

PLASMA DIFFUSION IN TWO DIMENSIONS

by

J.B. TAYLOR B. McNAMARA

(Submitted for publication in Phys. Fluids)

ABSTRACT

Diffusion of plasma in two dimensions is studied in the guiding center model. It is shown that in this model diffusion always exhibits the 'anomalous' 1/B variation with magnetic field. The velocity correlation function and the diffusion coefficient are calculated in detail using functional probabilities. In addition to the 1/B field dependence the diffusion coefficient is unusual in that it depends weakly on the size of the system. These theoretical results are compared with those from computer experiments and their significance for real plasma is discussed.

U.K.A.E.A. Research Group, Culham Laboratory, Abingdon, Berks.

October, 1970 (IMG)

C 0 N T E N T S

		Page		
I.	INTRODUCTION	1		
II.	GENERAL PROPERTIES OF GUIDING CENTER DIFFUSION			
III.	THE ELECTRIC FIELD CORRELATION	5		
IV.	THE DIFFUSION COEFFICIENT AND CORRELATION FUNCTION	8		
v.	SOME NUMERICAL EXPERIMENTS	10		
VI.	COMPARISON WITH THEORY	13		
VII.	DISCUSSION	14		
	ACKNOWLEDGEMENTS	16		
8	REFERENCES	20		
	APPENDICES			
App.	A THE NORMAL DISTRIBUTION FOR A FUNCTION	17		
App.	B SPECTRUM OF FLUCTUATIONS OF 2-D PLASMA	19		

I. INTRODUCTION

It is well known that a strong magnetic field B inhibits the diffusion of plasma transverse to the field and that for plasma in local thermal equilibrium the diffusion coefficient is proportional to $1/B^2$. However, experiments often show a much larger 'anomalous' diffusion and to describe this an empirical coefficient proportional to 1/B (originally proposed by Bohm¹) is often invoked. The Bohm diffusion coefficient is

$$D_{B} = \alpha \frac{c\kappa T}{eB}$$

where T is the plasma temperature and α a numerical coefficient, conventionally taken to be 1/16. The origin of anomalous diffusion has been assumed to lie in fluctuating electric fields which exceed the thermal level.

In studying anomalous cross field diffusion and its dependence on magnetic field strength it is tempting to invoke two dimensional models, particularly in computer simulations which involve computation of orbits for a large number of interacting particles. It is important therefore to understand the fundamental behaviour of a 2-D plasma and the way in which it differs from real systems. In this paper we investigate two-dimensional plasma in the high magnetic field limit, using the guiding center (g.c) model in which particles move according to the equation of motion;

$$\underline{v} = \frac{\underline{B} \times \nabla \varphi}{B^2} c \tag{1.1}$$

with the potential ϕ determined by Poisson's equation. (This model also describes the two-dimensional motion of an incompressible inviscid fluid and some of our results may have hydrodynamic applications, but it is convenient to develop the theory solely in terms of the plasma problem.)

The results of our investigation of diffusion in a 2-D guiding center plasma are surprising. It is found that the diffusion coefficient always has the Bohm (1/B) variation with magnetic field—even in thermal equilibrium. Far from being anomalous therefore, a Bohm-like diffusion formula is the classical one! Furthermore the diffusion coefficient depends weakly on the size of the system.

As a test of these theoretical predictions a series of 'numerical experiments' has been carried out. In these the orbits for several thousand interacting particles are computed and the diffusion coefficient and velocity correlation function calculated. The results are in excellent agreement with the theory but also bring out the importance of initial conditions and of statistical errors which are not reduced merely by increasing the number of particles.

The theoretical model is developed in the next three sections after which the numerical experiments are described. Finally the significance of our results for real plasmas and for other 2-D plasma simulations is discussed.

II. GENERAL PROPERTIES OF GUIDING CENTER DIFFUSION

We regard the plasma as an assembly of two species of charged particles, which in two-dimensions are represented by rods with a charge e_i/ℓ per unit length $(e_i = \pm e)$, immersed in a uniform magnetic field B. The guiding center equation of motion for the particles is:

$$\dot{\mathbf{R}} = \mathbf{c} \frac{\mathbf{B} \times \nabla \varphi}{\mathbf{B}^2} , \qquad (2.1)$$

and the potential φ is determined by:

$$\nabla^{2} \varphi = 4\pi \sum_{i} \frac{e_{i}}{\ell} \delta(\underline{r} - \underline{R}_{i}), \qquad (2.2)$$

where the sum is over all particles. Together with an initial probability distribution these equations completely determine the plasma properties. In thermal equilibrium the appropriate distribution would be:

$$W\{R\} = \mathcal{N} \exp \left(-\sum_{i \neq j} \frac{e_i e_j}{\ell \kappa T} \log |R_i - R_j|\right)$$
 (2.3)

(Throughout this paper ${\cal N}$ denotes the appropriate normalization.)

These equations can be reduced to a universal form by the scale transformations:

$$\frac{R}{R} = s \times \frac{X}{R}$$

$$\varphi = 4\pi e \psi$$

$$t = \left(\frac{s^2 B \ell}{4 \pi e c}\right) \tau$$

in which s is an <u>arbitrary</u> length scale. In the scaled variables the plasma equations become:

$$\frac{\frac{dX_{i}}{dt}}{dt} = \underbrace{b} \times \nabla_{x} \Psi$$

$$\nabla_{x}^{2} \Psi = \sum_{i=1}^{N} \left(\frac{e_{i}}{e}\right) \delta(X - X_{i}) \qquad (2.5)$$

$$W\{X\} = \mathcal{N} \exp\left(-\sum_{i \neq j} \frac{e_{i}e_{j}}{4\pi e^{2}} \cdot \frac{1}{n_{D}} \log |X_{i} - X_{j}|\right)$$

where b = B/B and $n_D = \kappa T \ell / 4\pi e^2$ is the number of particles per square Debye length $(\lambda^2 = \kappa T \ell / 4\pi n e^2$, see Appendix B).

It is apparent from this form of the problem that the particle dynamics depends only on N and the sign of the charges, $\mathbf{e_i}$. The distribution function depends on only one other parameter, $\mathbf{n_D}$, so that all plasma properties can be expressed in the scaled variables as

functions of N and $n_{\overline{D}}$ alone. Any intensive plasma property (i.e. one which is independent of plasma size) will depend only on $n_{\overline{D}}$.

To make use of this result in determining the diffusion coefficient we write it in terms of the velocity correlation as:

$$D = \int_{0}^{\infty} \langle v_{i}(o)v_{i}(t)\rangle dt = \frac{c \kappa T}{eB} \int \langle \dot{X}_{i}(o) \dot{X}_{i}(\tau)\rangle d\tau, \qquad (2.6)$$

which, in accordance with the remarks above, must take the universal form:

 $D = \frac{c \kappa T}{eB} f(N, n_D) . \qquad (2.7)$

We see, therefore, that if a diffusion coefficient exists, then even in thermal equilibrium it can only be proportional to 1/B.

If the plasma is not in thermal equilibrium the diffusion coefficient will still be proportional to 1/B, though the other plasma parameters cannot then be reduced to one universal quantity. To confirm the 1/B variation it is only necessary to introduce the transformation:

$$t = \frac{mc}{eB} \tau \tag{2.8}$$

into the original equations and to observe that B then disappears from the problem. Expressing the diffusion coefficient in terms of the velocity correlation as in (2.6) then shows it to be of the form:

$$D = \frac{mc}{eB} g \tag{2.9}$$

where g may depend on other parameters but must be independent of the magnetic field.

III. THE ELECTRIC FIELD CORRELATION

By introducing Fourier transforms, taken for convenience in a square of unit area, into equation (2.2) the potential may be written:

$$\varphi(\mathbf{r},\mathbf{t}) = 4\pi \sum_{\mathbf{j}} \frac{e_{\mathbf{j}}}{\ell} \sum_{\mathbf{k}} \frac{1}{\mathbf{k}^2} \exp i \underbrace{k} \cdot \left(\underbrace{R_{\mathbf{j}}}(\mathbf{t}) - \underbrace{r} \right)$$
 (3.1)

where $k_x/2\pi$, $k_y/2\pi$ take all integer values. The electric field correlation function is therefore:

$$Q_{\alpha\beta}(\tau) = \langle E_{\alpha}(t) E_{\beta}(t+\tau) \rangle$$

$$= 16\pi^{2} \sum_{i,j} \frac{e_{i}e_{j}}{\ell^{2}} \sum_{k} \frac{k_{\alpha}k_{\beta}}{k^{4}} \left\langle \exp i \underbrace{k} \cdot \left(\underbrace{R_{i}(t) - R_{j}(t+\tau)} \right) \right\rangle$$
(3.2)

where the fact that Q is independent of $rac{r}{\sim}$ has been used to simplify the last expression.

Using the guiding center equations of motion (3.2) becomes

$$Q_{\alpha\beta}(\tau)=16\pi^{2}\sum_{i,j}\frac{e_{i}e_{j}}{\ell^{2}}\sum_{\underline{k}}\frac{k_{\alpha}k_{\beta}}{k^{4}}\left\langle \exp i \underline{k}\cdot\left(\underline{R}_{i}(t)-\underline{R}_{j}(t)\right)\exp \frac{-ic}{B}\int_{t}^{t+\tau}\underline{k}\times\underline{E}\cdot\underline{b}\ d\tau'\right\rangle.$$
(3.3)

Strictly, the final integral depends on the orbit of the jth particle but we shall ignore the correlation of E with the orbit and write:

$$Q_{\alpha\beta}(t) = \sum_{\underline{k}} \left\langle E_{\alpha}(\underline{k}, 0) E_{\beta}^{*}(\underline{k}, 0) \exp \frac{ic}{B} \underline{k} \times \underline{b}_{0} \int_{0}^{t} \underline{E} d\tau \right\rangle.$$
 (3.4)

To evaluate the ensemble average we assume that the fluctuating electric field can be represented by a normal distribution (Appendix A). Then the probability of $\underline{\mathbb{E}}(t)$ can be expressed in terms of the correlation $\langle \underline{\mathbb{E}} \cdot \underline{\mathbb{E}} \rangle$ which we wish to calculate. This is equivalent to neglecting all higher cumulants, such as $(\langle \underline{\mathbb{E}} \cdot \underline{\mathbb{E}} \cdot \underline{\mathbb{E}} \rangle - \langle \underline{\mathbb{E}} \cdot \underline{\mathbb{E}} \rangle^2)$. The normal distribution is also that which maximises the entropy subject

to a given correlation $\langle \underline{E}(t) \ \underline{E}(t+\tau) \rangle$. (In three dimensions a useful expression for the correlation can be obtained when the influence of the electric field on the particle orbits is entirely neglected. Here such a crude approximation would merely give a constant value for Q.)

The normal probability distribution for the function $\stackrel{E(t)}{\sim}$ has the form:

$$P\{E\} = \mathcal{H} \exp{-\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{\alpha}(\tau_{1}) Q_{\alpha\beta}^{-1}(\tau_{1} - \tau_{2}) E_{\beta}(\tau_{2}) d\tau_{1} d\tau_{2}}$$
(3.5)

where $Q_{\alpha\beta}^{-1}$ is the inverse of the correlation function so that:

$$\int Q_{\alpha\beta}^{-1}(\tau_1 - \tau) Q_{\beta\gamma}(\tau - \tau_2) d\tau = \delta_{\alpha\gamma} \delta(\tau_1 - \tau_2).$$
 (3.6)

(Summation over repeated indices is implied.) It is important to appreciate that $P\{E\}$ is the probability that the whole time history of the electric field shall be given by the function E(t). Equivalently one may divide the time up into a large number of discrete intervals and specify the probability for the whole set of $E(t, \cdot)$ as:

$$P\{E_{i}\} = \mathcal{N} \exp -\frac{1}{2} \sum_{i,j} E_{i} q_{i,j}^{-1} E_{j}$$
 (3.7)

Using the weighting functional (3.5) one finds, after some manipulation that the average: $_{t}$

$$\left\langle \mathbf{E}_{\alpha}(\underline{\mathbf{k}},0) \; \mathbf{E}_{\beta}^{*}(\underline{\mathbf{k}},0) \; \exp \frac{\mathbf{i} \mathbf{c}}{\mathbf{B}} \; \underline{\mathbf{k}} \times \underline{\mathbf{b}} \; \int_{0}^{t} \underline{\mathbf{E}}(\tau) \; d\tau \right\rangle$$

$$= \left\langle \mathbf{E}_{\alpha}(\underline{\mathbf{k}}) \; \mathbf{E}_{\beta}^{*}(\underline{\mathbf{k}}) \right\rangle \; \exp \; - \; \frac{\mathbf{c}^{2} \hat{\mathbf{k}} \; \hat{\mathbf{k}} \; \underline{\mathbf{h}}}{2B^{2}} \int_{0}^{t} \int_{0}^{t} \mathbf{Q}_{\epsilon \mu}(\tau_{1} - \tau_{2}) \; d\tau_{1} \; d\tau_{2} \; , \qquad (3.8)$$

where for brevity $\hat{k} \equiv (\underline{k} \times \underline{b})$. We therefore obtain the important equation for Q:

$$Q_{\alpha\beta}(t) = \sum_{\mathbf{k}} \langle E_{\alpha}(\mathbf{k}) E_{\beta}^{*}(\mathbf{k}) \rangle \exp\left(-\frac{c^{2}\hat{\mathbf{k}}_{\varepsilon}\hat{\mathbf{k}}_{\mu}}{2B^{2}}\int_{0}^{t} \int_{0}^{t} Q_{\varepsilon\mu}(\tau_{1} - \tau_{2}) d\tau_{1}d\tau_{2}\right)$$
(5.9)

which specifies the <u>time dependent</u> correlation function in terms of the <u>stationary</u> average field fluctuation. When the fluctuations are isotropic, as in the cases we shall discuss later, $Q_{\alpha\beta} = Q \delta_{\alpha\beta}$ and equation (3.9) simplifies to:

$$Q(t) = \frac{1}{4\pi} \int k \ dk \ \left\langle |E^2(k)| \right\rangle \exp - \frac{c^2 k^2}{2B^2} \int \int Q(\tau_1 - \tau_2) \ d\tau_1 \ d\tau_2 \qquad (3.10)$$

where we have also taken the opportunity to replace the sum over k by an integral, using the substitution $(2\pi)^2 \Sigma \to \int dk$. This will enable us to give simple analytic forms for the diffusion coefficient and correlation function.

For the purposes of calculation Eq.(3.10) can be put in a much more convenient form by introducing:

$$R(t) = \frac{c^2}{2B^2} \int_0^t \int_0^t Q(\tau_1 - \tau_2) d\tau_1 d\tau_2.$$
 (3.11)

This is given by the differential equation:

$$\frac{d^{2}R}{dt^{2}} = \frac{c^{2}}{4\pi B^{2}} \int_{a}^{b} k \, dk \, \langle |E^{2}(k)| \rangle \exp{-k^{2}R(t)}$$
 (3.12)

which has a first integral:

$$\frac{1}{2} \left(\frac{dR}{dt} \right)^2 = \frac{c^2}{4\pi^{B^2}} \int_a^2 \frac{dk}{k} \left\langle |E^2(k)| \right\rangle (1 - \exp(-k^2 R)). \tag{3.13}$$

This last form is convenient for numerical calculation. The upper and lower limits of integration are the shortest and longest wavelengths in the fluctuating field: $a \equiv k_{min}$, $b \equiv k_{max}$. The longest wavelength is clearly limited by the size of the system.

The function R(t), can be computed from (3.13) when the fluctuating spectrum $E^2(k)$ is given, (see below) and provides complete information on the internal dynamics of the plasma. The correlation function is given by the second derivative of R,

$$Q(t) = \frac{B^2}{c^2} + \frac{d^2R}{dt^2},$$
 (3.14)

and the diffusion coefficient by the first derivative:

$$D = \lim_{t \to \infty} t \left(\frac{dR}{dt} \right)$$
 (3.15)

R(t) itself gives the mean dispersion of a group of diffusing particles:

$$R(t) = \frac{\left(\Delta r(t)\right)^2}{4}.$$
 (3.16)

IV. THE DIFFUSION COEFFICIENT AND CORRELATION FLUCTION

The diffusion coefficient can be found without need of a full solution of (3.13). For R(t) must be unbounded as $t \to \infty$ and therefore at sufficiently long times $a^2R(t) \gg 1$. In this limit equation (3.13) gives immediately:

$$D^{2} = \frac{c^{2}}{2\pi B^{2}} \int_{a}^{b} \frac{dk}{k} \langle |E^{2}(k)| \rangle . \qquad (4.1)$$

We shall evaluate this in two cases:

(i) Thermal Equilibrium

In thermal equilibrium the spectrum of electric field fluctuations is given by (see Appendix B):

$$\langle |E^2(k)| \rangle = \frac{4\pi}{\ell} \frac{\kappa T}{(1+k^2\lambda^2)}$$
 (4.2)

so that:

$$D = \frac{c \kappa T}{eB} \left[\frac{1}{2\pi n \lambda^2} \log \left(\frac{L}{2\pi \lambda} \right) \right]^{\frac{1}{2}}$$
 (4.3)

which is the diffusion coefficient for a two-dimensional guiding center plasma in thermal equilibrium. It has the form predicted earlier, proportional to $\kappa T/B$, and we now see that the function f is:

$$f(n_D, N) \equiv \left[\frac{1}{2\pi n_D} \log \frac{N}{n_D}\right]^{\frac{1}{2}}$$
 (4.4)

A feature of the result is that D is not an intensive quantity;

instead it increases indefinitely (but very slowly) with the size of the system. The correlation function and the dispersion may be computed from equation (3.13). Fig.1 shows typical results: the normalizing factors are:

$$Q_0 = 4\pi \frac{ne^2}{\ell^2} \log \left(k_{\text{max}} \lambda\right) \tag{4.5}$$

and

$$t_0 = \frac{\lambda B \ell}{\pi^2 c n^2 e} , \qquad (4.6)$$

while D_{∞} has the value given by (4.3). It is interesting to note that the diffusion coefficient (4.3) does not suffer from a divergence at large wave number. The correlation function does diverge at t=0 if $k \to 0$ but is integrable, and initially has the form:

$$Q(t) = Q(0) - Q^{2}(0) t^{2}$$
 (4.7)

(ii) Random Distribution

The process of relaxation to thermal equilibrium may be slow and it is therefore of interest to consider other distributions. Of these the random distribution is an obvious choice, again particularly relevant to computer experiments where it is difficult to simulate the thermal distribution. The fluctuating spectrum for a random distribution of particles (Appendix B) is:

$$\langle |E^{2}(k)| \rangle = \frac{16 \pi^{2} ne^{2}}{\ell^{2}} \cdot \frac{1}{k^{2}}$$
 (4.8)

and in this case:

$$D = \frac{e c n^{\frac{1}{2}}L}{\pi^{\frac{1}{2}}\ell B} . \tag{4.9}$$

which depends strongly on the size of the system.

The correlation function and dispersion for the random distribution may be computed as before and typical results are shown in Fig.2. The normalizing factors are now:

$$Q_0 = 4\pi \frac{ne^2}{\ell^2} \log (k_{\text{max}}/k_{\text{min}})$$
 (4.10)

$$t_0 = \frac{B\ell L}{(2\pi)^{\frac{3}{2}} c e n^{\frac{1}{2}}}$$
 (4.11)

with D_{∞} given by Eq.(4.9).

V. SOME NUMERICAL EXPERIMENTS

(a) The Computer Programs

To check the theory presented above a number of computer experiments have been carried out. In these simulations the orbits of several thousand particles are computed, using Eq.(2.5), in a square with periodic boundary conditions. From these orbits diffusion coefficients and correlation functions are subsequently computed by appropriate analysis programs.

Two distinct computer models were used, both based on programs described elsewhere. In the first, a modification of GALAXY³, the charge of each particle is ascribed to the nearest mesh point and Poisson's equation is solved by a Fourier transform technique in both co-ordinates. The advantages of this program are that it can accomodate a very large number of particles (over 16,000 in our calculation) and that the Fourier transform technique allows one to retain an optional number of Fourier modes so that the numerical experiment has a direct equivalent to the maximum and minimum wave-numbers introduced in the analytic theory. However, at least in our modified form, GALAXY is less accurate than the alternative program.

The second program VORTEX was originally written to study vortex motion of fluids in 2-D, but as we have noted the equations for this

are identical with the guiding center Eqs. (2.5) if e is interpreted as the vortex strength. The VORTEX code uses more accurate integration methods than the modified GALAXY, and the charge density on the mesh is obtained by area weighting. The Poisson equation is solved by a Fourier-transform technique in one space direction and a As a result of these more elaborate cyclic reduction in the other. numerical techniques, the VORTEX code is more accurate than GALAXY but it cannot deal with more than about 3,000 particles and there is no explicit introduction of a cut-off in the Fourier modes as in GALAXY and the analytic theory. However a comparison of results from GALAXY and from VORTEX, and a direct analytic assessment, show that the area-weighting technique of VORTEX is equivalent to retaining 10-12 exponential Fourier modes in each direction, (i.e. 100-150 modes altogether).

(b) Initial Conditions and Fluctuations

A feature of the numerical experiments is their dependence on initial conditions. Although it is easy to simulate a thermal velocity distribution, the important spatial correlations, essential to our computation, are difficult to simulate correctly. We have, therefore, carried out our computations, and the comparison with theory, for the random distribution of section 4(ii).

The influence of initial conditions in this type of numerical experiment is reflected in the fact that, even with more than 3,000 particles, the statistical accuracy of the results is poor with wide fluctuations from one run to another. These fluctuations are not reduced by increasing the number of particles. The existence of such statistical fluctuations can be seen from elementary considerations (c.f. Appendix B). For if the charge density is:

$$\rho_{\underline{k}} = \sum_{i} \frac{e_{i}}{\ell} \exp i \underline{k} \cdot \underline{R}_{i}, \qquad (5.1)$$

then for a random distribution:

$$\langle |\rho_{\underline{k}}|^2 \rangle = N \frac{e^2}{e^2}$$
 (5.2)

and

$$\langle \left| \rho_{\mathbf{k}} \right|^{4} \rangle = (2N^{2} - N) \frac{e^{4}}{\ell^{4}}$$
 (5.3)

where N is the number of particles. The relative fluctuation in $\left| \rho_{\mathbf{k}}^2 \right|$ is therefore:

$$\frac{\langle [|\rho_{\underline{k}}^{2}| - \langle |\rho_{\underline{k}}^{2}| \rangle]^{2}\rangle}{\langle |\rho_{\underline{k}}^{2}| \rangle^{2}} = 2\left(1 - \frac{1}{N}\right) , \qquad (5.4)$$

and does not tend to zero as N is increased. However, the fluctuations can be reduced by taking the average of a number of independent runs, according to the usual rules for the statistics of independent events.

(c) Diffusion and Correlation Coefficient

Our main numerical experiments were sixteen independent runs, using the VORTEX code, each of which followed 3072 particles on a 64×64 mesh. Supplementary experiments using GALAXY were done with up to 16,000 particles. At each time step in the calculation the x-component of velocity of each particle was recorded and subsequent analysis yielded the average velocity correlation function $Q(\tau)$ and diffusion coefficient: $D(\tau) = \int_{-\infty}^{\tau} Q(\tau) \ d\tau \ .$

Each run occupied about 250 time steps.

VI. COMPARISON WITH THEORY

The theory has been developed in terms of physical variables but it was pointed out that the equations of motion become parameter free on introducing one arbitrary scale s, which in the numerical experiments this scale is taken to be L/64 as the programs use a 64×64 mesh on which to solve Poisson's equation. Apart from statistical effects and a weak dependence on the number of modes retained in solving Poisson equation, all possible experiments are thus embodied in a single calculation. This one calculation therefore provides a complete test of the theory.

Before the comparison can be made however a minor modification of the theory is required. Because the experiment involves only 10 or 12 Fourier modes in each direction, the replacement of sums over wave number by integrals is not sufficiently accurate, and the theory must be written using summations rather than integrals. The basic equation, in the dimensionless variables X,τ is then,

$$\left(\frac{dR}{d\tau}\right)^{2} = \frac{2N}{(64)^{2}} \sum_{\mathbf{k},\ell} \frac{1}{(\mathbf{k}^{2} + \ell^{2})^{2}} \left[1 - \exp\left(-\left(\mathbf{k}^{2} + \ell^{2}\right)\right) R(\tau)\right]$$
(6.1)

In the same dimensionless variables the initial correlation function Q(0) and the diffusion coefficient become:

$$Q(0) = \frac{N}{64^2} \frac{1}{4 \pi^2} \sum_{k,\ell} \frac{1}{(k^2 + \ell^2)}$$
 (6.2)

and

$$D(\infty) = \frac{1}{4\pi} \left[\frac{N}{\pi} \sum_{k,\ell} \frac{1}{(k^2 + \ell^2)^2} \right]^{\frac{1}{2}}$$
 (6.3)

In Figs.3,4 we compare the results of the main computer experiments with the analytic theory as given by (6.1). We have made the

comparison in terms of two quantities, the correlation function $Q(\tau)$ and the 'running' diffusion coefficient $D(\tau) = \int_{-\tau}^{\tau} Q(\tau') d\tau'$. errors bars on the results from the computer experiment represent one standard deviation on each side of the mean of 16 runs. mental and theoretical value for the salient parameters of these curves are summarized in Table I. which provides a concise indication of the overall agreement between theory and experiment. ($\tau_{\underline{1}}$ is the time for the correlation to fall to half its initial value.) Τt can be seen from this and the figures that the theory and computerexperiment are in very good agreement, any discrepancies lying well within the statistical errors. In assessing this agreement it should be recalled that there were no adjustable parameters or normalizing factors in the theory which is entirely self-contained and derived from basic principles.

The close agreement of theoretical and experimental values of Q_0 is to be expected and represents a check on the VORTEX program. The agreement of the correlation decay time is the most sensitive test of the overall theory. The agreement of the asymptotic diffusion coefficients confirms indirectly that the diffusion depends on the size of the system. The other important theoretical result, that the diffusion is proportional to 1/B, is a consequence of the scaling laws alone and is independent of the need for experimental confirmation.

VII. DISCUSSION

A theory of two-dimensional plasma based on the guiding center equations of motion has been developed and the velocity correlation function and diffusion coefficient, have been calculated. In this model diffusion must always be proportional to 1/B and depends on the size of the system. In thermal equilibrium the size dependence is very weak, the diffusion coefficient being:

$$D = \frac{c \kappa T}{eB} \left[\frac{1}{2 \pi n \lambda^2} \log \frac{1}{2 \pi \lambda} \right]^{\frac{1}{2}}$$

These results throw some doubt on the usefulness of 2-D computer calaculations as a mean of investigating 'anomalous' diffusion in experiments. On the other hand they make the study of 2-D systems an interesting problem in its own right, particularly as the theory yields detailed predictions without arbitrary parameters.

Whether the theory is relevant to real plasma is more specula-Clearly an equilibrium plasma differs greatly from our 2-D tive. model but there are circumstances in which real plasma may behave This is because equilibrium in a plasma is very like a 2-D system. attained quickly along the lines of force but more slowly perpen-Furthermore as all charges on a given flux tube dicular to them. tend to remain together the flux tubes and the particles on them If therefore a plasma acquires an imbalance retain their identity. of charge between various flux tubes, e.g. during its formation, or as a result of passing through an unstable phase, then these tubes would behave exactly as the charged rods of our model. (It may also be noted that 2-D behaviour depends mainly on the longer wavelength fluctuations, which are the slowest to disperse and for which the guiding centre approximation is most accurate.) Unfortunately it is not possible to predict the charge aquired by each flux tube so the diffusion coefficient in such a situation can only be expressed in terms of the potential fluctuations. Using Eq.(4.1) it then takes $D = \frac{\sqrt{2 c}}{B} \langle \varphi^2 \rangle^{\frac{1}{2}}.$ the form:

ACKNOWLEDGEMENTS

We would like to thank J. Christiansen, who made VORTEX available to us and assisted in its interpretation, J. Boris who made GALAXY available and A. Sykes who assisted in the numerical work. We are also grateful to I. Cook for useful comments and especially to S.F. Edwards for his valuable help and guidance.

APPENDIX A

THE NORMAL DISTRIBUTION FOR A FUNCTION

The normal distribution for a finite set of independent variables X_i is: $P = \mathcal{N} \exp{-\sum_i \frac{X_i^2}{\sigma_i}} \qquad (A.1)$

a form which can be justified by the central limit theorem. If the X_i are not independent but have finite correlations, $\langle X_i X_j \rangle = \sigma_{ij}$ then (A.1) generalizes to:

$$P = \mathcal{N} \exp - \sum_{j} \frac{X_{i} X_{j}}{\sigma_{i,j}}$$
 (A.2)

If we consider a transition from the sequence of $\{X_i\}$ to a continuous function X(t) then equation (A.2) goes over to the functional probability:

$$P = \mathcal{N} \exp - \int X(t_1) \sigma^{-1}(t_1, t_2) X(t_2) dt_1 dt_2 . \qquad (A.3)$$

For systems which are time invariant, $\sigma^{-1}(t_1, t_2) = \sigma^{-1}(t_1 - t_2)$. Equation (A.3) gives, in a formal sense, the probability of the function X(t) occurring.

A property of equation (A.3) is that it yields a normal distribution for the probability of X at any given instant, i.e.

$$P(X) = \mathcal{N} \exp -\frac{X^2}{\langle X^2 \rangle}$$
 (A.4)

Note the distinction between (A.4) - the probability that the value X shall occur at some chosen instant, and (A.3) - the probability that X shall be specified by the function X(t) for all times.

APPENDIX B

SPECTRUM OF FLUCTUATIONS OF 2-D PLASMA

(i) Random Distribution

It is convenient to treat first the case of a random distribution of particles. If ρ_k is the Fourier transform of the charge distribution and $r_k^2 \equiv \left|\rho_k^2\right|$ then:

$$\langle r_{\underline{k}}^{2} \rangle \equiv \langle \rho_{\underline{k}} \rho_{\underline{k}}^{*} \rangle = \langle \sum_{i,j} \frac{e_{i} e_{j}}{\ell^{2}} \exp i \underbrace{k} \cdot (\underbrace{R}_{i} - \underbrace{R}_{j}) \rangle, \quad (B.1)$$

so that for a random distribution:

$$\langle r_{\underline{k}}^2 \rangle = \frac{ne^2}{\ell^2} , \qquad (B.2)$$

and the electric field fluctuations are:

$$\langle |E^{2}(\underline{k})| \rangle = \frac{16 \pi^{2} ne^{2}}{\ell^{2}} \cdot \frac{1}{k^{2}}. \qquad (B.3)$$

It is convenient to write down the full distribution for r_k^2 , which is most easily done by considering all its moments. The odd moments vanish and for large $\,$ n the even moments are:

$$\langle r_{k}^{2m} \rangle = m! \left(\frac{ne^{2}}{\ell^{2}} \right)^{m},$$
 (B.4)

so that the distribution for r_k^2 must be:

$$P(r_{k}^{2}) dr_{k}^{2} = \mathcal{N} \exp -\left(\frac{r_{k}^{2} \ell^{2}}{2ne^{2}}\right) \cdot d r_{k}^{2}.$$
(B.5)

(ii) Thermal Distribution

In thermal equilibrium the probability of any configuration \mathbb{R}_i is given by the usual Gibbs function of the energy of that configuration, and the problem of finding the fluctuation spectrum is simply that of transforming from a description in terms of the \mathbb{R}_i to a description in terms of the ρ_k . (As both species are involved the

charge density fluctuations alone do not completely specify the configuration, and one must introduce a ρ_k^i and ρ_k^e for ions and electrons separately. In a random distribution ρ^i and ρ^e are each each distributed according to (B.5) and all cross correlations are zero.

To transform from $\{R_i\}$ to $\{\rho_k^e,\rho_k^i\}$ we need the Jacobian of the transformation from $R\to\rho$. However this is exactly the same quantity as the distribution of the ρ_k when the R_i are uniformly distributed, and this we have already calculated.

The energy may be expressed in terms of the $\, \, \rho_k \,$ as:

$$W = \sum_{k} \frac{2\pi\ell}{k^2} |\rho_k^2| = \sum_{k} \frac{2\pi\ell}{k^2} r_k^2 , \qquad (B.6)$$

so that combining this with the Jacobian, the thermal equilibrium distribution for $\ r_k^2$:

$$P(r_{\mathbf{k}}^{2}) \ dr_{\mathbf{k}}^{2} = \exp -\left(\frac{2\pi\ell}{\mathbf{k}^{2}\kappa T} + \frac{\ell^{2}}{2ne^{2}}\right) r_{\mathbf{k}}^{2} \cdot dr_{\mathbf{k}}^{2} \qquad (B.7)$$

Therefore the fluctuations of r_k^2 are:

$$\langle r_{\mathbf{k}}^{2} \rangle = \frac{1}{4\pi\ell} \cdot \frac{\mathbf{k}^{2} \kappa T}{(1 + \mathbf{k}^{2} \lambda^{2})}$$
 (B.8)

where the two-dimensional Debye length is defined by:

$$\lambda^2 = \frac{\kappa T \ell}{4\pi ne^2} \tag{B.9}$$

The corresponding electric field fluctuations are:

$$\langle |E_{\underline{k}}^{2}| \rangle = \frac{4\pi}{\ell} \cdot \frac{\kappa T}{(1+k^{2}\lambda^{2})}$$
 (B.10)

REFERENCES

- ¹ D. Bohm, <u>in</u> The Characteristics of Electrical Discharge in Magnetic Fields. Ed. A. Guthrie and R. Wakerling, McGraw-Hill, New York, (1949).
- ² J.B. Taylor, Phys. Fluids, <u>3</u>, 792, (1960)
- The GALAXY program was developed by J.P. Boris, <u>see</u> Proceedings of Culham Conference on Computational Physics, Paper no.4,
 H.M. Stationery Office, London, (1969)
- ⁴ The VORTEX program was developed by J. Christiansen, <u>see</u>

 Proceedings of Culham Conference on Computational Physics,
 Paper no.51, H.M. Stationery Office, London, (1969).
- ⁵ S.F. Edwards, Phil. Mag., <u>3</u>, 119, (1958).

TABLE I

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

	Numerical Experiment	Theoretical Value (10 Modes)	Theoretical Value (12 Modes)	Theoretical Value (Integral)
D(∞)	6•37 ± 1•82	6•16	6•10	4•55
Q(0)	•197 ± •034	•207	•203	•238
$\tau_{\frac{1}{2}}$	12.5 ±3·0	12•13	10•4	8 • 23

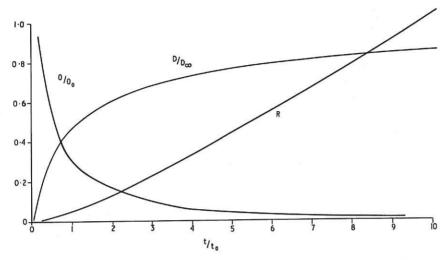


Fig.1 Theoretical Correlation and Diffusion for Thermal Plasma

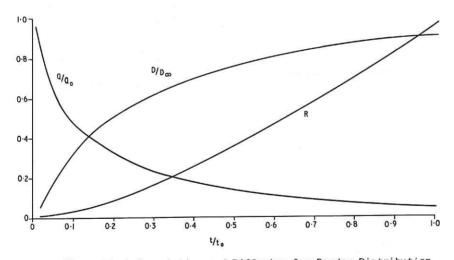


Fig.2 Theoretical Correlation and Diffusion for Random Distribution.

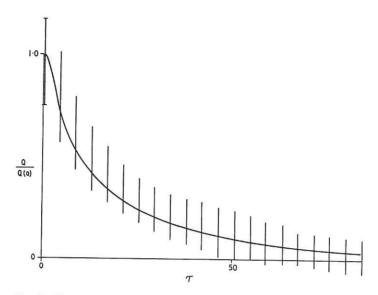


Fig.3 Experimental and Theoretical Correlation Functions.

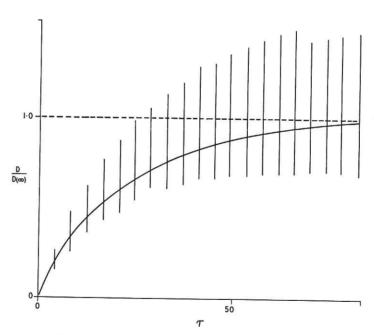
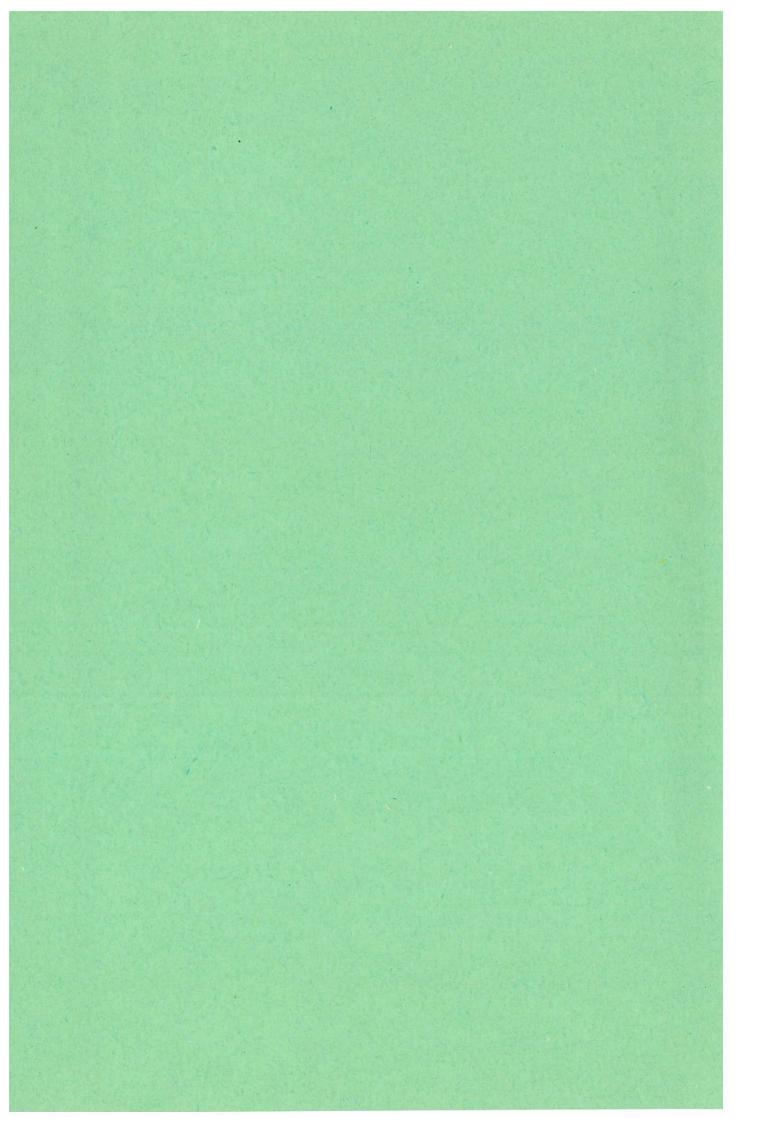
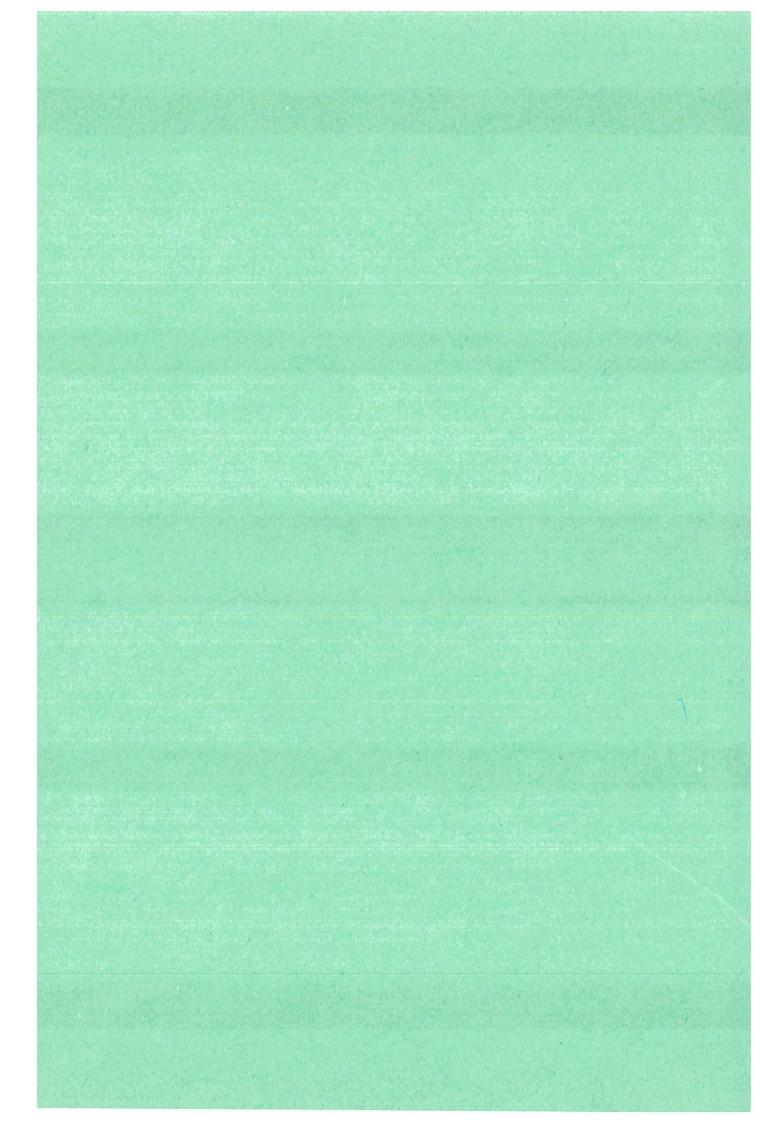




Fig.4 Experimental and Theoretical Diffusion. ${\it CLM-P}\ 255$

