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ABSTRACT

Diffusion of plasma in two dimensions is studied in
the guiding center model, It is shown that in this model
diffusion always exhibits the 'anomalous' 1/B variation
with magnetic field. The velocity correlation function
and the diffusion coefficient are calculated in detail
using functional probabilities. In addition to the 1/B
field dependence the diffusion coefficient is unusual in
that it depends weakly on the size of the system. These
theoretical results are compared with those from computer
expcriments and their significance for real plasma is

discussed.
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I. INTRODUCTION

It is well known that a strong magnetic field B inhibits the
diffusion of plasma transverse to the fieid and that for plasma in
local therwal equilibrium the diffusion coefficient is proportional
to 1/T?. However, experiments often show a much larger "anomalous'
diffusion and to describe this an euwpirical coefficient proportional
to 1/B (originally proposed by Bohm?) is often invoked. The Bohm
diffusion coefficient is

DB = a %%2
where T is the plasma temperature and a a numerical coefficient,
conventionally taken to be 1/16. The origin of anomalous diffu-

sion has been assumed to lie in fluctuating electric fields which

exceed the thermal level.

In studying anomalous cross field diffusion and its dependence
on magnetic field strength it is tempting to invoke two dimensional
models, particularly in computer simulations which involve computa-
tion of orbits for a large number of interacting particles. It is
important therefore to understand the fundamental behaviour of a
2-D plasma and the way in which it differs from real systems. In
this paper we investigate two-dimensional plasma in the high magnetic
field liwit, using the guiding center (g.c) model in which particles
move according to the equation of motion;

B x %o

c (1.1)

vV =
~

B?

with the potential ¢ determined by Poisson's equation, (This
model also describes the two-dimensional motion of an incompressible
inviseid fluid and some of our results may have hydrodynamic applica-

tions, but it is convenient to develop the theory solely in terms of

the plasma problem_)
= i 5=



The results of our investigation of diffusion in a 2-D guid-
ing center plasma are surprising. It is found that the diffusion
coefficient always has the Bohm (1/B) variation with magnetic field —

even in therwal equilibrium, Far from being anomalous therefore,

a Bohm-like diffusion formula is thé classical one! Furthermore

the diffusion coefficient depends weakly on the size of the system.

As a test of these theoretical predictions a series of
'numerical experiments' has been carried out. In these the orbits
for several thousand interacting particles are computed and the diffu-
sion coefficient and velocity correlation function calculated. The
results are in excellent agreement with the theory but also bring out
the importance of initial conditions and of statistical errors which

are not reduced merely by increasing the number of particles.

The theoretical model is developed in the next three sections
after which the numerical experiments are described. Finally the
significance of our results for real plasmas and for other 2-D plasma

simulations is discussed.

II. GENERAL PROPERTIES OF GUIDING CENTER DIFFUSION

We regard the plasma as an assembly of two species of charged
particles, which in two-dimensions are represented by rods with a
charge ei/z per unit length (ei = * e), immersed in a uniform
magnetic field B . The guiding center equation of motion for the

particles is;

and the potential ¢ is determined by:

e,
32({):4',{ y %5(1‘-1‘1‘,.), (2.2)
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where the sum is over all particles. Together with an initial
probability distribution these equations coupletely determine the
plasma properties. In thermal equilibrium the appropriate distri-
bution would be:

WiR} = N exp (- 'Z_e_é;pi log [R, - §3]> (2.3)

i#j

(Throughout this paperdﬂf denotes the appropriate normalization.)

These equations can be reduced to a universal form by the scale

transformations:
R=sX (2.2)
@ = 4meV
2 \
t = (;L;Eé ) T
4 mec

in which s 1is an arbitrary length scale. In the scaled variables

the plasua equations become:

%,
T L
N e
2 _i _
Yy = z ( < ) 8(X ,?,(,i) (2.5)
i=1
eie.
vixs - “M — (.. [ hme® "y 8 I§ ) '}‘(‘J l)
i#j

where b = ’I\S/B and n, = KT@/iche 2 js the number of particles per

KT&/lrnnez, see Appendix B).

square Debye length (A’

It is apparent from this form of the prohiem that the particle
dynamics depends only on N and the sign of the charges, e;. The

distribution function depends on only one other parameter, n,, so that

all plasma properties can be expressed in the scaled variables as



functions of N and n, alone. Any intensive plasma property (i.e.
one which is independent of plasma size) will depend only on np .
To make use of this result in deternining the diffusion coeffi-

cient we write it in terms of the velocity correlation as:

f (v, (0)v, (£)) at —‘”‘T/(( (7)) dr, (2.6)

which, in accordance with the remarks above, must take the universal

form: ckT
D = = f(N,nD) . (2.7)

We see, therefore, that if a diffusion coefficient exists, then even

in thermal equilibrium it can only be proportional to I/B.

If the plasma is not in thermal equilibrium the diffusion

coefficient will still be proportional to 1/B, though the other
plasma parameters cannot then be reduced to one universal quantity.
To confirm the 1/B variation it is only necessary to introduce the

transformation:
t=—n= (2.8)

into the original equations and to observe that B then disappears
from the problem. Expressing the diffusion coefficient in terms of

the velocity correlation as in (2.6) then shows it to be of the form:

o HE. 9«
I = eB ° (2.9)

where @ may depend on other parameters but must be independent of

the magnetic field,



III. THE ELECTRIC FIELD CORRELATION

By introducing Fourier transforms, taken for convenience in a

square of unit area, into equation (2.2) the potential may be written:

p(r,t) =4x Z %lz\ % exp i k - (Ej(t) - 5) (3.1)

J k

~o

where ki/?ﬂ , k&/?ﬂ take all integer values. The electric field

correlation function is therefore:

Qaﬁ(T) <Ea(t) EB(t+-T)>

.e. k
167 P3%4 y e éxp i E(El(t) - Ej(t +f|:)>>

f o p? k? .
ij k {3.2)

where the fact that Q is independent of r has been used to simplify

the last expression.

Using the guiding center equations of motion (3.2) becomes

t+ T
.e,

Q («;)—1671;27 il y\kc’kﬁ/ex i k-(R (t)-R(t)) ex “—iﬁkaE-b d
g\ T T NPT A\ ~j PBt~~~‘
K

ij
(3.3)
Strictly, the final integral depends on the orbit of the jth particle
but we shall ignore the correlation of E with the orbit and write:
. t
_ ic \E d7)
0p(®) = ) (U008 (5.0)em 2 kx J Ead. ()
X
To evaluate the ensemble average we assume that the fluctuating
electric field can be represented by a normal distribution (Appendix A).
Then the probability of E(t) can be expressed in terms of the correla-
tion (E-E) which we wish to calculate. This is equivalent to
neglecting all higher cumulants, such as ((E-E-E-E) - (E-E)z) " The

~

normal distribution is also that which maximises the entropy subject

,>.



to a given correlation (E(t) E(t4—¢)>. (In three dimensions a
useful expression for the correlation can be obtained when the

influence of the electric field on the particle orbits is entirely
neglected® . Here such a crude approximation would merely give a

constant value for (.)

The normal probability distribuiion for the function E(t) has
the form:

=j{exp..%-jﬁ/g%aﬂri)qgg(mi-mé) Eﬁ(Té) dz, d=, {35

where Q-i is the inverse of the correlation function so that:
|/ Q Q (T Ty ) dt =8 Y_a(Ti'-Té). (3.6)

(Summation over repeated indices is implied.) Tt is important to
appreciate that P{E} is the probability that the whole time history
of the electric field shall be given by the function .E(t)' Equiva-
lently one may divide the time up into a large number of discrete

intervals and specify the probability for the whole set of E(ti) as:

PEE_}.}:\/‘:{ exp - é— TEi .t E, . {5.7)
.‘_}

i 1] )
1]

Using the weighting functional (3.5) one finds, after some

manipulation that the average:

& (1,0) 7(k,0) exp 3 kxb 'f};l(w‘) ary

o]

t
. ok _k
= <Eo,('l£) Eg(}f.» exp - W—E_/./ er('ci— T,) dt, dT,, (3.8)
o O

i

A

where for brevity k = (E X h). We therefore obtain the important

~

equation for Q:

2-’\6

Qas(t>=2¢a(5> B (09) p(—-l—i /t [ogu (e =) 4z ) (5.9)



which specifies the time dependent correlation function in terms of

the stationary average field fluctuation. When the fluctuations are
isotropic, as in the cases we shall discuss later, qu = QESG18 and

equation (3.9) simplifies to:

bt
Q(t) =f;c k dk <fE2(k) I> exp - ¢’k [U/ (7, - 7,) d, d=, (3.10)

oB 2 o

where we have also taken the opportunity to replace the sum over k
by an integral, using the substitution G2ﬂ)2 L = f‘QE. This will
enable us to give simple analytic forms for the diffusion coefficient

and correlation function.

For the purposes of calculation Eq.(3.10) can be put in a much

more convenient form by introducing:

R(t) = g ft/’t Q(ty -7 ) dv, d7,. (3.11)

2B

This is given by the differential equation:
b

ER_ o 'Ik dk (|E*(k)|) exp - k°R(t) (3.12)

dt?  47B®

which has a first integral: b

%(&—‘%) - 11—7‘—:-]-3-51% (B (1) [) (1-exp- k"R). (3.13)

This last form is convenient for numerical calculation. The upper

and lower limits of integration are the shortest and longest wave-

lengths in the fluctuating field: a=k . , b=k .
min max

The longest wavelength is clearly limited by the size of the system.

The function R(t), can be computed from (3.13) when the fluc-

tuating spectrum Ef(k) is given, (see below) and provides complete

information on the internal dynamics of the plasma. The correlation

function is given by the second derivative of R,

-7 -



_B? 4°r
Q(t) = & 1 (3.1%)
and the diffusion coefficient by the first derivative:
limit [ dR

R(t) itself gives the mean dispersion of a group of diffusing parti-

cles:

R(t) < (Arit)) .

(3.16)

IV. THE DIFFUSION COEFFICIENT AND CORRELATION FLUCTION

The diffusion coefficient can be found without need of a full
solution of (3.13). For R(t) must be unbounded as t - « and
therefore at sufficiently long times a”R(t) » 1. In this limit

equation (3.13) gives immediately :
zbdk
D? =-Ji—-J[ = (|E*(x)|> . 4.1
2 E e (4.1)
a
We shall evaluate this in two cases:
(i) Thermal Equilibrium
In thermal equilibrium the spectrum of electric field

fluctuations is given by (see Appendix B):

. by FT
so that: 1
ckT 1 L )
> - 5 [ s (5m) | (5.5)

which is the diffusion coefficient for a two-dimensional guid-
ing center plasma in thermal equilibrium. It has the form
predicted earlier, proportional to kT/B, and we now see that

the funetion f 1is: .

f(nD ,N) = [ 1 log %F—J * . (4.4)

2‘31'.I1D D

A feature of the result is that D is not an intensive quantity;

= &=



instead it increases indefinitely (but very slowly) with the size
of the system. The correlation function and the dispersion may
be computed from equation (3.13). Fig.1 shows typical results:

the normalizing factors are:

I (k) (4.5)
QO = 4 22 og .
and A B e
to =TT (4.6)
n2cnZe

while D_ has the value given by (£.3). It is interesting to
note that the diffusion coefficient (4.3) does not suffer from
a divergence at large wave number. The correlation function
does diverge at t =0 if kmin > 0 but is integrable, and

initially has the form:
alt) = Q(0) - @*(0) ¢ (4.7)

(ii) Random Distribution

The process of relaxation to thermal equilibrium may be
slow and it is therefore of interest to consider other distri-
butions. 0f these the random distribution is an obvious
choice, again particularly relevant to computer experiments
where it is difficult to simulate the thermal distribution.
The fluctuating spectrum for a random distribution of particles

(Appendix B) is:

(}Ez(k)|> _ 16 ﬂzneg i _].___ (}* 8)
. = .2 2 G
and in this case: 2
e cn2L
D=——r—. (£.9)
7%%£B

which depends strongly on the size of the system.
The correlation function and dispersion for the random
distribution may be computed as before and typical results are

shown in Fig.2. The normalizing factors are now:



2
ne
Q, = 4= pr log (kmax/kmin) (4.10)

L
R (4.11)

0 (2%)%(: enz

with D given by Eq.(4.9).

V. SOME NUMERICAL EXPERIMENTS
(a)  The Computer Programs

To check the theory presented above a number of computer
experiments have been carried out, In these simulations the orbits
of several thousand particles are computed, using Eq.(2.5), in a

square with periodic boundary conditions. From these orbits diffu-

sion coefficients and correlation functions are subsequently computed

by appropriate analysis prograus.

Two distinct computer models were used, both based on programs
described elsewhere. In the first, a modification of GALAXYQ, the
charge of each particle is ascribed to the nearest mesh point and
Poisson's equation is solved by a Fourier transform technique in
both co-ordinates. The advantages of this program are that it can
accomodate a very large number of particles (over 16,000 in our calcu-
lation) and that the Fourier transform technique allows one to retain
an optional number of Fourier modes so that the numerical experiment
has a direct equivalent to the maximum and minimum wave-numbers
introduced in the analytic theory. However, at least in our modi-

fied foru, GALAXY is less accurate than the alternative program.

The second program VORTEX was originally written to study vortex

motion of fluids in 2-D, but as we have noted the equations for this

- 10 -



are identical with the guiding center Egs.(2.5) if e is interpreted
as the vortex strength. The VORTEX code uses more accurate inte-
gration methods than the modified GALAXY, and the charge density on
the mesh is obtained by area weighting. The Poisson equation is
solved by a Fourier-transform technique in one space direction and a

cyclie reduction in the other. As a result of these more elaborate

numerical techniques, the VORTEX code is more accurate than GALAXY
but it cannot deal with more than about 3,000 particles and there is
no explicit introduction of a cut-off in the Fourier modes as in
GALAXY and the analytic theory. However a comparison of results
from GALAXY and from VORTEX, and a direct analytic assessment, show
that the area-weighting technique of VORTEX is equivalent to retain-
ing 10-12 exponential Fourier modes in each direction, (i.e. 100-150

modes altogether).

(b) TInitial Conditions and Fluctuations

A feature of the numerical experiments is their dependence on
initial conditions. Although it is easy to simulate a thermal
velocity distribution, the important spatial correlations, essential
to our computation, are difficult to simulate correctly. We have,
therefore, carried out our computations,‘and the comparison with

theory, for the random distribution of section 4(ii).

The influence of initial conditions in this type of numerical
experiment is reflected in the fact that, even with more than 3,000
particles, the statistical accuracy of the results is poor with wide
fluctuations from one run to another. These fluctuations are not
reduced by increasing the number of particles. The existence of
such statistical fluctuations can be seen from elementary considera-

tions (c.f. Appendix B). For if the charge density is:

- T i



Q=

ei .
Pk = —=expik-R, (5.1)
~ L & ‘6

1

then for a random distribution:
2

2
(re [ = v & (5.2)
and - £
4 . o?
(ol > = (28 - W) p (5.3)
where N is the number of particles. The relative fluctuation in

|Pi, is therefore:

el - Cleg | 7%
ka,l I k‘.l = 2(1 - 1) ; (5'4)

(eg |02 !
and does not tend to zero as N is increased. However, the fluctua-
tions can be reduced by taking the average of a number of independent
runs, according to the usual rules for the statistics of independent

events,

(c) Diffusion and Correlation Coefficient

Our main numerical experiments were sixteen independent runs,
using the VORTEX code, each of which followed 3072 particles on a
64 x 64 mesh.  Supplementary experiments using GALAXY were done with
up to 16,000 particles, At each time step in the calculation the
x~-couponent of velocity of each particle was recorded and subsequent
analysis yielded the average velocity correlation function Q(7) and

diffusion coefficient: T

D() =/Q(T) dt .

o]

Each run occupied about 250 time steps.

- 12 -



VI. COMPARISON WITH THEORY

The theory has been develuped in terms of physical variables but
it was pointed out that the equations of motion become parameter free
on introducing one arbitrary scale s, which in the numerical experi-
ments this scale is taken to he L/64 as the programs use a 64 x 64 mesh
on which to solve Poisson's equation. Apart from statistical effects
and a weak dependence on the number of modes retained in solving Poisson
equation, all possible experiments are thus embodied in a single calcu=
lation, This one calculation therefore provides a complete test of

the theory.

Before the comparison can be made however a minor modification
of the theory is required. Because the experiment involves only 10
or 12 Fourier modes in each direction, the replacement of sums over
wave number by integrals is not sufficiently accurate, and the theory
must be written using summations rather than integrals. The basic

equation, in the dimensionless variables X,t 1is then,

(8 - )b from (00 Ju] 1o

2

In the same dimensionless variables the initial correlation

function Q(0) and the diffusion coefficient become:

N 1 Y 1
0) = — 6.2
Q( ) 642 L 7;2 m(l{g "y ) ( )
and N
1 [N 1 L
D(°°) "L l: T z (kE 5 32)2 j| (6.3)
k.2

In Figs.3,4 we compare the results of the main computer experi-

ments with the analytic theory as given by (6.1). We have made the

s %



comparison in terms of two quantities, the correlation function Q(T)
and the 'running' diffusion coefficient D(t) = }Q(rx’) dt'.  The

o
errors bars on the results from the computer experiment represent one
standard deviation on each side of tie mean of 16 runs. The experi-
mental and theoretical value for the salient parameters of these
curves are sumuarized in [lable I. which provides a concise indication
of the overall agreement between theory and experiment. (1% is the
time for the correlation to fall to half its initial value. ) It
can be seen from this and the figures that the theory and computer-
experiment are in very good agreement, any discrepancies lying well
within the statistical errors. In assessing this agreement it should
be recalled that there were no adjustable parameters or normalizing
factors in the theory which is entirely self-contained and derived

from basic principles.

The close agreement of theoretical and experimental values of
Qo 1s to be expected and represents a check on the VORTEX program ,
The agreement of the correlation decay time is the most sensitive
te;t of the overall theory. The agreement of the asywptotic diffu-
sion coefficients confirms indirectly that the diffusion depends on
the size of the system. The other important theoretical result, that

the diffusion is proportional to 1/B, is a consequence of the scaling

laws alone and is independent of the need for experimental confirmation.

VII. DISCUSSION

A theory of two-dimensional plasma based on the guiding center
equations of motion has heen developed and the velocity correlation

function and diffusion coefficient, have been calculated. In this

- 14 -



model diffusion must always be proportional to 1/B and depends on
the size of the system, In thermal equilibrium the size dependence

is very weak, the diffusion coefficient being:

ckT 1 1 %
D= = 1 ——
eB [2 xohe 8o }

These results throw some doubt on the usefulness of 2-D compu-

ter calaculations as a mean of investigating 'anomalous' diffusion
in experiments. On the other hand they make the study of 2-D systems
an interesting problem in its own right, particularly as the theory

yields detailed predictions without arbitrary parameters.

Whether the theory is relevant to real plasma is more specula-
tive. Clearly an equilibrium plasma differs greatly from our 2-D
model but there are circumstances in which real plasma may behave
very like a 2-D system. This is because equilibrium in a plasma is
attained quickly along the lines of force but more slowly perpen-
dicular to them. Furthermore as all charges on a given flux tube
tend to remain together the flux tubes and the particles on them
retain their identity. If therefore a plasma acquires an imbalance
of charge between various flux tubes, e.g. during its formation, or
as a result of passing through an unstable phase, then these tubes
would behave exactly as the charged rods of our model. (It may also
be noted that 2-D behaviour depends mainly on the longer wave-
length fluctuations, which are the slowest to disperse and for which
the guiding centre approximation is most accurate.) Unfortunately
it is not possible to predict the charge aquired by each flux tube
so the diffusion coefficient in such a situation can only be expressed

in terms of the potential fluctuations. Using Bq.(4.1) it then takes

the form: VQ c <¢2> %
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APPENDIX A

THE NORMAL DISTRIBUTION FOR A FUNCTION

The normal distribution for a finite set of independent vari-

ables Xi is: X
P =‘A/ exp - j;ﬂ E% (A.1)
W,

a form which can be justified by the central limit theorem. If the

]

[

X

; are not independent but have finite correlations, (Xin) = Gﬁj

then (A.1) generalizes to:
X. X,
P=Jl/exP_YL_J. (a.2)
t 1 %53

If we consider a transition from the sequence of iXi} to a con-
tinuous function X(t) then equation (A.2) goes over to the functional

probability:

P = Jf exp —/X(ti) (b, ,t, ) X(t,) at, dt, . (4.3)

For systems which are time invariant, d”i(ti,tz) = Uﬁi(tjftz).
Equation (A.3) gives, in a formal sense, the probability of the

function X(t) occurring.

A property of equation (A.3) is that it yields a normal distri-

bution for the probability of X at any given instant, i.e.

2

X
"&ES (A.lk)

P(X) =‘A/-exp -

Note the distinction between (A.4) - the probability that the value
X shall occur at some chosen instant, and (A.3) - the probability

that X shall be specified by the function X(t) for all times.

- A7 =



APPENDIX B
SPECTRUM OF FLUCTUATIONS OF 2-D PLASMA

(i) Random Distribution
It is convenient to treat first the case of a random distribu-

tion of particles. If P, 1is the Fourier transform of the charge

distribution and 1] = ]p; then:

. e.e.
2 3 .
(rk>'E <Pk Pk> = ( i;ﬂ —igﬂ-exp Ik (R, - R.)), (B.l)
~ ~ Yt ’e' ~1 NJ
so that for a random distribution:
2
2 ne
(rk) - (B.2)
~ £
and the electric field fluctuations are:
2 16 ©° ne” 1
(|E (}s)l)=—'—2'—-'g- (B.3)

£

It is convenient to write down the full distribution for q; j

~

which is most easily done by considering all its moments. The odd

moments vanish and for large n +the even moments are:

& = (ne: )m , (B.4)

~ £
so that the distribution for r;: must be:
2 2 - rﬁ ¢* 2
P(rk) drk =VM’exp - <2ne2 > | ﬁk. (B.5)

(ii) Thermal Distribution

In thermal equilibrium the probability of any configuration Ry
is given by the usual Gibbs function of the energy of that configura-
tion, and the problem of finding the fluctuation spectrum is simply
that of transforming from a description in terms of the R toa

description in terms of the P - (As both species are involved the

e

~ 1B =



charge density fluctuations alone do not completely specify the con-
figuration, and one must introduce a pi and pE for ions and elec-
trons separately. In a random distribution Pi and p® are each
each distributed according to (B.5) and all cross correlations are
Zero,

To transform from {Rj} to ipﬁ,pi} we need the Jacobian of
the transformation from R - P. HOWE&?Z this is exactly the same
quantity as the distribution of the ) when the R; are uniformly

5
distributed, and this we have already calculated.

The energy may be expressed in terms of the Pk as:

V=) el (»-6)

so that combining this with the Jacobian, the thermal equilibrium

distribution for ri :

2 2 27(:’6 .62 2 2
P(rli) dri{ = exp - (————kQKT * oo | Tk d.rE (B.7)
Therefore the fluctuations of ri are:
2) 1 k2 kT
SR vy CRPS ALY (B.8)

L

where the two-dimensional Debye length is defined by:

5 Bl (B.9)
Yrne

The corresponding electric field fluctuations are:

2 - %E._ kT
R N el

o 18 =
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COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

Watisi sal Theoretical Theoretical Theoretical
Fix er;;ant Value Value Value
perime (10 Modes) (12 Modes) (Integral)
D( ) 637 +1-82 6-16 6-10 4455
Q(0) +197+ <034 =207 <203 238
Ty 12,5 3.0 12-13 10-4 8-23
2
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