L B S

CLM-P257

This document is intended for publication in a journal, and is made
available on the understanding that extracts or references will not be
published prior to publication of the original, without the consent of the

aqthors.
g CULHAM LABORATORY
| LIBRARY
R
e | Bl {58 &
& [e
|
e
] el P

United Kingdom Atomic Energy Authority
RESEARCH GROUP

Preprint

SYMBOLIC PROGRAMMING FOR
PLASMA PHYSICISTS

K. V. ROBERTS
R. S. PECKOVER

Culham Laboratory
Abingdon Berkshire

1970

LM -P 257

SYMBOLIC PROGRAMMING FOR PLASMA PHYSICISTS
by

K.V. ROBERTS
R.S. PECKOVER

(Paper presented at the Fourth Conference on Numerical Simulation of
Plasmas, U.S. Naval Research Laboratory, Washington, 2-3 November 1970)

ABSTRACT

The symbolic use of Algol has been developed in order to provide
a clear notation in which to code physics problems for solution on a
computer., A scheme has been devised which enables real physics pro-
grams to be built up quickly from a standard skeleton program DUMMYRUN
by adding modules peculiar to the problem., Each module is provided
with a 'testbed' which enables it to be checked in a methodical way.
Techniques are described for making an Algol program 'portable', so
that it can readily be transferred from one computer to another, and
the paper discusses the CACTUS package which performs an automatic con-
version between certain alternative Algol hardware representations. It
is explained how the use of Symbolic Algol can make the initial and
boundary conditions clear. By way of comparison, the way in which a
Fortran similation program can be built up from a Universal Control

Package (UCP) is briefly mentioned.

U.K.A.E.A. Research Group,
Culham Laboratory,
Abingdon,

Berks.

November, 1970

CONTENTS

INTRODUCTION

SYMBOLIC AILGCL I

A STANDARD MODULAR STRUCTURE

ACCEPTANCE TESTS

PORTABILITY

INITIAL CONDITIONS AND BOUNDARY CONDITIONS

FLEXIBILITY

CONCLUSIONS

APPENDIX. A UNIVERSAL CONTROL PACKAGE FOR FORTRAN PROGRAMS
REFERENCES

Page

10
13
16
19
22

1. INTRODUC TION

The details of computing are one of the burdens that must be
borne by the physicist who believes in a particular case that only
by a complex calculation will he be able to substantiate his theory
or establish the intricacies of a real experimental situation.
Nevertheless, it seems to us that the simulation of plasma behaviour,-
to take an example, is at present made a more difficult task than it
need be partly because of the limitations of existing programming
languages, and partly because each worker in the field usually con-
structs his own input, output and control facilities, and often does
not develop his program in a systematic way. However, a common struc-
ture can be adopted for a wide class of time-dependent fluid flow
problems.

To help the computational plasma physicist to keep closer to
his problem, the symbolic use of Algol has been developed(]’z’s).
Further, a system has been devised which enables computer programs
to be built quickly out of a set of standard prefabricated modules,
with the addition of a few further modules peculiar to the problem.
The style enables all details of mathematics and logic to be hidden
at a lower level. The discussion will be based on the use of Symbolic
Algol, (see Section 2), but the remarks about the need for a good
adaptable program structure hold true also in Fortran (see Appendix).

The prefabricated general purpose modules deal with output, vec-
tor algebra, vector analysis, program control etc., act as a library,
and provide the physicist with a program which has a logical structure
and with the mathematical tools with which he is familiar.

Many programs in plasma simulation share the same superficial

structure - a set of differential equations are solved as a function

of time - and this superficial structure can be made the same in a
suite of computer programs, S0 that only the sections describing the
actual physics need be different from case to case. Symbolic Algol
programs can moreover be written in a machine-independent way, so that
they will run quickly on any computer system, and with careful design
they can be made to execute with high efficiency.

To construct worthwhile programs rapidly, modules with well-
defined interfaces and dependable characteristics must be available -
thiscan be achieved using tiny testbed programs the results of which
are available as guarantees of confidence. The "standard empty pro-
gram" DUMMYRUN described in Section 3 was tested in just this way before
being used as the skeleton on which to hang more substantial programs.
Such programs as ROLLS (a 2D program for studying enclosed convection)
and TRINITY (a 3D MID program) have been tested this way and provide
good illustrations of the way in which initial conditions and boundary
conditions (see Section 6) can be set up easily in Symbolic Algol T,
These were initially programs using leapfrog schemes but the modular
structure is flexible enough for other schemes both explicit and
implicit to be incorporated without major surgery. Such flexibility
is illustrated in Section 7,

2. SYMBOLIC ALGOL I

Let us first recall how symbolic Algol techniques can be used
to express programs that solve sets of partial differential equations.

(1)

These techniques were briefly reported at Culham and a more complete
account can be seen in papers to be published soon(z’s).
For mathematical text books, a fairly standard notation has

been adopted for such topics as vector algebra, and analysis. This

notation is highly compressed and can be co-ordinate-free. For example,

D

the vector magnetic field is written tersely as B instead of in the
expanded form (Bx(x,y,z), By(x,y,z), Bz(x,y,z)) and such expressions
as (curl B) A B are independent of both the particular co-ordinate
system used and the effective number of dimensions.

Consider the equation of charge conservation

d .
45% +div j =0 (1)

Using an explicit difference scheme we may express this in Algol 60
as: -

AQ[0] := Q - DT * DIV(J); (2)
where:

AQ is an array holding the charge;

O 1is the local origin of the difference
scheme;

Q is the value of the charge at the 'old'
time;

DT is the effective time increment;

J 1is the airrent vector;

DIV is a finite different operator.
Here Q{ J, and possibly DT are real parameterless procedures. i.e.
they depend only on implicit variables which represent the chosen
vector component and lattice point in terms of the geometry of the
problem and do not depend on any explicitly exhibited variable. The
differential operator "div" is defined in mathematical physics for a

Cartesian co-ordimate system by

aFi
div E = —axl (5)
i=1

In Symbolic Algol I it is represented by the quite analogous

real procedure DIV which has a declaration of the form

real procedure DIV (A); real A; DIV: = SIGMA(DEL(A)); (4)

The procedure DIV here has an explicit argument, as div does in vector
analysis.

A. second example of the compactness of Symbolic Algol notation
is in the difference form for the Vlasov equation. For a continuous
distribution function f we may write the Vlasov equation in

ordinary mathematical notation as
af d -
Sc+ (V- D+ (a2 a!)f =0 (5)

without needing to say explicitly that f is a function of
(x,y,z,u,v,w,t) wherever it is mentioned.

In Algol 60 this can be written

AF[0] := F - DT * (DOT(V,DEL(F)) + DOT (A,DELV(F))); (6)
Because procedures can be parameterless in Algol (unlike Fortran) we
can express the distribution function as F, its current value,
through the definition:

real procedure F 3 F:= AF(0); (7)

where O is a matrix subscript and represents the current position
on the lattice.

The real procedure DOT is the finite difference analogue of the
inner vector product i.e.

a-b - DOT(A,B) (8)

To show the way in which Symbolic Algol I is able to build up
new procedires from older ones in a hierarchic fashion, the nested
structure of DEL can be exhibited. The abbreviation RP will be used

for real procedure and IP for integer procedure,

RP DEL(F); real F; DEL = (EP(F)-EM(F))/(2+DS);

RP EM(F); real F; begin O := O - DO; EM := F;0 := O + DO; end

R? EP(F); real F; begin O :

IP DO;

3

if Ceq 1 then 1 else if C eq 2 then PI else PI*PJ;

O + DO; EP := F;0 ;=0 - DO; end

O is the current lattice point. C is the index specifying the

direction.

C=1 P A

If C =1, DO corresponds to the length PA, and the statement

O:= 0 + DO moves the current origin from P to A. If C = 2 the

origin is moved to B, and if C = 3 it is moved in the z-direction.

This may be compared with the mathematical hierachy

Tn¥ = o-(EF - ET)Y
where
EM(r) = ¥(r + dr)
E7y(r) = ¥(r - dr)
and

dr = dx (x component)

or dy (y component)
or dz (z component)

With so many nested procedure calls Symbolic Algol I usually

(10)

(11)

(12)

executes slowly, but it is very clear what the program is doing. Such

an approach enables clear programning in the initial stages.

Subsequently DEL could be made faster by introducing a vector DR with

3 elements containing 1, PI, and PI * PJ respectively. The procedure

(9)

definition for DEL could then be shortened into

RP DEL (F); real F; begin real F1;

integer DO;

PO: = DR(C); O := O + DO; F1: = F; (13)

0 := 0 - 2 * DO; DEL: = (F1 - F)/(2 * DS);
O :=0 + DO; end;

A deeper level of optimisation is to replace the right hand side of
equation (6) by an explicit linear form in AF [0 + o] for a sum of

terms in a. For example when C =1,
DEL(F) := (AF[0 + 1] - AF [0 - 1])/(2 * DS); (14)

Optimisations of this kind can be carried out automatically and are

(2).
(14)

discussed in detail elsewhere
Converter programs exist which enable equations to be con-
verted automatically into an optimized code for any desired combina-
tion of output language, co-ordimate system, and different scheme.
Languages implemented so far have been Algol, Fortran, KDF9 Usercode
and IBM 360 assembly language. The optimized module is then used, in
conjunction with the remainder of the original Symbolic Algol 1 program,

to carry out the production runs.

3. STANDARD MODULAR STRUCTURE

Consider two programs that solve two sets of different time-
dependent fluid equations. Evidently these programs could be
designed to have much in common; almost everything, in fact, except the
physics. We have developed a series of Algol modules which deal with
standard tasks such as output, vector algebra and 2analysis, program
control and so on, and which fit together to enable a wide range of

physics programs to be constructed quickly. Some of these pre-

fabricated modules have been put together to form a skeletal program

-6 -

DUMMYRUN which has the general structure of a program that similates

time~dependent particle and fluid flows, although it actually does

no physics. It is a "standard empty program" which with little effort

can be converted into a running program for a real physical problem.
DUMMYRUN consists of a set of modules which are available as on-

lire files and has the following structure:

DUMMYHEAD
OUTALGOL
ALGEBRA
CARTESIAN
UTILITIES
DUMMY PREDATA
MAIN CONTROL
DUMMY PHYSICS
DUMMY CONTROL
TAIL

Fig.1

Let us build the program up piece by piece:

(a) An Algol program needs job control cards, and a
‘ HEAD
begin for the outer block.
(b) It needs an end for both the outer block and the
} TAIL
inner problem-oriented block.
(c) In order to output anything, an output channel
} OUTALGOL
mist be specified and output procedures provided.
(d) The physics problems in vhich we are
ALGEBRA
interested use vector algebra, difference
CARTESIAN
schemes in Cartesian geometry, with various
UTILITIES
sorts of array output.

(e) Clearly other standard library modules could be
inserted, to generate on-line graphical display or
to use cylindrical co-ordinates, for example.
(f) Prior to entering the inner (physics) block,
PREDATA

dynamic array bounds must be set and the

various modules activated.

mist the same elements., as we find by perusing
programs written in the past both by ourselves
and by others. These have been formalized into
a standard control structure. MAIN CONTROL con-

sists of a series of parameterless procedures

(g) Most fluid simulation programs seem to require)
>M\IN CONTROL

whose names describe their functions (Fig.2).

This provides a compact way of starting clearly

what each section of the program does. Each of the
procedures called by MAIN CONTROL must be defined
and a series of modules are created to do this.

Initially we need only two: CONTROL and PHYSICS.

S-FILE#MAIN CONTROL.CPIP* (STANDARD MAIN PROGRAM);

'"PROCEDURE 'MAIN CONTROL; 'BEGIN'

LABEL THE RUN; REPORT(1,1);
CLEAR VARTABLES AND ARRAYS; REPORT(1,2);
SET DEFAULT VALUES; REPORT(1,3);
DEFINE DATA SPECIFIC TO RUN; REPORT(1,4);
SET AUXILIARY VALUES; REPORT(1,5);
DEFINE INITIAL CONDITIONS; REPORT(1,6);
INITIAL OUTPUT; REPORT(1,7);

'FOR' N=NSTART 'STEP '1 'UNTIL 'NSTOP'DO'
'"BEGIN 'MAIN COMPUTATION CYCLE'.' T=T+DELTAT;
ADVANCE ONE TIMESTEP; OUTPUT IF REQUIRED;
'END' OF MAIN CYCLE;
REPORT(1,8);
REPORT(1,9);
N-NSTOP; FINAL OUTPUT;TERMINATE THE RUN;
IEN'D! -

Fig.2

% 8 =

(h)

(1)

(3)

QONTROL provides the procedures which control the

progress of the calailation, i.e. which label the

run, cléar the core store, initialize the run, out- CONYROL
put when required, and tie up the loose ends after
the run is complete.

PHYSICS provides a slot where the real physics is

to be inserted. Initially it contains only a dummy

procedure: (Fig.3)

FILE*DUMMY PHYSICS:*

TEXT (' "#+WE+HAVE**ADVANCED#*ONE#*TIMESTEP#+ ' ') | /PHYSICS

LINE; 'END';

I

]

I

I

: '"PROCEDURE 'ADVANCE ON TIMESTEP; 'BEGIN 'LINE
|'

I

I

PHYSICS can be augmented, if required, by procedures
which solve Poisson's equation or which deal with
standard boundary conditions, for example.
Through the module OUTALGOL, mentioned earlier in
DUMMYRUN, is funnelled all input and output. This
DUVMMYRUN
makes the program portable, since the changes required
to run on a different machine are all concentrated

into one place.

ACCEPTANCE TESTS

Each module is part of an assembly, and as with any engineering

component that is to be used without constant attention, it is

sensible to put the module through a proper set of acceptance tests

to guarantee that each element of the module performs properly.

Every module must be completely dependable. Further, by making the

tests generally available, the authors of the program raise confidence

levels, and allow the user to see for himself any restrictions which
may apply.

Let us introduce the concept of a "testbed". This a special
small program written for the new module which uses and tests out
all its features in as thorough but economical a way as possible. A
testbed program consists of:

(a) The pre-tested modules required in order to use the

new module, or to perform the tests.

(b) The new module itself.

(c) A specially written TRIAL module, which is the

part of the program that runs through all the
procedures in the module which is being tested.

For example, the TESTBED of the module #ALGEBRA* which is used
in DUMMYRUN consists of 4 modules:- HEAD (which contains the job
control cards); OUTALGOL (through which is funnelled all output);
ALGEBRA itself, and its associated TRIAL MODULE (see Fig.4).

HEAD
OUTALGOL

ALGEBRA
TRIAL

HEAD and OUTALGOL are modules which have been put through just such
test previously. The results of this test are made available as
part of the documentation for the module, and this facilitates con-
version to other computer systems.

For further illustration let us consider the modile CARTESIAN.
It consists of procedures which are the finite difference analogues
of DIV, GRAD, CURL. Of course these have different forms depending on

the difference scheme and geometry; the forms in CARTESIAN are appropriate

= 0 e

for 3-D Cartesian geometry in which the operators are defined in terms
of central difference formilae.

Analytically
. = v e _l
feurl(u) {; = &1 jk aik (15)

In 3 dimensions, it is convenient to think of the dimensions (x,y,z)
as (x4,X5,%x3) which can be written as §(xi_1,xi,xi+1)/modulo 3k,

In terms of these we may write

au;_ ou
i-1 Mj4q (16)

OXj+1 OXj—q

fcurl(u) };

Mo ujo

- modulo 3 again
S B (gain)

{curl(u) i;

The Algol procedure CURL is defined by
CURL(U) := RP(DEL (RP(U))) - RM(DEL(RM(U))); (17)

in Symbolic Algol I. The procedure RP effectively increases the
index by unity, and RM decreases it by unity. DEL is the analog of
V (see equation 9 above).
A test for CURL could be as follows:- Let f4,fo,f3, 8 be any
4 scalar functions of x,y,z. Construct a general vector A s.t.
A = curl (f;,X + fo,¥ + f3,2) + Vg (18)
Then for the differential operators, the following 2 identities hold:-
div aurl A =0 (19)
and
curl grad £, = 0 (20)
If the finite difference operators DIV, CURL, GRAD are defined in
terms of central differences on a Cartesian mesh, these identities

still hold. 1In a TESTBED for these, a TRIAL module would then

contain:

- P =

RP F1; Fl:= (user's choice: e.g. x* + y* + z%);

I

RP F2; F2:= (user's choce: e.g. 3xyz);

RP F3; F3:= (user's choice: e.g. x3 + y° + z°);
RP G; G:= (user's choice: e.g. SERARS P

RP Aj; A:=

CURL(F1*E1 + F2*E2 + F3*E3) + GRAD(G) ;
and the printing procedures

PRINT VECTOR (CURL(GRAD(F1));

PRINT SCALAR(DIV(CURL(A));
The output is of course

0.0 0.0 0.0
and

0.0

The procedures E1, E2, E3 come from the module *ALGEBRA*, and
are defined thus:-

RP El1; El: if C eq 1 then 1 else O;

It

Ef E2; E2:= if C eq 2 then | else O}

RP E3; E3:= if C eq 3 then 1 else O;
where C is an index indicating which component - X, y or z - is
under consideration. E1, E2, E3 are in fact the unit vectors in the
X, ¥, and z directions respectively.

The modiles of which the skeleton program DUMMYRUN is composed
have each been tested using the TESTBED approach. The progressive way
in which such tests can be carried out is illustrated in Fig.5.

5. PORTABILITY

Collaboration between the staff of different laboratories can

often make desirable the running of the same computer program on

different machines. The transfer from one machine to another can be

s 1 =

TESTBED

TESTBED

TESTBED

TESTBED

TESTBED

DUMMY
RUN

|

2

3

4

5

-~ |ITRIAL

TRIAL

TRIAL

\

MODULE
UNDER

TEST

Fig.5.

MODULES
REQUIRED

FOR TEST

\

ADDITIONAL
MODULE
WRITTEN
FOR TEST

TRIAL

Listed along the top are the modules of which DUMMYRUN is

constructed,

The staircase shows the systematic way in

which modules must be tested.
requires 4 pre-tested modules (DUMMYHEAD, OUTALGOL,

ALGEBRA, CARTESIAN) in order to test UTILITIES.

For example TESTBED4

TRIAL4

is the specially written module containing the test

material.

- 13 -

P 257

made more quickly, if the changes which must be made are localised

into regions where such changes can be flagged.

A program can be made more portable in 3 separate areas:-

i) By carefully avoiding, in the early mark numbers of a program,
exploitation of the advanced features and quirks peculiar to a
machine (we are of course discussing programs which in the past
have taken at least 1 man year to get into production). Iq
Fortran this might imply for example restricting oneself at
this time to FORTRAN IV. In Algol, one avoids Jensen's device
for example. 1In later versions, some pieces of program can be
replaced by code tailored for a particular machine and by fast
assembler subroutines.

ii) Input and output can be localised and flagged. If 1/0 is
restricted (for example) in Fortran to particular subroutines it
enables the more sophisticated I/0 packages available on some
machines to be introduced easily into the program on transfer
to those machines.

iii) Every machine might have available as a matter of course
a series of tiny programs or macros which will change the
character codes, (and in the case of Algol alter the representation
of the Algol Basic Symbols) from that used on one machine to that
for another. For the job control languages,while the variety of
dif ferent machines continues, there seems no better way of graft-
ing a program onto an unfamiliar machine than having the aid
of someone with local knowledge.

Thus, at the Culham Laboratory we are deliberately writing our

Fortran programs in ASA Fortran IV, which enables a program to be

portable, and incidentally to be publishable and open to the criticism

- 14 -

of others. For example, since the name-list tacility is not

implemented on all big machines, it is not used, even

though it is very convenient. In Algol, calls by value are avoided
Since some compilers do not have this feature. Again, since only the
first six letters of an identifier are significant on an IBM machine,
the long identifiers are chosen with care to ensure the distinct identi-
ty of each to the compiler,

For input and output, and the program transfer macros, we
restrict our attention at this point to Algol; further comments on
Fortran are found in the Appendix.

The Algol module OUTALGOL (see also Section 3 above) has been
written to contain the high level procedure calls required to make
simple-minded input and output requests;.some of these are shown in
Fig.6 in the form implemented on the KDF9 at Culham. The inten-
tion is to hide detail, irrelevant in more physical contexts. The
advocacy of the use of such procedures, independent of implementation,
is not new, see for example Michie, et al(s). We report that their
systematic use is worth the additional care in design initially. For
the implementation on an IBM 360 see Figure 7. Similar OUTALGOL
modules have been written for CDC 6600, the ICL 1900 series and GE 235.

To effect transfer from one machine to another the character code
must be altered, and the Algol Basic Symbols correctly represented.
For this purpose the CACTUS package has been developed at Culham. On
the Culham KDF9, the COTAN on-line system contains among its commands
the facility for generating a "macro" command - i.e. a command which
blocks together a series of commands in a file and activates them with
a single command(IS). Macros have been written which change the

representation of Algol Basic Symbols on the disc in such a way that

= 18 =

"PROCEDURE ' OUTALGOL ;
"BEGIN' DECIMAL=LAYOUT('['S-NDDD.DD']"):
NTEGER=LAYOUT('['S-NDDD '] ") ;0UT=10 'END';
'"INTEGER' DECIMAL ,NTEGER,OUT;

"PROCEDURE' BLANK ; SPACE(OUT,1);
"PROCEDURE' INTVAR(N); 'INTEGER 'N;WRITE(OUT ,NTEGER,N);
"PROCEDURE' IVAR(NAME,N) ; 'STRING 'NAME; 'INTEGER 'N;

'BEGIN' TEXT (NAME) ; BLANK;TEXT('['="]");INTVAR(N); "END";
'PROCEDURE ' LINE;NEWLIN(OUT,1);
'PROCEDURE' PAGE ;GAP (OUT,1);
'PROCEDURE' TEXT(T) ; 'STRING 'T;WRITET(OUT,T);

Fig.6. The module *OUTALGOL* includes such precedures
as the above. REALVAR and RVAR are similar to
INTVAR and IVAR.

'"PROCEDURE' OUTALGOL.,
'"BEGIN' OUT .=1., 'END'.,
'INTEGER' OUT,,
"PROCEDURE' BLANK,, OUTSTRING(OUT,'(' ')").,
'PROCEDURE' INTVAR(N)., 'INTEGER'N., OUTINTEGER(OUT,N).,
'PROCEDURE' IVAR(NAME,N) ., 'STRING 'NAME., "INTEGER 'N.,
,'BEGIN'TEXT(NAME).,BLANK.,TEXT('('=')')., INTVAR(N) ., 'END',,
'"PROCEDURE' LINE., SYSACT(OUT,14,1).,
'"PROCEDURE' PAGE., SYSACT(OUT,15,1).,
'PROCEDURE' TEXT(T)., 'STRING' T,, OUTSTRING(OUT,T).,

Fig.7. Some OUTALGOL precedures used on an IBM 360.

- 16 -

it comes to a Data Dynamics teletype in the form suitable for which-
ever machine is to be recipient. It is stored on the disc as
"Wheteg Algol" which is a subset of the representation acceptable to
the Whetstone compiler for instant execution and which is also
acceptable to our Egdon compiler for batch processing. This flexibility
enables the KDF9 to be used reasonably efficiently (viewed as a man+
machine entity).

Given an Algol program in "Wheteg", it can be automatically
translated into the forms required for use on a CDC 6600, IBM 360,
ICL 1900 or GE 235, though still stored in an on-line file. The
actual transfer can occur in a very simple fashion: the ISO paper tape
code used by teletypes interfaces with all computers which connect with
teletypes. Thus a paper tape can be produced for an Algol program
which is then read back to another teletype (or the same one) connected
up to a different machine. In this way the existenee~of different card codes
on the various machines can be circumvented. The development of a
program on a machine with a fast compiler and good debugging facili-
ties, and the subsequent transfer to a machine with fast running times
and a big core, seems an attractive method of computing effectively.

6. INITIAL CONDITIONS AND BOUNDARY CONDITIONS

The setting of initial conditions and boundary conditions is,
in a substantial computer program, a nuisance. It takes up, in coding
terms, far more statements and involves more intricate devices than
the body of the calculation in which most of the time of the computa-
tion is spent.

This need not be so, and we describe in this section some of the
tools with which we have provided ourselves. Some of these could be

produced in Fortran, but there is no doubt that the availability of

- 17 -

parameterless procedures in Algol is a boon.
For example it is convenient to be able to set the values of
an array in a simple fashion. Consider the triplet of Algol
statements: -
TWO D;
FULL REGION;
SET SCALAR(PHI ,SIN(2%PIE*X)*SIN(2*PIE*Y));
This sets the potential P over the whole region of interest in a
two—-dimensional calculation, to be sin(2mx).sin(2my). Of course the
setting of parameters and general spadwork needs to be done somewhere,
but not at this point where we are only concerned with the mathematical
formulation of the physics of the problem. Further assignment of
values is not a clumsy matter but can be done briefly. For
example the contents of the above procedures are:
procedure TWO D; begin NDIM:= 2; I:= J:= 0; K:= -1, NK:= 0; end;
(the problem is declared to be 2D, the values of I and J are
cleared, and the k-direction is cut out) .
procedure FULL REGION; begin IP1:= JPl:= KP1:= 0; IP2:= JP2:= NJ;
KP2:= NK; end;
(the upper and lower bounds for the array indexes are set in
terms of the array sizes).

procedure SET SCALAR (A,F); array A; real F;

begin procedure SETS2(K); integer K;

for J:= JP1 step 1 until JP2 do

I

for I:= IP1 step 1 until IP2 do

or
begin 0:= 1 + (I + 1) + PI*(J + 1) + PI¥PJI*(K + 1);
A[0]:= F; end ;
if NDIM eq 2 then SET S2(-1);

1se for K:= KP1 step 1 until KP2 do SET S2 (K);

lo

- 18 -

(the array A is set to have the function value F evaluated at

the relevant point on the lattice).

To set the value in 3 dimensions of the magnetic field B for
each of its components By, By, B, in the interior of the region of
interest, we may write

THREED ;

INTERIOR REGION;

SET VECTOR (AB, Z*ZE1 + 0.5%X*Z*E2 + X*E3);

This sets the magnetic field to be

B = (z%, %X, X)
E1, E2, E3 are the unit vectors defined earlier (in Section 4);
AB(C,0) is an array with 2 arguments: C (which determines the compo-
nent x,y,z) and O (which determines the current lattice point).

The declaration

real procedure B; B:= AB(C,0);

enables B to be used in equations for the magnetic field as
vector B would be.

An alternative approach is to use 3 component arrays

BXx[0], BY[0O], BZ[O]

rather than the single array AB(C,0). Obviously the technique
does not depend on the method of storage of the information about the
magnetic field.

In terms of these 3 arrays, we could set up B with the procedure
calls

THREE D;

INTERIOR REGION;

SET SCALAR (BX, Z*Z);

SET SCALAR (BY, 0,5%X*Z);

SET SCALAR (BZ, X);

- 19 -

Another set of useful procedures involves setting values on lines
and surfaces inside the region of interest. These are all tiny pro-
cedures, where the purpose of defining them is to remove the mechanics
of the computing from the focus of attention. For example

procedure SET XLINE (A, JJ, KK, F); array A; real F; integer JJ, KK;

begin J:= JJ; K:= KK;

for I:= IP1 step 1 until IP2 do

begin DEFINE O; A[0]: = F; end;end;
This sets the elements of the array A, corresponding to points on the
line y = yj, 2 = z (i.e. J = JJ; K = KK) to have the functional values
F.

This ruled line provides a simple way of setting values on a plane

surface parallel to an axis. Thus

procedure SET YZ SURFACE (A, II,F); array A; real F; integer II;

for K:= KP1 step 1 until KP2 do
SET YLINE (A,II,K,F);

sets A = F on the surface x = xj, (i.e. I = II).
These hierarchic definitions enable one to program as clearly as one
can write mathematics.

Similarly with boundary values, if the boundary conditions can be
set easily and can be seen to have been set correctly, a program is
simpler to handle. The setting of some of the possible boundary condi-

tions at the wall for a plasma experiment are shown in Fig.8.

WALL ;
GUARDX (RHO,RIGID,ZERO ZERO,SINGLE STEPS TO,NI);
GUARDX(JZ ,SYMMETRIC, ZERO, X-STAGGERED PT, DOUBLE SETPS TO, NI);
GUARDX (TEMP ,RIGID,TO*Z*(1-Z) , ZERO,DOUBLE STEPS TO,NI);

Fig.8

- 20 -

The procedure WALL (besides acting as a paragraph heading) sets the
current origin on the wall and arranges for it to move along in the
x-direction setting suitable values. The procedure GUARDX has mnemonic
arguments to make the boundary conditions clear. The use of mnemonics
is valuable for although the analytic condition may be simple, the
difference form is often messy. The first set of arguments defines

the physics. For example, we have a rigid boundary on which the
density is set to zero, and the temperature to TgZ(1-Z). The =z
component of the electric current j is set to zero, and so is its
gradient. The second set of arguments pick out the points where
values are to be set. For example, using a leapfrog scheme one may only
need values at alternate points, the mesh in use shifting by one
interval between alternating time steps. The starting point is shifted
backwards and forwards by X-STAGGEREDPT, and values are set at
alternate points up to point I = NI.

7. FLEXIBILITY

The flexibility of a modular structure, properly constructed,
enables programs to be developed quickly. Each module, besides being
fully tested, has a corresponding dummy module. This is composed of
the same procedures as the full-bodied module, but each is dummy. Such
dummy modules enable parts of the program to be thoroughly tested
without wasting time in execution and compilation of other pieces of
program known to be in working order.

If having developed a program we decide to change the method of
solution of the differential equation, if the program is sufficiently
modular this can be achieved by the simple substitution of one form
for another. This can best be seen in a concrete example.

Thus, let us consider a one-dimensional plasma made up of

- 21 -

electron and ion (singly ionized) fluids whose distribution functions
satisfy the linearized Vlasov equations appropriate for a collision-

less plasma

e - | (vefe) + 2 (agf.) =0
ot T ox \Velel TGy tfelel T
(21)
of
i 0 0
%t (vifi) + o (ajfj) =0

where fg,, and fj are the electron and ion distribution functions,
Ve, and v; are the velocities of the local elements of the
fluids,
ae, and aj are the accelerations to which they are subjected.

The accelerations ae, and aj satisfy

mgde = — mja; = - ek (22)
where

oE

e 4 Te]‘(fe - fj)dv (23)

the velocities fg and vj satisfy

Ve _ -eE
ot me
and (24)
ovi _ eE |
ot ~ m

The plasma is assumed collisionless, and the ions and electrons
interact only in as much as each species contributes to the electric
field which acts on both of them.

To treat these equations by a finite difference method was
advocated by Kellogg in 1965(6). Of course several other methods
have been advocated and implemented for this, e.g. the Waterbag Model
(for the history of this see Berk and Roberts 1967(75, expansion in

terms of Fourier components and orthogonal polynomials(s’g) and the

- 22 -

popular sheet/rod model developed by Buneman and Dawson(IO’le
This approach does have its drawbacks(12), but is used here to
illustrate the strength of symbolic techniques. Such techniques

could be used in the other cases also.

The computational steps are clearly

For a leapfrog scheme, the advection of the equations can be

gathered together into a single procedure (Fig.9).

S |

'PROCEDURE 'LEAPFROG ; '"BEGIN 'DT=0,5+DELTAT;
'FOR 'I "EQUAL *IP1'STEP "1 "UNTIL 'IP2'DO"'
'FOR 'J'EQUAL.'JP1 *STEP '1 'UNTIL 'JP2'DO'
'"BEGIN 'DEFINE O;
NEW FE[O]=FE-DT* (DELX(VE#FE) + DELV(AE*FE));
NEW FI[O]=FI-DT*(DELX(VI#FI) + DELV(AI#FI));
TEND 1 ; TEND I’.

Fig.9
IP1, IP2, JP1, JP2 are the bounds for I and J. FE is a procedure
which returns the value of the electron phase fluid density appropri-
ate for the current lattice point. It should be added that these diff-
erence equations, although apparently a forward difference in time,
are actually centred in time and space. The procedure DT is set to
0.5*DELTAT where DELTAT is the time step interval. As quantities are
defined on a staggered mesh, they are available at the correct time
level when required:
Thus in this case we may write simply
SOLVE POISSONS EQUATION;

LEAPFROG ;

S

"PROCEDURE ' AUXILIARY CALCULATION; 'BEGIN'DT = DELTAT;

'REAL ' "PROCEDURE ' ELECTRON PHASE FLUX;
ELECTRON PHASE FLUX = DELX(VE*FE) + DELV(AE*FE);

'REAL ' '"PROCEDURE' ION PHASE FLUX;
ION PHASE FLUX = DELX(VI*FI) + DELV(AI#FI);

'REAL ' 'PROCEDURE' FE NEW;

FE NEW = SAV(FE) - DT*ELECTRON PHASE FLUX;
'REAL ' 'PROCEDURE' FI NEW;

FI NEW = SAV(FI) - DT*ION PHASE FLUX;

FILL THE AUXILIARY POINTS'.'

'FOR' I 'EQUAL' IP1 'STEP' 1 'UNTIL' IP2 'DO'

'"FOR' J 'EQUAL' JP1 'STEP' 1 'UNTIL' JP2 'DO'
'BEGIN' DEFINE O;

C = 2; NORTH = O+DOY;
NEW FE[NORTH] = EP(FE NEW);
NEW FI[NORTH] = EP(FI NEW);
SOUTH = 0-DOY;
NEW FE[SOUTH] = EM(FE NEW);
NEW FI[SOUTH] = EM(FI NEW);
CC = 1; EAST = O+DOX:
NEW FE[EAST] = EP(FE NEW);
NEWN FI[EAST] = EP(FI NEW);
WEST = 0-DOX;
NEW FE[WEST] = EM(FE NEW);
NEW FI[WEST] = EM(FI NEW);
'"END';

Fig.10. A 'procedure' AUXILIARY CALCULATION, for use
in a 2-step Lax-Wendroff scheme. Procedures
FE NEW and FI NEW contain a clear statement
of how the first step of the scheme works.

- 24 -

in the Symbolic Equations module.

For a two-step Lax-Wendroff scheme, provisional values at an inter-
mediate timestep must be calailated. The module could take the form
of Fig,10.

In this case the Symbolic Equations module contains

LAX WENDROFF TWO STEP'.'

SOLVE POISSONS EQUATION;

AUXILIARY CALCULATION;

SOLVE POISSON FOR AUXILIARY VALUES;

LEAPFROG;
Provided the modules have been properly constructed, the change from
one numerical difference scheme to another simply requires the replace-
ment of one set by another (e.g. the Lax-Wendroff module is replaced
by the leapfrog one). This makes the comparison of the different
methods over such matters as speed, gross accuracy, and in particular
velocity dispersion, a fairly straightforward matter. With the develop-
ment of methods such as Fromm's(13) hybrid Lax-Wendroff the
close monitoring of methods becomes of greater interest.
CONCLUSIONS

Many programs could be written with less wear and tear on the
physicist (and with shorter development times) by adopting methodical
techniques of prefabrication such as those described here.

The use of symbolic methods provides a way of defining a physical
problem clearly in computational terms. Algol and Algol-like
languages are well suited to the symbolic approach especially for the
parts of program dealing with the logic and the physical equations;
in Fortran a control package for time-dependent problems, and the use

of pre-fabrication with acceptance tests has been successfully

introduced.

— 95 .

REFERENCES
1. Roberts K.V. and Boris J.P. '"Trinity: Programs for 3D
Magnetohydrodynamics', IPPS Computational Physics Conference,
Culham (1969), paper 44. (Report CLM—-CP (1969), H.M.5.0.).
2. Kuo-Petravic, G. Petravic, M. and Roberts K.V., 'The Translation
of Symbolic Algol I into Symbolic Algol II by the Stage 2 Macro
Processor'. IPPS Computational Physics Conference (1970).

3. Roberts K.V. and Boris J.P. The Solution of PDE Using a Symbolic
Style of Algol (to be published).

4. Boris J.P. and Roberts K.V. 'Galaxy', IPPS Computational Physics
Conference, Culham (1969), paper 4. (Report CLM-CP, (1969)
H.M.S.0.).

5: Michie D., Ortony A., Burstall R.M. Computer Programming for
Schools (1968).

6. Kellogg P.J. Phys. Fluids, 8, 102, (1965).

7. Berk H.L. and Roberts K.V. Phys. Fluids, 10, 1269, (1967).

8. Knorr, G. Z. Naturforsch., 18a, 1304, (1963).

9. Armstrong T.P. Phys. Fluids, 10, 1269, (1967).

10. Buneman O. Phys. Rev., 115, 503, (1959).

11. Dawson J.M. Phys. Fluids, 5, 445, (1962).

12. Roberts K.V. and Weiss N.O. Math. Comp., 20, 272, (1966).

13. Fromm J.E. Comput. Phys., 3, 176, (1968).

14. Petravic M., Kuo-Petravic G. and Roberts K.V. 'A Program for
the Automatic Production of Computer Codes from Dif ference

Equations'. IPPS Computational Physics Conference (1970).

15. A User'sGuide to COTAN: Culham Laboratory KDF9 manual. Section 8.
(1.968).

Acknowledgements

We are grateful to the following scientists for help and dis-
cussion at Culham: J.P. Christiansen, J.E. Crow, M.H. Hughes,
M. Nordstrom.

APPENDIX

A UNIVERSAL CONTROL PACKAGE FOR FORTRAN PROGRAMS

Many time-dependent simulation programs are currently being
written, and most of these are still programmed in Fortran. Whatever
the specified set of differential equations may be, these programs
usually have to carry out the same control processes, and the same
general steps in the calailation, e.g.

DEFINE INITIALS CONDITIONS
START THE RUN
INITIAL OUTPUT

and so on. Often this part takes longest to write, and is hardest for
newcomers to understand.

A Universal Control Package (UCP) is therefore being written at
Culham which will contain a main conﬁrol subroutine MAIN, together
with utility and diagnostic subroutines, and which will form the
foundation upon which a variety of actual similation programs can
subsequently be built. The package is being written in ASA Fortran,
so that it can be used on any computer systemrwith only trivial
modifications. Because of this standardization of the structure, it
should be easier for collaborating groups to exchange programs.

So far as possible UCP shares a common structure with DUMMYRUN,
€.g. the Algol Proceduire calls of MAIN CONTROL appear as comments in
the UCP routine MAIN. (Fig.11). UCP is however less general, because
there are no analogues for the symbolic modules which deal with
vector algebra and analysis.

Development and Diagnostics

It has been found useful to 'grow' an actual similation program
from UCP like a tree, checking it out at each stage by means of both

standard and ad hoc diagnostic subroutines. Typical examples of

SUBROUTINE MAIN

C
C U2 MAIN CONTROL
C
C _______________________ — — i s
COMMON /COMUCP/
1 NONLIN, NOUT, NPRINT, NREAD,
i NSTART, NSTEP, NSTOP,
3 DELTAT, T
C __
CL 1 PROLOGUE
C
C LABEL THE RUN

CALL LABRUN
CALL REPORT(1,1)
C CLEAR VARIABLES AND ARRAYS
CALL CLEAR
CALL REPORT(1,2)
C SET DEFAULT VALUES
CALL PRESET
CALL REPORT(1,3)
C DEFINE DATA SPECIFIC TO RUN
CALL DATA
CALL REPORT(1,4)
C SET AUXILIARY VALUES
CALL AUXVAL
CALL REPORT(1,5)
C DEFINE INITIAL CONDITIONS
CALL INCOND
CALL REPORT(1,6)
C START THE RUN
CALL START
CALL REPORT(1,7)
C INITIAL OUTPUT
CALL DSPLAY(1)
CALL REPORT(1,8)

C
C __
CL 2 MATN CALCULATION LOOP
C
DO 20 NSTEP=NSTART ,NSTOP
Cc
T=T+DELTAT
c ADVANCE ONE TIMESTEP
CALL STEPON
c

c OUTPUT IF REQUIRED
CALL DSPLAY(2)

20 CONTINUE
CALL REPORT(1,9)

CL 3 EPILOGUE

NSTEP=NSTOP
C FINAL OUTPUT

Fig.11 The WCP FORTRAN routine MAIN, The structure is similar to that for
MAIN CONTROL in DWMMYRIN (using ALGOL)

= i, e

standard subroutines are

MESAGE Print a message of up to 48 characters
IVAR Print 'NAME = {integer value>'
RVAR Print 'NAME = <real value)>'

while a useful ad hoc subroutine is
CLIST List names and values of all common non-

subscripted variables in alphanumeric

order, using IVAR and RVAR.
These subroutines allow information to be extracted very easily at
critical points of a test run by inserting single cards, without the
need for format statements. Preferably, all the diagnostic tests
are grouped together in a single ad hoc subroutine REPORT, which is
called at suitable intervals by the main part of the program (Fig.11).
In this way, the program itself remains undisturbed.

For illustration, we consider the development of the FORTRAN
version of TRINITY(]). This is now being generalized so that it can
deal with a 60 x 60 x 60 mesh. The 8Mbytes of data will be stored on
2 IBM 2301 drums on an IBM 360/91 configuration, and transferred in
andout of the core each timestep, using a rotating quadrupole buffer,
a generalization of the triple buffer used in GALAXY(4). Of these,
three sections of the buffer deal with the central plane (0) which is
being calculated, and those on either side (N and S) which are needed
by the difference scheme. The fourth or 'move' section (M) handles the
data transfer. During the first part of the calaulation of each plane,
data is transferred out from the far-south plane (FS) on to the drums
on two separate channels. Halfway thrcugh, the direction of data
transfer is switched to bring data in for the far-north plane (FN).

The logic of such a scheme is quite complex, since it involves

~ iii -

1. MESH BLOCK

w
1l

0:100E 00

([l

ZoA GO
1

NFIPT
NI
NIJ
NJ

NK

NW

PI
PIJ
PIMINT1
PJ
PJA
PJB
PJMIN1
PK
PKMIN1
5

SE
SIZE
U

W

2+ CONTROL BLOCK

NONLIN
NPRINT
NREAD
NSTART
NSTEP
NSTOP
DELTAT
T

[|V T | R

womon

no
00000 NBNERINWPEHROODLONMNOOOOO

oo

I nmonn

O§§|o [N eld e Mo
o
8

Innu
ol o]

1
-

3 ROUTINE
OUTPUT
ROUTINE

1, POINT

nnn

I
[o2]

1, POINT

STEP
S-PLANE
O-PLANE
N-PLANE
M-PLANE =
4. STORE C-PLANE ON DRUM
C-PLANE = i
D-PLANE = 5
CALCULATE ROW
2
2
2
QULATE ROW
2
2
3
TCH D-PLANE FROM DRUM
1
3

inn

- OWwWwm O

ROW
PLANE
I-FIRST

ROW
PLANE
I-FIRST

(@]
nonon ?IIIIH

F
C-PLANE
D-PLANE

[x3]

ol

Fig.12 Output from test runs for TRINITY using a small number of mesh
points for which the structure is checked out.

- iV -

the alternation implied by the leapfrog different scheme, as well as
periodicity, guard points in the borders, rotating buffers, swiches
in the direction of data flow, and keeping count of the location of
360 separate tracks on the drums. The logic can however be checked
out, independently of the physics, and, of a large extent, without any
actual transfer of data. To do this, we replace those subroutines
which do the actual work by dummies, which simply print out messages
saying what they are meant to do — a 'rehearsal' for the real calcula-
tion, as it were. A small mesh can also be used for the tests, so
that not too much printout is generated. Fig.12 shows an example,
for which the GO step occupied only 028 secs of IBM 360/91 CPU time.
The first two sections print out names and values of the variables in

the Common blocks COMESH, COMICP by means of statements

CALL CLISTM
CALL CLISTU

while section 3 is generated by subroutines called by MAIN. Section 4
monitors the logic of the calculation, using a 4 x 6 x 8 mesh. The
output is generated by statements such as

CALL IVAR ('ROW ' J)
CALL IVAR ('S-PLANE ',MCS)

Using this type of methodical approach, it is being found that pro-
grams can be checked out much more quickly and economically than by

the usual methods.

—v—

