





CLM-P 258

THE DESIGN OF PORTABLE ABSTRACT MACHINES

by

P.C. POOLE
W.M. WAITE*

ABSTRACT

Portability is a measure of the ease with which a program can be
transferred from one computer to another. The techniques of abstract
machine modelling and macro processing can be used to construct soft-
ware which is highly portable. The key to the whole process is the
design of suitable abstract machines and, in this paper, three such

machines are described to illustrate the design process.

* Dept. of Information Science, Monash University,Clayton, Victoria
3168, Australia.

U.K.A.E.A. Research Group
Culham Laboratory
Abingdon

Berks

January, 1971.



CONTENTS

Page
INTROD WICTION 1
THE FLUB MAGH INE 2
TEXED AND INTERP 10
CONCL USIONS 13
REFERENCES 14
ERRATA
Page 1, line 5 - "algorithm"
Page 6, line 25 - "characters or fixed-length strings"

Page 12, line 24 - FREG A = IREG B



1, INTROD UICTION

Portability is a measure of the ease with which a program can be
transferred from one computer to another. We say that a program is
portable if the effort required for such a transfer is considerably
less than the effort required to recode the program from the original
alogorithm. Programs written in Fortran or Algol are portable if one
assumes that the effort required to implement the compiler and run-
time routines is spread over many programs. We have concerned our-
selves mainly with programs for which these languages are not suitable.
Our technique for producing portable software [1,2] is based on the
design of a set of abstract machines, each of which can easily be
realized on existing computers.

The fundamental concept of our approach is that, given a parti-
cular task, it is possible to postulate a special purpose computer

(an abstract machine) which is well designed for carrying out that task.

A program to perform the task is then written in the language of the
abstract machine. The abstract machine exists only as an imaginary
model of the basic operations and data types required to solve the
problem. To actually run the program, we must realize the abstract
machine on some available computer,

We favour a macro processor as the tool to carry out the realiza-
tion, and have used STAGE2 [3] for this purpose. STAGE2 is a flexible,
powerful processor which is itself highly portable. Currently it has
been implemented on 20 different computers, requiring about one man-
week of effort to obtain a running version in each case. It provides
all the features normally associated with a general purpose macro
processor - conditional expansion, iteration, parameter conversion,

etc. In fact, it is powerful enough to translate Algol-like algebraic



languages [4].

The key to the whole technique is the design of suitable abstract
machines. Three points must be taken into consideration:

(1) The convenience of the abstract machine language and

its suitability for expressing the particular algorithm
for which the machine is designed.

(2) The relationship between the abstract machine language
and the structure of available computers.

(3) The limitations imposed by the tools used to convert the
abstract machine language to a language for the real
machine.

In this paper we shall discuss three of the abstract machines which
have been designed so far. Our purpose is to illustrate the design
process by example, and to show how the above three points have
affected it.

Section 2 is devoted to FLUB, the machine designed to implement
STAGE2. FLUB is unique because of the severity of the limitations
imposed by the tools used to realize it. TEXED and INTERP, the two
machines discussed in Section 3, are not subject to these constraints.

We conclude with some general remarks on the design process.

2. THE FLUB MACHINE

FLUB (First Language Under Eootstrap)is the abstract machine
designed specifically for the task of constructing the STAGEZ2 macro
processor. STAGE2 uses three types of data: strings, trees, and
integers. Thus the basic organization and operations of the FLUB
machine must be suited to manipulating these data types.

The representation chosen for a tree was a slight modification

of that presented by de la Briandais [5]. This representation

-2 -



determined the basic composition of the FLUB word. Figure 1 shows
a tree containing the strings CAT, COT and DOT. Notice that each
word is divided into three fields. The flag (FLG) field contains
indicator bits, the value (VAL) stores one character, and the pointer
(PTR) is used as an address.

Given the structure of the FLUB word, a string is easily
represented as a linked list of words. The VAL field of each word
contains a character of the string, and the PTR field addresses the
word containing the next character. Any substring of such a string may
be specified by a word whose PTR field addresses the first character
of the substring and whose VAL field contains the length of the
substring. The VAL field must thus be long enough to hold either the
largest character or the length of the longest substring.

There are several ways to represent an integer in a FLUB word:
use. the full word, use a combination of fields, or use a single field,
At the moment there is no clear reason for choosing one of these
representations over the others. Let us therefore defer the question
temporarily and consider the operations required on each field.

The FLG field is used as an indicator, and thus operations which
test and set this field are important. Because the VAL field is used
to hold a string length, addition and substraction of VAL fields must
be possible., It is also reasonable for the VAL field to be used in
character I/0 operations, since it holds characters for both trees and
strings. Since the PTR field must hold an address, it can be used to
hold the return address for a subroutine call, Addition and subtraction

must be possible on the PTR field to provide for sequencing through

a tree.



ADDRESS

100

101

102

103

104

105

106

107

108

109

110

E FLG 5 VAL } PTR i
t i ; !
0 5 107
0 A 104
0 T 0

1
0 0 0
0 T 0
1
0 D 0
0 0 0
0 T 0
1
i i E
: : | :
i
Figure 1

Representation of a Tree

(Root of the tree)

(End of CAT)

(Continuation of COT)

(End of COT)

(Beginning of DOT)

(End of DOT)



Considering the operations, it seems reasonable to use the PTR
field to represent an integer. This field is al ready the largest, and
addition and subtraction operations are defined for it. Thus only
multiplication, division and a test for relative magnitude must be
added. The length of the pointer field will determine the range of
integers allowed in a particular implementation.

So far, only the first of our three points has been used in the
design of FLUB: we have considered only its suitability for macro
processing. Now we must look at various real compﬁters to see how their
structure relates to that of FLUB.

The operations which we have proposed (integer arithmetic, con-
ditional branching, etc.) are almost universal. It is quite uncommon,
however, to find a computer whose words are partitioned into three
fields of the types making up the FLUB word. There are two choices
open to us: pack the fields of the FLUB word into one or more words
of the target computer, or allocate one target computer word to each
field. The first choice will minimize the space required to store
information, but will result in large overheads to unpack and repack
the fields for each operation. Opposite results (low overhead,
maximum space) can be expected from the second choice.

We can escape this dilemma by providing the FLUB machine with a
small set of 'registers', on which almost all operations take place.
These registers can be implemented on the target computer with one
word allocated to each field. If the number of registers is small,
the space requirements are not prohibitive. The memory can then be
packed to conserve space. Since memory is not accessed by most

operations, the overhead of packing will not be excessive.



A register organization requires memory/register transfer
instructions, and a way of specifying the memory address. Since the PTR
field of a register can hold an address, it is reasonable to use this
field as a memory address. Thus a memory/register transfer instruction
will specify two registers: one participates in the transfer (either
receiving or transmitting information), the PTR field of the other
addresses the memory location.

Each FLUB memory word may occupy several locations in the memory of
the target computer. In the implementation of STAGE2 for System/360,
for example, each FLUB word is 8 bytes long; on the CDC 6400 each FL1B
word is a single machine word. We have chosen to interpret a PTR field
which addresses the FLUB memory as containing the target computer
address of the FLUB word. To obtain the address of the next word of
the FLUB memory, we must therefore increment this PTR by the number of
addressable units per FLUB word.

The final consideration in the design of an abstract machine is
the limitation imposed by the tools used to realize it. FLUB is
unique in this regard, because it implements STAGE2. STAGE2 is there-
fore not available for the realization of FLUB. Instead, we must use
a trivial macro processor called SIMCMP [6]. SIMCMP is only capable
of handling simple substitution macros whose parameters are single
characters. Unlike STAGE2, it has no internal memory or conditional
expansion facilities and can only make one pass over the input text.

Becaﬁse of the limitations of SIMCMP, we must restrict the oper-
ands of FLUB statements to single characters of fixed-length strings of
characters. Two types of operand are required: register names and
program labels. We have therefore given the FLUB machine 36 registers,

and named them A-Z and 0-9. All program labels must consist of two



digits. Constants cannot be used as operands in FLUB. Instead, the
registers named 0-9 are initialized by an external process to the

values shown in Figure 2. Thus the instruction

PTIR A = A + 1

increments the PTR field of register A by 1.

A complete list of FLUB statements is given in Figure 3. A
single apostrophe represents a register name, and may be replaced by
any letter or digit. Two successive apostrophes represent a program
label, and may be replaced by any two digits. There are many facili-
ties missing which one might expect to see even in a machine as simple
as this one. It must be clearly recognised that the omission of such a
facility is not due to any oversight in the design. Rather, it is
indicative of the fact that such operations are not essential to any
of the algorithms in STAGE2. The design of the machine has been deli-
berately kept as simple as possible commensurate with the requirement
that such algorithms could be expressed both adequately and conveniently.

Remember that the main objective in designing the FLUB machine
was the construction of the portable macro processor STAGE2. The only
programs other than STAGE2 written in this language have been two test
programs which validate the realization of the abstract machine and

a simple editor to assist in the maintenance of distributed versions

of the system.



Register Initial value of
FLG VAL PTR

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

4 - 4 -

5 - 5 10

6 - 6 -

7 - 7 Address units per
FLUB word

8 - 8 First FLUB word
address

9 - 9 Last FLUB word
address

Figure 2

Initialization of Digit Registers



II.

I1T.

Data Transfer operations

A. Register - Register

B. Register - Memory

Integer arithmetic operations

A, VAL field

B. PTR field

Control operations

A. Unconditional

B. Conditional

1. FLG field

2. VAL field

3. PTR field

I/0 operations

A, Character transfers

B. Record transfers

Pseudo operations

A. Program label definition

B. End of text

Figure 3
FLUB Statements

FIG ' ="
VAL ' = PTR
PR ' = VAL
GET ' ="'
STO ' ="
VAL * = ' ¢
VAL ' = ' -
PIR. ' =7
PIR ' =.' -
PIR ''="¥
PIR. ' = v/
STOP

Tofl
TO!IBYl'
RETIRN BY '
TO '' IF FLG
TO '' IF FLG
TO ''" IF VAL
TO '' IF VAL
TO ''" IF PTR
T ''" IF PTR
TO ''" IF PTR
VAL ' = GHAR
CHAR = VAL
READ NEXT '
WRITE NEXT '
REWIND '
Lmlr
END PROGRAM

- = =

15



3. TEXED AND INTERP

In the previous section we discussed the considerations which led
to the design of the FLUB machine. The final form of the statements
was strongly influenced by the limitations of SIMCMP. Once FLUB has
been realized on the target computer, STAGE2 is available and SIMCMP
may be discarded. Thus SIMCMP does not influence the design of other
abstract machines. Let us suppose that STAGE2, rather than SIMCMP,
is used to implement FLUB and see what design changes would result.

The most obvious change is to broaden the allowable operands for
FLUB statements. Parameters of STAGE2 macros are not restricted to
single characters, but may be any character strings. Also, STAGE2 has
corditional expansion facilities which can be used to make the gener-
ated code depend upon the parameter types. Thus the operands of the
FLUB statements might be constants as well as register names.

Because STAGE2 has a memory, it is possible to have declarations
which éssociate attributes with variable names. These attributes can
then be inspected and used to control the expansion of a macro. It is
therefore possible to name single words or arrays in memory and use
these names in memory/register data transfer operations.

A more significant feature of STAGE2 is its ability to handle
nested macro calls. SIMCMP is unable to do this, and thus FLUB
operations must be directly translatable into machine code. By using
nested macro calls, however, we may regard an existing abstract machine
as the 'real' machine, and design a new abstract machine which is
realized in terms of the existing one. The macros for the new abstract
machine are defined in terms of calls on macros for the existing
abstract machine which, in turn are defined in terms of operations on

the real machine. Nesting of abstract machines can be carried to any

- 10 -



depth, but care must be taken to avoid a 'cumulative mismatch' — the
situation in which each machine in the nest introduces significant
inefficiencies.

The TEXED machine is built on FLUB by defining single operations
corresponding to frequently-used sequences of FLUB statements. TEXED
takes advantage of the declarative power of STAGE2, incorporating
named constants, variables and arrays. It was designed to implement
a comprehensive text manipulator, and hence provides a richer set of
I/0 operations than FLUB, The most important extension of FLUB was
the addition of operations on pushdown stacks. These operations can
be defined in terms of FLUB statements and array declarations, and are
therefore 'macro' operations in FLUB.

Wihen abstract machines are 'nested', with one being realized in
terms of another, the implementor is free to bypass one or more steps
in the expansion of a particular instruction. For example , the TEXED
machine has been implemented on the ICL KDF9. This computer has hard-
ware operations for manipulating pushdown stacks. Thus TEXED's stack
manipulation instructions are realized directly in KDF9 machine code,
bypassing the translation to FLUB. On a more conventional computer,
where there would be no serious inefficiencies encountered, the
realization of the stack operations could be left in terms of FLUB
statements.

Consider a nest of abstract machines M, , Mé, essy M such that
Mj+1 is realized in terms of Mj for all 1 < j < k. M, 1is realized
in terms of some real computer. The definitions of the MJ (j #1) are
independent of the particular computer on which M, 1is implemented.
Thus implementing M, provides 'free' implementations of all the other

M's., By making an additional effort, some of the macros defining

i 1 ven



Mj (j # 1) could be rewritten in terms of the machine code of the
target computer for efficiency. The INTERP machine provides an
example of this approach.

INTERP has evolved as part of a project to develop a range of
portable interpreters for procedure-oriented languages. It is quite
similar to the model described by Randell and Russell [7] for the
Whetstone Algol interpreter. The basic arithmetic imstructions are
carried out on the top cells of a stack. For example, the INTERP
instructions ADD adds the top 2 cells of the stack, nests down 2 levels
and then places the result in the top cell. It assumes that the hard-
ware of the abstract machine includes a polymorphic adder which takes
care of type comversions automatically. (The tvpe of a quantity, as
well as its value, is held in the stack). If the program were mov ed
to a machine equipped with such an adder, then the arithmetic opera-
tions could be converted directly into machine code to take full advant-
age of this facility. However, since current machines are not
equipped with such an adder, the expansion of these operations directly
into machine code could be complex.

To avoid this complexity, INTERP is actually realized as a nest
of abstract machines. The next 'lower' machine is equipped with a
number of integer and floating point registers. If a number is moved
between registers of different types, then type conversion is automati-
cally carried out, i.e.

FREG A = IREGB.
takes the integer value from register B, corverts it to floating point
and loads it into register A. Since the machine is also equipped with
conditional instructions of the form

IF TYPE(N') IS ' THEN GOTO ' .

- 12 -



which allows it to test the type of N1 and N2, then ADD could be
carried out by first moving the operands from the stack to the registers,
changing type if necessary, and executing instructions of the form

FREG A = B + C,. or ITREGA=B+C.
The former carries out floating point addition and the latter integer
addition. Such operations can easily be realized on existing machines.,
It is important to note that without this nesting one would have
great difficulty in taking full advantage of changes in machine
architecture when the program is moved from machine to machine. Thus
if the high level operations were omitted and the program was coded
entirely in the low level operations, then one could only take advantage
of special hardware features by modifying the code. The probability
of introducing errors during such an operation is much higher than it
would be if one were merely replacing machine independent macro expan-

sions by machine dependent ones.

4., CONCLUSIONS

We have discussed the considerations imvolved in the design of
abstract machines for the implementation of programs which are easily
moved from one computer to another. Because we know of no algorithms
for arriving at such a design, our approach has recessarily been one of
presenting 'case studies'. Unfortunately these case studies are some-
what artificial, in that they cannot show all of the blind alleys,
agonizing reappraisals and major failures which led to the final design
of each of these machines. Suffice it to say that abstract machine
design is still an art, but one in which it is possible (we hope) to

become proficient.

= % =



REFERENCES
Poole, P.C. and Waite, W.M. Machine independent software.
Proc. ACM Second Symposium on Operating System Principles,

Princeton, N.J. October 1969.

Waite, W.M. Building a mobile programming system.

Computer J., 13, 28 (1970).

Waite, W.M. The mobile programming system: STAGE2.

Comm, ACM, 13, 415 (1970) .

Gebala, S.G.E. Macro Parsing of Context - Free Language

Ph.D Thesis, U. of Colorado, June, 1970.

de la Briandais, R. File searching using variable length keys.

Proc. WJCC, 295. (1959).

Orgass, R.J. and Waite, W.M. A base for a mobile programming

system. Comm. ACM, 12, 507 (1969).

Randell, B. and Russell, L.J. ALGOL 60 Implementation.

(Academic Press, New York, 1964).

- 14 -









