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by
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ABSTRACT

An expansion procedure is developed which permits the construc-
tion of approximate solutions of the vector wave equation for electro-
magnetic systems with geometrically complicated boundary conditions
from solutions of Laplace's equation, provided that the vacuum wave-
length of the oscillations substantially exceeds the linear dimensions
of the system. In lowest order the field structure is a super-
positioen of oscillating electrostatic and magnetostatic fields:
however, it is generally necessary to proceed to higher order to
satisfy the boundary conditions and obtain resonant frequencies or
dispersion relations. For purpose of illustration, the method is
used to derive the resonant frequencies of electromagnetic oscilla-
tion of a dielectric sphere, and the results are compared with those

obtained from the exact solution derived by Debye.
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I. INTRODUCTION

There exists a frequency range — roughly 10-100 megacycles —
which fits uncomfortably in between the ranges in which the methods of
the radio and microwave engineer are most readily applicable, For
reasons of practical convenience, most electromagnetic systems, (e.g.
resonators and transmission systems) which operate in this range have
linear dimensions L which are substantially smaller than the vacuum
wavelength A = 2u/k ==21tc/u) of the oscillations. Nevertheless,
the A.C. circuit analyses of the radio engineer, which should be applic-
able in the limit kL « 1, are unsatisfactory because of the extent to
which the inductance and capacitance of these devices are distributed.
(Consider, for example, tank circuits and slow wave transmission
systems. ) Consequently it seems difficult to avoid recourse to the
full set of Maxwell's equations for a satisfactory theoretical analysis
of these devices, and yet the geometric complexity of the boundaries
(which is an almost inevitable feature of systems for which kL « 1)
frequently dictates a co-ordinate system in which Maxwell's equations
cannot readily be solved. Thus the question arises whether one can

use the smallness of kL +to make such problems more tractable.

In the context of the scattering of electromagnetic waves it has
long been known that this is possible. As Lord Rayleigh pointed out
in 18971} a first approximation to the field scattered by an object
with dimensions such that KL « 1 is a superposition of oscillating

electrostatic and magnetostatic fields:

L g el .. (1.1)

2

_E_="Y¢Eelw
such that the sum of the incident fields and the scattered fields

satisfy the appropriate boundary conditions at the object. Rayleigh
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considered only this approximation, and his analysis was somewhat
lacking in mathematical rigour: however, in 1953 Stevenson2 gave a
systematic account of a formal expansion procedure which would in
principle yield the scattered field to any desired order in the small

parameter 0 = kL.

In the present paper we shall show that a similar expansion
procedure can also be applied to the boundary value problems which
arise in the theory of intermediate frequency electromagnetic resona-
tors and transmission systems. In such systems there is no external
prescribed electromagnetic field, and it is necessary to find a 'self-
consistent! field. Consequently the ordering is substantially
different from that of Rayleigh and Stevenson. In particular, the
absence of a prescribed field means that in lowest order there is
nothing to determine the relative aumplitudes of the various possible
electrostatic and magnetostatic solutions, and these can only be
determined by going to higher order. Stevenson showed how the higher
order terms (in any desired order) could formally be obtained in terms
of certain integrals over the Green's function of the Laplacian opera-
tor. Such solutions are of little value in most practical applications,
and we have preferred instead to find particular integrals of the
relevant inhomogeneous differential equations, and hence to obtain
solutions in closed form, for the first few orders only. Such solu-~

tions can be described as 'quasi-electrostatic'.

Clearly, an expansion procedure of this kind is only useful if
there exists a curvilinear co-ordinate system, (qi, q, ,qa), appro-
priate to the problem, in which Laplace's equation can be solved
analytically. In the present work, it is assumed that this co-

ordinate system is orthogonal and that it possesses a certain degree

-2 -



of symmetry — that the metric coefficients, (h1 » by ,ha) are indepen-
dent of one of the co-ordinates, q; . These restrictions on the
co-ordinate system are not obviously necessary, and in any case they
are considerably weaker than the conditions under which Maxwell's
equations can be solved exactly by separation of variables; indeed
the present work was undertaken with a view to obtaining solutions of
electromagnetic problems in toroidal co-ordinates — one of the co-
ordinate systems in which it is known that Maxwell's equations do not
separate.

In applying this expansion procedure it is necessary to face at
the outset a question of tactics. In co-ordinate systems for which
Maxwell's equations can be solved exactly there are two alternative
procedures for obtaining these solutions. The Hansen® procedure
consists in constructing solutions of the vector wave equation from
solutions of the scalar wave equation. The Bromwich® procedure
consists in combining Maxwell's eqﬁations in such a way as to obtain
a scalar partial differential equation for one component of E or H,
and then deriving all other field components from it. The Hansen
procedure is applicable if, for some solution V¥ of the scalar wave

equation, the Spence-Wells® equation:
curl (V® + k?) (£y) =0 sas 01 ¢2)

is satisfied by some vector function f which is independent of V.
Unfortunately the only known solutions of this equation are f = con-
stant vector and f = r, the position vector; and these choices lead
to solutions of the vector wave equation in which the fields generally
have no simple orientation with respect to the curvilinear co-ordinate
system, As regards the Bromwich procedure, it can be shown® that it

is applicable if and only if the metric coefficients satisfy the
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conditions:

h

E':'E g(qi ,qz) i hy =hy(a,) , axe (1:3)
where g is an arbitrary function of g, and q, only. This con-

dition is not satisfied in many of the co-ordinate systems (e.g.
toroidal co-ordinates) in which Laplace's equation is soluble by
separation of variables. The tactical question is therefore whether
to use the Laplacian solutions to construct solutions of the scalar
wave equation and then apply Hansen's procedure, accepting that the
resulting field vectors will not have any simple orientation with
respect to the co-ordinate axes, or to use the Laplacian functions to
construct solutions of Maxwell's equations directly, accepting that
this involves solving vector, rather than scalar, partial differential

equations, We have chosen the latter approach.

II. EXPANSION PROCEDURE

We consider a medium of uniform conductivity o, dielectric

constant €

. and permeability p. All electromagnetic field quanti-

ties are assumed to include the implicit time factor exp(i wt). A

complex dielectric constant is defined by:
brio

= . (2.1)

E = Ey —

Thus, Maxwell's equations can be written as:

curl E =-ikpyH

(2.2)
curl H = ikeE ,
together with the consequential conditions:
div E=div H=0 , aii 19:%)

where L is the electric field, H the magnetic field and k = w/c

is the wave number in vacuo.



We assume that the field vectors can be expanded in powers of

k= j;j E : H=
o £ ,*n =
n=—~o

where n denotes the power of §. Both E and H are suitably

6 in the form:

", (2.4)

>Te

n=

[=]

normalised to ensure that no inverse powers of & are present.

Substituting (2.4) in (2.2) and (2.3):

curl g% =0 : curl Eo =0 (2.5)
div E =0 : div H =0 e RZI6)
-0 =0
curl E = - ikpy H 10 curl Eﬁ =ike E 1 (n>0) (2.7}
div E =0 : div H =0 . sas 12.8)
—n -

The lowest order solution is given by (2.5) and (2.6):

E H
Bo=-uE i E - - u Y, . (2.9)
E H ’ .
where 1V, and 1V, are solutions of Laplace's equation:
E a H
Vi, = Vg = 0 . sse (2.10)

To higher order it is necessary to obtain particular solutions of

(2.7) and (2.8).

It will be seen that these equations have the general form:

curl A = B sin LBoii)
div A=0 (2.12)
div B =0 (2.13)

A solution of this system in convenient form can be obtained as follows,

We first obtain a particular solution of (2.11) such that one component

of A, say A,, vanishes. The first two components of (2.11) then give:
%
A, = ﬁ%—/‘hihsBz dq, .. (2.14)
1
93
%—é/%uu%. w020 15)



The third component of (2.11) is then satisfied identically provided

that (2.13) holds. The general solution of (2.11) is then:

§_= (A1:A2 10)+,V_H(q.1;q2’q.3) ] e (2-16)
where by egquation (2.12): q
1s
2 1 d hhy 5 (BRabhg
Vi = h,hh, {%qi ( b, ‘/ h,h,B, dq3> - aq, ( b, hzhaB1 dq, 5

oow (2.17)

This procedure reduces the set of three vector partial differen-
tial equations (2.11)-(2.13) to a simple scalar partial differential
equation. Tts advantages over the conventional procedure (used by
Stevenson, for example) for solving (2.11)—(2.13), invelving vector and
scalar potentials and Green's functions, is that integrals over Green's
functions can almost always be performed only after expanding the Green's
function as an infinite series. Naturally, this advantage is largely
lost if (2.17) can only be solved by means of the Green's function for
the Laplace equation. However, in many cases (2.17) can also be
solved by finding a particular integral, and the final solution can then
be expressed in closed form provided that solutions of Laplace's equa-
tion in the co-ordinate system are known. (The above procedure applied
to equations (2.7) and (2.8) determines a set of solutions for E and
gﬂ for successive n > 0. These solutions are not unique, for we can
add linear combinations of solutions of the zeroth order equations (2.5)
and (2.6) to each order in 0§ and still satisfy Maxwell's equations.
This indeterminacy is an inevitable consequence of the linearity of
Maxwell's equations, and expresses the fact that there is no unique com-
plete set of solutions of a linear system of equations. However, if
the co-ordinate system under consideratioﬁ possesses a symmetry property,

this symmetry can be utilised to determine the u(q,,q,, q,) in each



order so that the fields possess a simple transformation property under
the symmetry group concerned and a unique complete set can then be
obtained. It is necessary to use this freedom if, for example, one
wishes to derive power series expansions of the spherical harmonics by

means of the above procedure.)
In what follows, we show that particular integrals can always be
found in those co-ordinate systems for which:

2 3
= = =0 ... (2,18
aqs aqa aqa 2 ( )

dh dh dh
-

(which includes all co-ordinate systems obtained by translating or
rotating a two-dimensional co-ordinate system, in many of which Laplace's
equation can be solved by separation) and hence solutions of (2.7) and
(2.8) can be obtained at least up to second order in §. For these

systems, (2.14)-(2.16) can be written as:

43
g_=-h3€13></ Bdg, + Y, ... (2.19)
where §, = (0,0,1) is a unit vector in the g, direction, A further

consequence of (2.18) is that solutions of Maxwell's equations in this

case can always be written in the form E=E_ (q1 14,) exp (iCan) ,

B = Eo(qi, qz) exp (ia.qs) where E% and B, are functions of q,

and g, only and a is a constant. Hence (2.19) and (2.17) reduce

to:
1 ~
A=-sohd,xB+ Yy vions 220)
1. -
Vu=1g div (hyq, x B) , oo (2.21)

i.e. the particular integral of (2.11) can be written in algebraic form.



The case o = 0 requires special consideration, since it might
appear from (2.20) that the above solution is not applicable in this
case, In fact, however, as we show in Appendix 1, it is always possi-
ble to choose a p satisfying (2.21) such that A remains finite in
the limit o = 0 (a limit which we can formally approach continuously,
even though the physical requirement that fields satisfying Maxwell's
equations should be single-valued will in many cases restrict o to

integral values), and this is a valid solution of (A1 )

III. THE QUASI-ELECTROSTATIC APPROXTMATION

The quasi-electrostatic approximation (QESA ) consists in trun-
cating the series (2.4) after a finite number of terms. For those
co-ordinate systems whose metric coefficients satisfy (2.18) we now
give the field components correct to second order in & . Substituting
(2.9) in (2.7) with n = 1, and using (2.20), a particular solution of
(2.7) is:

e

k ~ H B
E =-—f{haq3 x_V_\tfo—_V_ﬂJi}

... (3.1)
ke
et § - a

~ E
haqﬁ wao__v_lpi} ]

where wf and ¢§ are scalar functions of position, determined by

the conditions (2.8) with n = 1:

P¢E = curl (hyd,) + T ¥
(3.2)
v = curl (nyd,) © TV,

The solution of (3.2) depends upon the type of co-ordinate system under
consideration, We here distinguish 'translational' and 'rotational!
systems; 1i.e. co-ordinate systems possessing translational or rota-
tional symmetry with respect to some given axis, taken to lie in the

z direction, Clearly for translational systems:



hy, =1 : curl (h,a,) =0, (3.3)
and for rotational systems:
2 2 % ~ -
hy =p=(x"+y)%: curl (h, q,) = 2 z, oo (3.%)
where Z 1is a unit vector parallel to the axis of rotation. A parti-
cular solution of (3.2) for rotational systems is therefore:
E H H E
e R ... (3.5)

where z is the distance measured along the axis of rotation, a quantity
which is readily evaluated in terms of q, and gq, . The solution of

(3.2) for translational systems is:

oo, ... (3.6)

The second order equations are:

.2 € A B H
curl —E.g = - ik _q%{haqa XVi,-V ‘lfi}
(3.7)
. 2 E ~ H E
curl H = - ik f{hsqa_xy_dfo-lllfi}.
Applying (2.20) and (2.21) once more, we have:
k \? . A E A H E
E, = -<E> epl:la,hs ﬂlg} q, - h:_Vi Vo = had, lelfi- Vg ]
k ; H - 2 H A E H
H, = H(ETS“,} aha llro 4, = ha__‘[ v, - h,e‘q:3 XE‘lfi— Y Iiig ] ,
(3.8)

where 11113 and Ilfg are scalar functions determined by the divergence
conditions. In order to solve these equations for ¢E and IIIE we

again distinguish between the two types of co-ordinate systems.

A. Translational Systems

Here llIE = 11!13 =0,h; =1 and the divergence conditions reduce
to: VBI}JE - G‘sz
E o H sun 3 43)
VA, = = a™, -



Thus, ¢E and wg are particular biharmonic functions. The solution
of (3.9) is effected by observing that if Y, 1is a solution of Laplace's

equation, then 1V, also satisfies:
Vi(z-9) ¥,1=0, ... (3.10)

which can be rearranged as:

ay
Vl(r -22) W] = - v”{ az—° ,
or 2%y
V¥ ¥, =2 az'f = - 2 a®,. ... (3.11)

Consequently, particular solutions of (3.9) are:

E 1 an
V=22 27%p
- v £5:18)
H AL
‘l’z = —E_G.ER'W )
where the operator _'.%E. can be expressed in terms of the two curvi-

linear co-ordinates, q, and g, , orthogonal to the 2z axis.

Hence, correct to second order in 5 +the electric and magnetic

fields for translational co-ordinate systems are:
E A H e }@ ; E » E E
-y - XEw-(;>EP&“¢o%'tWo-E%}

. ; 2 [, Ha H H
- < T @ 5“[1“"0 G5 = Wo - —“’—“’a} !
o 015

|

1=
I

where wf and wz are given by (3.12).

B. Rotational Systems

For rotational systems hs = p and the divergence conditions give:

UE - 2(pd, x3) - T o 2ad e W - (P4 2) ¥
= -2(x-9) Y, - (&® +2) ¥,
(3.14)
v o - 2(p g, x2) - L Vh - 228 - Tug - (674 2) g
——ox W)V - (a® +2) Y,



for which a particular solution is:

B
=-2r2 0+ (a® - 1) X

oo (3.15)
Vo= e (- 1)

where r is the distance from the origin to the point (q, ,q,,4q,),

and XE and xf are particular biharmonic functions satisfying:

e = - ks E o ... (3.16)

As before, we find particular integrals of this equation in the

form:
o owf’H, . (3.17)

where 0 is a differential operator. Clearly 0 must satisfy the
operator relation:

v =5 +§ v° | ... (3.18)
where P is a function of 6/6q3 only, such that ﬁw =y , and ﬁ
is an arbitrary operator. A particular solution of (3.17) (here
expressed in cylindrical polar co-ordinates (p ,9,2z) with ¢ = Qs »

but readily re-expressed in any other rotational co-ordinate system)

is: 2 3y @/ 2 2y 9/ . .
E,H A EH (327 - p%)p “ap + (2 - 3p®)z oz + 3(32° - p*)] 4
XO’ =01|I'0, ) Ii'ro, 2

(1 - % az)
(3.19)

since, as is readily confirmed:
9 2 _ .3 2 _ 2y 9
an B (1+497542) BH, [6(22 - p?) + (527 - p*)p/3p] P B _ (B
- o

i ! _ = o
(1-4% a®) (1-4 a?) ... (3.20)

[¢]

Other particular integrals may be obtained by adding 0 any operator

A

R such that: B m L&
VR=S V", s L deid )
where § is an arbitrary operator. An example is B = r-V , for which:
VR = (R + 2)V2. ... (3.22)
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This freedom is not of course different from the general freedom to

add solutions of the homogeneous equations szE’H =0 ; however, it
can be used to simplify the solution (3.19) when expressed in other

co-ordinate systems,

In conclusion, the full solution of Maxwell's equations for

rotational co-ordinate systeus, correct to second order in o is:

k A
£ o8- o, o aD)} - S ran? g
B E
- h: Eﬁf - hq, x Y(z¥,) +-%_E (rzwo) o G - 1) E_xo.} -
.. (3.23)
g=--nf K ng, xwb - v(sz)} S B diangl g,
H
gy < 9D ¢ 23 G- - D) T ]
.. (3.24)

where xE and XE are given by (3.19).

IV. BOUNDARY CONDITIONS

In electromagnetic resonant systems, the effect of the boundary
conditions which the electromagnetic field must satisfy (in addition
to Maxwell's equations), is to pose an eigenvalue problem for the wave-
number k. In electromagnetic transmission structures, the number of
boundary conditions is smaller, and they determine a dispersion relation
for the structure, relating k to some parameter appearing in the solu-
tion of Maxwell's equations, In the majority of simple resonant or
transmission structures, the eigensolutions are such that 6 = kL ~ 1
and the QESA approach is not applicable. However, if the structure

is sufficiently complex, there can exist non-trivial electrostatic

o 18w



and/or magnetostatic solutions of Maxwell's equations for k = 0 which
nearly satisfy the same boundary conditions, and we may then expect to
find eigensolutions for small & which are given in good approximation
by the first few terms in the expansion in §. To obtain these eigen-
solutions we apply the normal boundary conditions at any boundary
between two media to the QESA expressions for the fields obtained in

the preceding section.

In the case of open systems, i.e. systems in which there is a
path from the interior of the system to infinity which does not inter-
sect a conducting wall, it is also necessary to impose the Sommerfeld
radiation condition at infinity. The imposition of this condition
represents a problem, since as we shall see, the QESA representation
is valid only for the near field close to the resonant structure,
becoming inadequate at distances r such that kr ~ 1. However, it
is a problem which cannot be bypassed, since by a theorem due to
Rellichq, finite open electromagnetic systems necessarily radiate,

The mathematical consequence is that the eigenvalues for k are com-
plex, i.e. the oscillations are damped, unless energy is supplied to
the system at a rate equal to the rate at which energy is lost from
it by radiation. (It may be remarked that although the finite open
resonator must necessarily radiate, certain transmission structures -
e.g. the infinite straight helix and dielectric plasma rod - although
open, are not finite systems in the sense required by Rellich's
theorem, and are non-radiating in a direction perpendicular to the
axis of the system, although of course radiation flows in the direc-
tion parallel to the axis.)

The possibility of applying the radiation condition to QESA

solutions will now be demonstrated using polar co-ordinates, in which
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the radiation condition takes a particularly simple form. For any
other co-ordinate system the radiation condition can be imposed by
transforming the asymptotic form of the QESA expression for the field
structure at large distances from the system concerned into spherical
polar co-ordinates.

The solution of Maxwell's equations in spherical polar co-
ordinates, (r, 6, ¢), can be simply expressed in terms of the solutions
of Helmhotz's egquation by Hansen's procedure. If ¥ is a solution of:

(v +K°)y =0, . (51)

where 1 includes the implicit time dependence exp(iwt) , then the
electric and magnetic fields are given by linear combinations of the
two vector functions:

curl (x¥) curlz(zﬁ) ) —
where r is the position vector. Thus, for ]EJ - © the radiation

condition is satisfied if ¥ is of the form:

q::hﬁg)(kr)Pz(cose) eimLP v (4.3)

where m and n are integers or zero, and hi(kr) is the spherical
Hankel function of the second kind, since in this manner V| represents
an outgoing wave. The electromagnetic field is then obtainable from
(4.2), and the above choice for 1V ensures that the vector fields

likewise satisfy the radiation condition.

We now show that if we were to solve this problem by expansion
in &, and were to proceed to all orders in d , then provided we
started with the correct linear combination of the two independent
solutions of Laplace's equation, we would derive precisely the same
field components. Conversely by expanding (4.3) as a power series

in kr, substituting in (4.2) and selecting the lowest order terms

- 14 -



in the series expansions for the field components (i.e. those obtainable
from the gradient of solutions of Laplace's equation) one can obtain
the correct linear combination of potentials to start the QESA proce-
dure, if the resultant fields continued into the radiation zone are to
satisfy the radiation condition. To demonstrate this in detail we

use the power series expansion for the hgz)'s:

0

ST (P R P g (P A )
hr(12)(kr) =(%—> S: ey 2I‘(n+p2+ 3) 'G _21&7) IZ p! 2T(- nfp+%)

P:O I-)=O
cow (b.%)

Clearly we can use any non-vanishing component of the electric and
magnetic fields given by (4.2) to determine this linear combination of
potentials, and for convenience we use the radial components, which
are of the form:

L1 () P (cos 6) M9 . (4.5)
The Laplacian part of (4.5), (i.e. the part which can be expressed as

the gradient of a solution of Laplace's equation), is:

,:I_n-l (%)n 2—1*(?1-%_:-—2—; +i(-)" ;ﬁﬁ(%)nﬂ ﬁ'_(:%%;%—flpﬁ(ws 6.). t_}i:f:ﬁ)

(These terms are in fact derived from the terms with p=o0 in (4.%).)

The corresponding Laplacian potential is obtained by integrating (4.6):

i % _ n+l 1 ,
() ey (B s g e

Thus, it will be seen that in order to construct QESA solutions, such

[

that if one were to continue the expansion to all orders in k , they
would satisfy the radiation condition, it is necessary to take a mix-
ture of the two linearly independent Laplacian solutions weighted in

the proportion:

i(-)"* 02 i (n+d) : (04 1)T (- ne g

- 15 -



It should be noted at this point that the correct linear combina-
tion of Laplacian parts (%4.7) for the incorporation of the radiation
condition in QESA theory cannot be deduced from (4.5) by taking the
limit k = 0 in the power series expansions obtained by substituting
(4.4) in (4.5). However, it is a valid procedure to take this limit
in each of the two series (real and imaginary radial variance) separ-
ately, provided, of course, that each series is suitably normalized
in k. The fact that the starting point for QESA theory must
include terms of different order in k need not, however, interfere
with the execution of the expansion procedure, since one can expand
each part separately to any order and then take appropriate linear

combinations of the two solutions.

In the ahove argument we considered a co-ordinate system in
which the wave equation can be solved and the radiation condition
applied exactly, and consequently the procedure described is in that
context of formal interest only. However, we are actually interested
in co-ordinate systems for which the wave equation is not soluble
exactly and for which it is impracticable to go beyond a finite number
of stages in QESA theory. We therefore ask if under these circun-
stances the above method is relevant. The answer to this may be seen
by imagining that we were not capable of solving the scalar wave equa-
tion in spherical polar co-ordinates, and that instead we had laboriously
constructed field components derived from the terms with p =1,2, **+, n
in (%4.5) by the QESA method. Clearly the field components would be a
cood approximation to the true field components provided that the finite
series in p converged sufficiently rapidly, i.e. at points for which

kr « 1. Analogous considerations will apply in any co-ordinate
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system - i.e. for certain regions of space, and for suitably restricted

values of k, the QESA series converges so rapidly that it is unneces-
sary to proceed beyond the first few terms, The regions of space for
which the finite QESA series will converge in this way is at best a
small central region close to the electromagnetic system, and at suffi-
ciently large distances from the system the full series is required

to give an accurate representation of the fields. However, if one

is only interested in the near field, it is sufficient to take only a
finite number of terms in the QESA series, for as the above argument
shows, the same expansion taken to all orders would accurately repre-
sent the distant field and (with the correct choice of Laplacian parts)
would describe an out-going wave satisfying the radiation condition

at infinity.

Consequently, if all the boundary conditions, except the radia-
tion condition at infinity, arise at points for which the QESA repre-
sentation is valid, then there is no need to proceed to higher order
in the expansion since, as the above argument shows, the correct
choice of the ratio of the Laplacian parts automatically ensures that
if one were to take the expansions to all orders in k, the resulting
solution would describe an outgoing wave at infinity. Naturally,
this approach is only applicable to those systems for which the QESA
fields are good approximations at all the finite boundaries of the
system.  Whether this condition is satisfied or not depends on the
system itself, For example, a solid perfectly conducting sphere is a
system which does not meet the condition since, as is clear from the
analysis given by Strattona, all the natural electromagnetic modes of
oscillation of this system are such that even the near field requires

many terms in the expansion to represent it. On the other hand, a
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plasma sphere with dielectric coefficient less than zero does meet the
condition, as we shall see below. Although it is always possible to
determine retrospectively whether this condition is satisfied (by
showing that subsequent terms in the expansion make a negligible con-
tribution at the boundaries) it does not seem to be possible to specify

in advance whether a given system will be amenable to this procedure.

V. APPLICATIONS

In subsequent papers we shall apply QESA theory to various open
and closed slow wave systems with toreidal geometry. However, for the
purpose of demonstrating the effectiveness of QESA theory it is more
convenient to consider a simple system, the dielectric sphere resona-
tor, for which exact solutions of Maxwell's equations can be obtained.
This is the only system of which we are aware, which both possesses
spherical symmetry and admits a QESA solution. This is unfortunate,

since the existing literature on the subject is rather unsatisfactory.

Debye9 investigated in detail the oscillations of spheres of
uniform dielectric constant € and resistivity p, surrounded by
vacuum, Such a system satisfies the requirements of Rellich's
Theorem, and consequently all natural modes of oscillation necessarily
radiate. However, in the case € » 1 , Debye claimed to have found
solutions of the dispersion relation of the system for which k (and
thus ) were real. This apparent violation of Rellich's theorem is
resolved by observing that Debye made an approximation for the fields
external to the sphere which is inadequate. We shall therefore
repeat Debye's calculation, showing how the imaginary part of k can

be obtained. This case (& » 1) is one in which QESA theory is not
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applicable inside the sphere, though it is outside. In the opposite
limit, however, (€ « 1) there exist solutions in which the QESA expres-

sions are valid both inside and immediately outside the sphere.

A somewhat simplified version of Debye's argument is given in
Stratton” (pp.554%-60): in brief, the field vectors are constructed
from solutions of the scalar wave equation in spherical polar co-

ordinates by Hansen's procedure:

E=rxTo" H=rx¥e¢
i or i 3 s A1)
E:l—{-curlg E:—Ecurlg

where within the sphere:

o = o™ = 8§ (iyx) F(cos 0) o™ v (5.2)
n n
@H = ¢Hi = Hi j (k) P'(cos 6) oM e vors, LI
n n
i
(ki =k 82) and outside the sphere the spherical Bessel functions are

replaced by the spherical Hankel functions h£2)(kr) :
0 o.(2) P ime
¢ =E h (kr) 5 (cos 6) e .. (5.4)

Ho

S
I

= Hz hﬁg)(kr) P: (cos 6) R g5 193]

The continuity of the tangential electric and magnetic fields at the

surface of the sphere (r = a) leads to the dispersion relations:

[k,a j (k) 1’ Ficss h1(12) (ka)]"

i (k,a) - hgg)(ka) ... (5.6)
[k,a j_(k,a)]’ [ka hgz) (ka)]’
K (ga) @8 (k) e (5.7)

where dash denotes differentiation with respect to k,a on the left-
hand sides, and with respect to ka on the right-hand sides of (5.6)

and (5.7). Note that (5.6) and (5.7) hold for n=*1,%2, ... ;

w i =



the case n = 0 is unphysical since all the field components vanish.

i
For € »1, we seek solutions with ka « 1; kia = €® ka = 0(1).

We can therefore expand the Hankel functions for small ka. Upon
rearranging (5.7) and retaining only lowest order terms in ka of the

real and imaginary parts respectively, we have:

[kya j_(k,a)]’ . {i (1_@>2n+1 2m (n+1) n} .
]

inlky2) 2 (en+0)Tln+3)]1?
| (5.8)
For € » 1 a first approximation to the solution of (5.8) is:
i (k) =0, ... (5.9)
which has an infinity of roots which we shall denote by X 7 for
»

p=1, 2, == . A second approximation is obtained by putting:

k.a = x + 0 i Z 1 & .. (5.10)

y b = siea
n,p

We note that the smallest value of X 5 for any n or p is greater
)

than 3. To lowest order in & we find:
5 _Tip_f[l 241 (xn,p>2n+l (n +1) }
— - _I— .
1+en (1+en) \og2 (en +1)[P(n +3)13 ... (5.11)

Thus, in this approximation the dispersion relation for the magnetic

modes is:
. 2n+1
aw 1 oni [ *n B) (n +1) }
— i A —r + | g B .
¢ "’P[ﬁ g2 \gg2 (2n +1)[T(n+3)]1? (5.12)

By analogous considerations to (5.6) we find for the electric modes

the dispersion relation:

i Xn, 2n+1
<2e§:) (2n+1£r01+%ﬂ2 }'
... (5.13)
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It will be seen that the imaginary parts of w required by Rellich's
Theorem are indeed present, but are very small, being of ordex‘(%) n+
or less,

The existence of solutions of the dispersion relation (5.7) for
€ < 0 was not discussed by Debye, presumably because media with nega-
tive dielectric coefficients were then unknown. However, if (5.7)
is expanded for small ka and k,a, and only terms of lowest order

in k in the real and imaginary parts are retained, one obtains:

(F%fm4=:u_fﬂ_ T(n+%) [ n(e+1)+1 },...(ilﬂ

2 r(- n+%) L (n+1)(e-1)

where n =1, 2, <+«  and e # 1. If for & we substitute the
expression for the dielectric coefficient of a cold uniform plasma,

e=1 - w;/Qz (where w, is the plasma frequency), equation (5.14)

P

can be solved to obtain weakly-damped oscillations with frequencies:

[1 . PP [ % a/c }?n+1 T(- n+ 1) J o (S

2
2n 2(2+%1_)2 T'(n+%)

1
W=Wp ———7 T
Y (2+d)?

The real part of this expression coincides with the expression given

by Gildenburg and Kondratev'® for the resonant frequencies of a plasma
sphere in an external high frequency field. It is readily confirmed
that at these frequencies, which are close to the frequencies at which
the numerator of (5.14) vanishes (n[e+1] + 1 =0), the expansion lead-
ing to (5.14) is justified. It follows that this case ought to be
tractable by QESA procedures. This is readily demonstrated as follows:
in lowest order, since the mode is of transverse magnetic (TM) type,

the solutions of equations (2.5) and (2.6) are:

= 0

=-v ¢E = - _[B(rn + Q r-n-l) PE (cos 8) eiIHQJ : cev (9:16)

H
L

il
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where a is a constant determining the relative proportions of the
two linearly independent solutions of Laplace's equation, and P 1is
a normalising constant. Inside the sphere, the requirement that
E, should be well-behaved at r = 0 implies a = 0; outside the
sphere the radiation condition at infinity is satisfied if (c.f.(4.7)):

L -<&>2n+1 . T(n+3) n . . [BAR)

* - n+3)(n+1)

Since H, = 0, there is no correction to E in next order, and we can
use the fields (5.16) directly to obtain the approximate eigenmodes.

Applying the electromagnetic boundary conditions at the surface of the

sphere (of radius a) we have:

E E
¥, = ¥
0
r=a-2=0 r=a+ 0
E
. ayE _ 8% " aew LT-1E)
dr ar
r=a-=20 r=a +o0

whence

E.)Qnﬂ o T(n+ %) [(n(s+ 1) +1 } _ (5.19)

2 (- n+ %) L(n+1)(e-1)

in exact agreement with (5.14).



APPENDIX 1

To show the existence of a solution of (2.21) for u such that
the fields given by (2.20) remain finite in the limit a - 0, we
observe that in the limit « = 0, the problem (2.2) can be solved in
another manner, since it can be shown (see for example reference 6)
that for o = 0 the third component equation of the vector wave
equation;

grad div A - curl curl A + kaé =0, ... (A1)
decouples from the other two component equations for any co-ordinate
system satisfying (2.18), even if it-does not satisfy the Bromwich
conditions (1.3). Since the curl of any solution of this equation
is also a solution, it follows that for a = 0 there exist solutions
of the problem (2.2) with either E, = 0, H; X0 or H, =0, B, X o,
the general solution being a superposition of these. Thus, one or
other of the equations (2.7) is of the form curl A =B with B, =0,
and as is well known, this problem can be solved by seeking a solution

in which A= Ay ﬁa and introducing a 'stream function' X = hsAa(qi,qa)

such that:
X qa XEX ( )
curl (ABq ) = curl (——-q3> = =(B,,B,,0) ,
? by by (a.2)
hence that:
YX =hyq, xB . cis LAY)
It is readily confirmed that the choice:
iaqg
X e 3
pownf S . (a.n)

ia

(where X(qi, q,) satisfies (A.3) at once ensures the existence of A
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(as given by (2.20)) and satisfies (2.21) in the limit a > 0, since:

iaq ia
) hg, xBe 2 iaX e s
Vu = div . + ... (A.5)

It will be seen that this choice of p is precisely that which cancels
out the components A and A, in (2.20), as required by the stream

function approach. A consequence of this is that whichever member of
the pair of equations (2.17) is not covered by the above discussion is

also solved by (2.20) even in the limit o > 0 since for it q,x B>0.
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