CLM-P270

CLM-P270

This document is intended for publication in a journal, and is made
available on the understanding that extracts or references will not be
published prior to publication of the original, without the consent of the

authors.

United Kingdom Atomic Energy Authority
RESEARCH GROUP

Preprint

THE TRANSLATION OF
SYMBOLIC ALGOL | TO SYMBOLIC ALGOL Il BY
THE STAGE2 MACRO-PROCESSOR

G. KUO-PETRAVIC
M. PETRAVIC
K. V. ROBERTS

Culham Laboratory
Abingdon Berkshire

1970

GULHAM LAEORATOR)

OV o

CiM-P 270

THE TRANSLATION OF SYMBOLIC ALGOL | TO :
SYMBOLIC ALGOL Il BY THE STAGE2 MACRO-PROCESSOR

by
G. Kuo-Petravic#*

M. Petravic#*
K.V. Roberts

(Submitted for publication in Journal of Computational Physics)

ABSTRACT

This paper describes briefly the facilities offered by the Stage2

macro=processor itself, The logic of the translator program written

in Stage2 (TRANSTAG) is then described fully using as an example the

magnetic equation in the Trinity program. The reduction to reverse

Polish and the subsequent decoding back to a set of nested procedures
in Symbolic Algol II are fully explained.

* Dept. of Engineering, University of Oxford

U.K.A.E.A. Research Group,
Culham Laboratory,
"Abingdon, Berks.

November, 1970

As has been noted in a previous paper(T), Symbblic Algol T
has a form closely analogous to that of mathematical physics and can
therefore serve as a language of communication between computational
physicists. This should lead to a rapid progress in the interchange
of ideas and programs which have so far been hampered to some degree
by the machine dependence of all programs and the lack of a suffici-
ently flexible method of communication. Symbolic Algol I, although
being legal Algol, uses the language in such a way that the actual
physics contained in a program can be expressed in a concise, intelli-
gible and general form, in much the same way as in mathematical
physics. However, by its very generality, in order that the detailed
operation of an operator is only contained in the actual procedure
called after the name of the operator, it has lost large factors in
speed because of the necessity of repeated procedure calls. There-
fore, in order that Symbolic Algol I be a useful language, some auto-
matic technique of optimization must be developed. Furthermore the
method should be a relatively simple one such that it is easy to
implement on any machine with its existing compilers and peripheral
software. In this series of papers we set out to show how a few
orders of magnitude gain in speed may be achieved by a two stage
process of optimization involving first the use of the Stage2 macroc-
processor and then Algol itself. In this paper we shall concern
ourselves with the first stage of the optimization, which is the
translation of Symbolic Algol I into Symbolic Algol II by the Stage2
macro—processor,

The Stage2 macro-processor is based on a language called Flub
‘developed principally by W. Waite(z) at the University

of Colorado. It uses a method of macro template matching which is

very convenient for the manipulation of operators and operands in a
mathematical equation.

The entire translator program which converts Symbolic Algol I
to Symbolic Algol II is written as a series of Stage2 macros. This
program, named TRANSTAG, is about 500 card images long, and because
of its length it will not be reproduced in its entirety here. Readers
who are interested in using it can obtain a report(s) and paper tape
from the authors. In this section we shall briefly describe the
logic behind the method used to translate the Symbolic Algol I input
into a set of nested procedures calls, which can then act as input
to the optimizer program written in Algol.

The text to be analysed is concatenated to the end of TRANSTAG
and the program will scan every line and try to match it with a macro
template with variables in specified 'slots'. If no match can be
found, the line is output without alteratim . Suppose the line in
the text reads: Example x =y + z . , this could be matched by a
macro: Example '=' . , where ' stands for a parameter flag, and .
the macro end of line flag. In this case parameter 1 will consist
of x and parameter 2 of y + z. Within the macro, operations
can be performed on the two parameters 1 and 2 and any text cori—
taining some function of the parameters may be output if required.
The basic use of Stage2 lies in its facility to translate instruc-—
tions on certain parameters in one language to the same or different
instructions on the same set of parameters in another language. It
may almost be said that it is machine independent in that it is easily
implemented on any machine, taking at most one week. Apart from the

“usual facilities of conditional jumps, skips, do-loops etc., there is
ne facility in Stage 2 which is particularly useful for text mani-

pulation. An example of this is the following:

& O

' F8.

Inside a macro, an exact copy of parameter 1 is written as '10.
The do-loop shown above means act on parameter 1 using + - * or /
as break characters up to 'F8 and repeat again, so that inside the
loop only a fraction of the original parameter is considered as the
current parameter 1. If parameter 1 consisted of X + YZ *ABC,
then the first time round X would be the current parameter 1 and
next time round YZ and so on. There are a few more values which
are easily evoked: (i) '|| means the content of parameter 1, here
we have the very useful facility that any character, symbol, or word
can be the address or content of any other symbol or word, (ii) '13
means an exact copy of the break character fpllowing the current
parameter 1, (iii) '15 gives the length in characters of the cur-
rent parameter 1.

~ We shall now proceed to illustrate our method by way of an
example which is the RHS of the magnetic equation used in the Trinity
program(4):

B = dT * (Curl (Cross (v,B)) + eta * Delsq (B));

The first step is to replace the operator names by symbols such as

a, B, vy etc. We note that the operators are of two kinds; the func-
tion operator like Curl and Delsq which operates on its RHS only, and
the infix operator like Cross which acts between two operands. The
latter is written in Symbolic Algol I as a procedure with two argu-
.ments. It is desirable at this stage to replace Cross (v,B) by

((v)a(B)), where a is any symbol, to bring it in line with other

normal operators e.g. */. This is achieved with a macro Recode ','.
which separates the statement into two halves. For the sake of

illustration, let us take here a more complex example:

- - - -%Cross (v+ Curl (B), Curl (Cross (v,B))) + - - - -
-~ — = - % Cross < v + Curl (B), Curl (Cross (v,B))) + - - - -
- = - =% ((v + Curl (B))a(Curl (Cross (v,B)))) + = = - -
We set up a counter which counts brackets, taking opening bracket
(= 41 and closing bracket) = -1. Taking first the second half of
the line, we count to the first unbalanced closing bracket and
replace it by >. Similarly = the first unbalanced opening bracket
counting backwards in the first half of the line is replaced by < 5
The name Cross is coded into a symbol such as « and the following
substitution made:

<= ((

s =)o (

> =)
Returning to the case of the magnetic equation, we would then have:

B + dT * (Curl ((((v) o (B))) + eta * Delsq (B))
Function operator names like Curl and Delsq are then coded. They are
recognised by the fact that they appear before an opening bracket (

and after an operator or another opening bracket (. We then have
B+ dl * (B (((v) a (B))) + eta * vy (B))

where Curl has been coded into [and Delsq into y. In order to
take into account the operator precedence implied in this statement
by the configuration of its brackets and the nature of its operators,
this statement is turned into a one dimensional reverse polish string

by the use of about ten short macros. The rules for output in reverse

polish are: (i) Operands are written into the reverse polish string
in a backward sequence. A dummy operand denoted by Q is written
to the string when a function operator appears. (ii) Operators are
stacked on an operator stack. If the operator on top of the stack

i1s of higher or equal priority to the incoming operator, then the
operator on stack is output. (iii) Brackets are treated as special
operators. An opening bracket (goes on stack without comparison,
and a closing bracket) causes the output of all operators down to
the previous opening bracket (and removes this opening bracket (
from stack.

The resultant reverse polish string reads:

+#+%yB Q eta BaB v @ DT B
where a blank space immediately following an operand is inserted to
act as break character for operands.

As the operator symbols are the addresses for the operator
names, it is easy by invoking 'll to retrieve the operator names.
However, some rules regarding the output of brackets and commas have
to be formulated. The reverse polish string is analysed by a loop
using the operator symbols and blank space as break characters. The
operands are recognized by the fact that the current length of
parameter 1 1is non zero, whereas for operators the current para-

meter 1 1is the null string. The output format is determined by the

folloning rules:

output add to test string
operator preceded by operator operator (X
operator preceded by operand ;operator (YX
. operand preceded by operator operand
operand preced by operand ,operand) YZ

The configuration of brackets and commas built up in this process
must be remembered in order that correct sets of opening bracket,
comma, and closing bracket —— (,) should be present when the
output.is completed .This is achieved by adding to a test string the
letter X whenever and opening bracket —— (is output, Y when-
ever a conma —— , is output, and Z whenever a closing bracket

——) is output. In our example we have:

+#+%yB Q eta BaB v Q dT B
sum(milt(sum(mult(Delsq(B,),eta),Curl(Cross(B,v),Q),dT),B)

XYyzy Zy X XY ZY ZZY ZY Z

L L]

L

Whenever a Z is added to the test string, a triad of XYZ is com-
pleted and can be removed from the string. We then tentatively
assign another closing bracket, that is to say, add another Z to
the remainder of the test string and test if a sequence of XYZ
exists at its end. If yes, a closing braket) can be definitely
output at this point and another XYZ deleted from the string.
When no more sequence of XYZ could be found at the end of the test
string, the last Z is removed. It may be seen from the example
that the closing bracket in dotted line has been assigned in this
way., If this were absent, there would then be an unbalance of
brackets and commas when the end of the line is reached. At this
point the test string should become a null string.
As a consequence of the use of reverse poiish, all operands
appear in reverse order to that in the original statement. While
- this presents no difficulty to the arithmetic unit of a computer,

it is undesirable in Symbolic Algol II as we do not want to define

counter

operators like Curl in different order from their conventional defini-
tion. We, therefore, perform an interchange of operands within each
triad of opening bracket, comma and closing bracket — (5. N

This is easily achieved by a macro called Interchange ' . . A

coanter which counts opening bracket (= +1, comma , = O, and

closing bracket) = -1 enables us to pick out the appropriate
triad:
1 2 3 4 554 33 4 5544322 1 0

sum(mult(sum(mult(Delsq(B,Q),eta),Curl(Cross(B,v),Q)),dT),B)
sum/mult(sum(mult(Delsq(B,Q),eta),Curl(Cross(B,v),0)),dT)d B\

sum<B:mul t(sum(mult(Delsq(B,Q),eta),Curl (Cross(B,v),0)),dT)>

When the counter registers 1 and the break character is an
opening bracket — (, this is replaced by /. When the counter
again registers 1 and the break characer is a comma — ’ ’ Biin
is replaced by _5ﬂ Finally when the counter egisters O and the
break charactef is a closing bracket ——), this is replaced hy\\.

We then simply subject this line to a macro Swop '/' & '™\ in

which a line given by '10<'30:'2d> is created and stored. Operands
within this triad have then been interchanged and the corresponding
brackets inactivated. This line is re-submitted to the macro

Interchange '. , and this time the next level down will be inter-

changed. This continues until we obtain:
sum<B: mul t<PT: sum(Cur1<0: Cross<{v: B> :mul tleta: Delsql: BOOOOD.

Finally by replacing < »(, : -, , and > ») , and deleting the

dummy operand () , we obtain the desired result:
Equate (B,sum(B,mult(DT,sum(Curl(Cross(v,B)),mlt(eta,Delsq(B)))))).

The procedure Equate has been created separately by a macro which

matches the input equation.
In Figure 1a, we list the input to TRANSTAG as obtained from
a Symbolic Algol I version of a 3-dimensional MHD programme called
Trinity(4). In Figure 1c, we list the corresponding output. However,
with a trivial modification, TRANSTAG can be made to handle input as
shown in Figure 1b where the equations are written in an entirely
mathematical form. Here the user has to define <x> = Cross,
<D> = dot etc., although in principle symbols such as Vx, V2 may
be created on the teletype thus making the definitions unnecessary.
On the KDF9 at Culham Laboratory, TRANSTAG took 18 minutes to
process the four equations of Trinity. This is not extremely fast;

however, such translation need only be performed once for a given

problem and thus this time would be quite tolerable.

Acknowledgements

The authors wish to express their thanks to Mr W.Holman for
assistance in Stage2 programming, and to Dr P.C. Poole for the

implementation of Stage2 at Culham and for many helpful discussions.
References

(1) M. Petravic, K.V. Roberts and G. Kuo-Petravic, 'The automatic
optimization of Symbolic Algol programmes', to be submitted to
the Journal of Computational Physics.

(2) W.M. Waite, 'The Mobile Programming System STAGE2', Comm.
ACM 13 415, 1970.

(3) G. Kuo-Petravic, M. Petravic, K.V. Roberts. 'The translation of

Symbolic Algol I to Symbolic Algol II by the Stage2 macro-processor,

A User's guide' PDN 4/71, Obtainable from Culham Laboratory.

(4) K.V. Roberts and J.P. Boris, 'The Solution of partial
differential equations using a Symbolic Style of Algol',
CLM-P 261, 1971.

M NEWS"RHO=RHO-DT*DIV(RHO*V);

"FOR' Ci=1 'STEP' 1 'UNTIL' 3 *'DO"

M V=(RHO*V+DT*(-GRAD(RHO*TEM+DOT(B,B)/2)-DIV(RHO*TENCV, V) -TEN(E-B))

M +NU*DELSQ(RHO*V))) /NEWRHO:

'FOR' C1=1 °*STEP' 1 ‘UNTIL' 3 'DO*

B=B+DT* (CURL(CROSS(V,B))+ETA*DELSQ(B))}

TEM=TEM+DT*(=DIV(TEM*\)+4AAFPA*DELSQCTEM)
+(2-GAMMA) *SAV(TEM) *DI1V{\V)+{(GAMMA-1)*ETA*DOT(CURL(B),CURL(B))
/S8AVCKHO)+ CGANMMA= 1) *NU*(DOT(CURLCV) »CURL{VI)+DIVCV)I12))3

(a)

==E=

SCALAR LQUATION 1;

DRHO/DT =-DIV(RHO*V);

VECTOR EQUATION 2;

DV/DT=(DIV((B<T>R)~RHO*(V<T>V))~GRAD(RHO*TEN+(B<D>R) /2. U)

+NU*DELSQCRHO*V))/RHO;

VECTOR EQUATION 3;

DB/DT=CURL(V<X>B)+ETA*DELSQ(B);

SCALAR EQUATION 4;

DTENM/DT=-DIV(TEM*V)+KAFPA*DELSQC(TENM)
+(2=-CAMNMA)*SAV(TEM) *DI V() +(GAMMA=1)*ETA* (CURL(B)<D>CURL(B))
/SAVCRHO)+{ GAMMA- 1) *NU*((CURL(V)<D>CURL(V))+DIV(VwI12));

(b)

TETEZZIZIZRE

EQUATEC NEW RHO»DIFF(RHO»MULT(DT,DIVC(MULT(RHO,V)))))=C(U00UEUY)

'FOR® Cl=1 'STEP' 1 'UNTIL' 3 'DO'=-CUULTUL)

EQUATEC V,QUOTC(SUM(MULTC(RHO,»V)»MULTC(DT,SUM(DIFF(DIFF(BLANK, GRADCSUMIMUL
cou420L)

TC(RHO, TEN) , QUOT(DOT(B,B) s KNUN(2)))))sDIV(DIFF(MULTC(RHOs TENCVs V)) s TEN(R,
(uu4a3uw

B))3)),MULT(NU, DELSQ(MULT(RHO, V) 23233, NEWRHO))~ (U04400)

'FOR' C1=1 'STEF' 1 'UNTIL® 3 'DO'=CUu450U0)

EQUATEC(PF,SUNM(B,MULT{DT.SUNMN(CURLC(CROSS{V»P))»MULTCETA,DELSQ(B))))))=CUU
56UU)

EQUATE(TEM,SUMCTEN,MULTC(DT,SUMCSUMCSUMCSUM(DIFF (BLANG, DIVIMULTC TENM, V1))
(uuysuw)

) s MULTC(AAPPAS DELSQCTENM))) s MULTCMULT(DIFF (RNUMNC2) > GAMMA) » SAVITEM))2 DIVCVY
(uu990L)

33, QUOT(MULT(MULTC(DIFF(GANMMA, RNUMC1)),ETA) 2 DOT(CURL(E) s CURL(E)))+ SAVW(R
{ul1uuuw)

HOJ))»»MULT(MULTCDIFFCGANNA RNUMC 1)) ,NUY » SUM(DOTC(CURLC(V) » CURL(V)) » EXP(DI
v1Ul1U0d

Viv)»2222))))=(01020U)

(c)

Fig. 1 CLM-P270

