

e g A 50 i S M i P et g 0,

CLM-P 274

AUTOMATIC OPTIMIZATION OF SYMBOLIC ALGOL PROGRAMS
I. GENERAL PRINCIPLES

M Petravic®, G Kuo-Petravic™

and

K V Roberts

ABSTRACT

The symbolic style of programming referred to as Symbolic Algol I [1]
appears to have a number of advantages when applied to the solution of sets of
nonlinear partial differential equations. Programs written in that style are
clear, elegant and concise and their modular structure enables large parts of
the programs to be used over and over again for many different problems. Such
programs, however, tend to be slow because they involve a large number of

nested procedure calls at execution time.

Finite difference methods in several dimensions require in general that
a relatively small number of equations be solved a large number of times and
much is gained if these nested procedure calls are executed only once. This
is achieved by a generator or translator program, written in Algol, which
processes input written in a related style named Symbolic Algol II. Usually
only finite difference equations in very compact symbolic form are input,
while output is completely explicit and can be in a number of computer
languages. Of greatest interest are User or Assembler codes automatically
produced in this way. They are competitive in speed with fully hand-optimized
Fortran versions and are produced effortlessly and error-free. Their speed,
on the other hand, enables a full set of magnetohydrodynamic equations in
three space dimensions to be solved in a reasonable time on a 60x60x60 or

equivalent mesh, using an IBM 360/91 computer.

* Department of Engineering Science, Oxford University

U.K.A.E.A. Research Group
Culham Laboratory
Abingdon

Berks.

June, 1971

1. INTRODUCTION

This paper describes how Algol 60 can be used as a powerful macro-processor
which enables the symbolic expressions of classical vector analysis to generate
efficient target code automatically by the use of controlled side effects. The
target languages produced so far have been IBM 360 Assembler code, Fortran, Algol
and ICL KDF9 Usercode, but it appears that any language might be generated in
a similar way. The target code can be optimized by physical symmetry declara-
tions; for example if Vg =0 (no rotation) and 8f/dz = 0 for all functions £
(no z-dependence), then appropriate declarations can be used to suppress terms
in which such quantities occur as products. The method can be used for generalised
orthogonal curvilinear coordinates and an example will be given. Finally it

would seem that the method might be extended without difficulty to other kinds

of symbolic formalism.

A previous paper [1] showed how Algol could be used for the symbolic

solution of problems in Computational Physics, especially those in which sets
of partial differential equations are solved by finite difference methods using

a discrete mesh. A vector equation such as

o/
| 1&

= Curl (V x B) + ﬂvzg (1)

Q/

E

can be programmed symbolically in the closely similar form
AB[C1,Q]:=CURL(CROSS(V,B))+ETA x DELSQ(B); (2)

a style of programming which has been termed [1] Symbolic Algol I. Here the
left side of (2) is an array element representing the magnetic field B in
the Cl-direction, (Cl = 1,2 or 3) at the mesh point Q , while most of

the identifiers on the right side are symbolic operators or functions which
are closely analogous to their counterparts in Eq. (1) and are represented
by real procedures. Details of the choice of coordinate system, the number
of dimensions, the boundary conditions and the difference scheme are excluded
from Eq. (2) and are dealt with at a lower level just as in the familiar

symbolic notations of mathematical physics.

Symbolic Algol I (SA/I) enables complex problems to be coded in a con-
cise form which is virtually system-independent and should be readily intelligible
to physicists because it is close to the mathematical language which they

normally use. By way of example, Table I shows the partial differential

equations which are used in the 3D magnetohydrodynamic TRINITY code [1],

while Table II shows the same equations programmed in SA/I. The differences
are fairly minor and are partly due to the restricted class of symbols
currently available on computer input devices such as the teletype or card
punch. One might perhaps compare the relation between vector analysis and

SA/I to that between classical and quantum mechanics. In the notation intro-
duced by Heisenberg and Dirac the same symbols (e.g. q, p, H) are used as in
the classical Hamiltonian theory but they now receive a different interpreta-
tion as operators or g-mumbers; nevertheless many of the formulae look just the

same.

The advantages of symbolic notation are clear enough. The Algol procedure-
operators are neat and concise and have the same formal properties as their
mathematical counterparts, so that the manipulation of statements and the con-
struction of new expressions are quick, intelligible and easy to check for
errors. A typical example is the operator CURL, represented in a Cartesian

coordinate system by the short procedure:

real procedure CURL(A); real A; CURL:=RP(DEL(RP(A)))-RM(DEL(RM(A))); (3)

Here RP and RM are rotation operators which rotate the 1,2,3 - components

of vectors or tensors in either the positive (RP) or negative (RM) directions
rather like spin operators in quantum mechanics (Fig. 1), while DEL is a finite
difference operator. These rotation operators are reciprocal to one another so

that

RP(RM(A)) = RM(RP(A)) = A, (4)

while the property

RP(RP(A)) = RM(A) (5)

is also often used in 3 dimensions. The use of vector and tensor operators
ensures that statements are independent of the coordinate system (covariant),

the components being hidden and appearing only at execution time.

All these properties combined with modularity and portability of programs
[2] make SA/I a powerful tool for the quick and error-free development of

large and complex physics or engineering programs. However, SA/I executes quite

slowly because of the great number of nested procedure calls and is therefore
not too useful for 2D and 3D production runs although this depends on

how well the Algol 60 compiler has been written. Its main application to date
lies in the testing of prototype programs on a coarse mesh over a few timesteps.
In this way standard test results are obtained for comparison with future
better-optimized and faster versions of the same program, written for example

in ordinary Algol, Fortran or Assembler code [1].

The aim of the present paper is to carry the theory of Symbolic Algol ome
stage further. We shall show that by a further slight transformation of a
vector expression such as Eq. (2) it can be made to generate the optimized
program automatically. In this new style of programming, which is termed

Symbolic Algol IT (SA/II), Eq. (2) in fact becomes
EQUATE (B, SUM(B ,MULT (DT, SUM(CURL(CROSS (V,B)) ,MULT (ETA,DELSQ(B)))))); (6)

and the statements of Table II are replaced by those of Table III. The
reason for this transformation is to replace the arithmetic operators +, -,
X, /, = which occupy a privileged position in high-level languages by their
generalized counterparts SUM, DIFF, MULT, QUOT which are real procedures, and
EQUATE which is a procedure. Once this has been done these procedures can,
of course, be given any interpretation that we choose, and they can in
particular be made to generate optimized code in any desired programming

language by means of side effects as explained in §2.

The languages generated so far have been IBM 360 Assembler code,optimized
Algol and Fortran, and ICL KDF9 Usercode which is similar to Reverse Polish
and therefore has a theoretical as well as a practical interest. The trans-
formations from Table I and Table II to Table III obey prescribed rules and
we have in fact carried them out automatically [3] using the STAGE 2 macro

processor [4], although they are not difficult to perform by hand.

An SA/IT generator program looks very like the corresponding SA/I
calculational program except that some of the auxiliary statements must also

be changed from form (2) to form (6), so that for example CURL becomes

real procedure CURL(X); real (X); CURL:=DIFF(RP(DEL(RP(X))),RM(DEL(RM(X))));
L)

The purpose of (7) is however rather different from that of (3) because instead
of actually calculating numerical values directly, the program now works out
which programming instructions are needed to calculate these values and then
generates the instructions, either printing them or punching them out on cards
or placing them in a file for subsequent execution. Clearly there is a close
correspondence between the two processes of calculation and code generation -
for example in both SA/I and SA/II the storage locations are evaluated by mani-
pulating symbolic operators - and so CURL, DEL and other operators appear
virtually unaltered. To pursue the quantum-mechanical analogy further, the
conversion from SA/I to SA/II might be compared to second quantization in that
the c-number wave-functions become q-number field operators but the equations

stay the same.

An SA/II generator program is not a compiler, and it is shorter, more
flexible and easier to write than most compilers. We shall endeavour to
explain the relation in §6. Since it is coded in Algol and has at least as many
nested procedure calls as SA/I it may also not be as fast as some compilers.
However, the point is that each statement in Table III is executed only

once , instead of many millions of times as in a normal run. Code generation

from Table III actually occupies about 10 seconds on the IBM 360/91, which is
comparable with ordinary job overheads and much less than the duration of a
typical production run which may last for several minutes or even hours. The
only real requirement is that the generated Assembler code should be effic-
ilent, and it. turns out in practice to be slightly more efficient than the
corresponding Fortran written by a good programmer and compiled with the IBM

Fortran H Option 2 Compiler,

The basic idea of SA/II is quite straightforward and will be explained
in §2, namely that side effects of typed procedures can be used to generate
code. Some complications arise in a practical program becauge it is desirable
to make the generated code as efficient as possible. As we ﬁave already men-
tioned, it should be possible in a problem in which V. = 0 or df/dz =0 to

]
declare these symmetry conditions to the generator program and to have it auto-

matically eliminate all terms which are then known to e identically zero.
This can be achieved by making use of the fact that the real procedures in a
statement such as (6) pass numerical values to one another. The simplest
version of SA/II outlined in 82 treats these values as dummies, but they

can be employed for a variety of purposes including optimization. A zero
value is assigned to basic terms or products which are known to be identically
zero in the physical problem, and this value is used to control the way in

which the code is generated. Unnecessary brackets and signs are eliminated

-4 -

in a similar fashion.

Code generation is carried out by a real procedure TRIPOP (triple operator),
and operators such as SUM, DIFF, MULT, QUOT simply call TRIPOP to generate
the appropriate output. Although TRIPOP is quite short its working is fairly
complex, and to avoid burdening the present discussion it will be described in

detail elsewhere [5]. A brief account is however given in §3.

Another complication arises from the finiteness of real machines, for
example the nesting store or arithmetic stack of the KDF9 has about 13 levels
available to the user, the IBM 360 has 4 floating-point registers, and so on.

We have found it efficient to generate the code for an infinite computer and
then to map it on to the real machine, and how this is done for the IBM 360 will

also be described in ref. 5.

Since Algol is likely to be useful for other types of symbolic manipula-
tion it may be appropriate, after some examples have been given,to list those
features of the language that we have found to be important, and this is done
in §8. It will however become evident almost from the beginning that recursion
and call-by-name play a significant part, together with a number of other
facilities which are not available in a language such as Fortran. A more
practical point is that although Algol allows identifiers to have arbitrary
length, some compilers (including that of the IBM 360) distinguish only the
first 6 characters. To make the discussion of this paper clearer we have in some
cases used long English-language identifiers, but in the published version of
the program itself [6] the identifiers are restricted to 6 characters or less to

avoid possible clashes.

2. CODE GENERATION

The generation of code by an expression such as
SUM(X,MULT (Y,Z)) (8)
is simple to explain. We first need a procedure PRINT(<string>) which will
output an arbitrary string of characters taking into account any special
requirements to leave gaps at the beginning and end of the line. In terms

of this we define the algebraic symbols:

procedure PLUS; PRINT('+');

procedure STAR; PRINT ('*'); ()
and the symbols to be used as identifiers in the generated code:
real procedure X; begin PRINT('X'); X:= l; end;
real procedure Y; begin PRINT('Y'); Y:= 1; end; (10)
real procedure Z; begin PRINT('Z'); Z:= 1; end;
Finally there are two arithmetic operators:
real procedure MULT(A,B); real(A,B);
begin real CALL; CALL:=A; STAR; CALL:=B; SUM:=l; end; (11)
and
real procedure SUM(A,B); real(A,B);
begin real CALL; CALL:=A; PLUS; CALL:=B; SUM:=1; end; (12)

Explanation
Exactly what happens is illustrated by the tree shown in fig. 2. When the
statement 'CALL:=A' is encountered, the real procedure PRINT is transmitted by
name via X into SUM, causing a symbol 'X' to be generated. The local variable
CALL in SUM is set equal to 1 but this value is disregarded. A '+' symbol
is next produced. Finally, MULT is entered by 'CALL:=B' which generates the

symbols 'Y', '*', 'Z' in the same way so that we get

X+Y* Z (13)

as required.

Several points may be noticed:
(a) Typed procedures :are used to generate the code because Algol does not
allow ordinary procedures to be transmitted via nested argument lists
in this way.
(b) The actual generation takes place by means of side effectst the statement
CALL:= A;
causes the string of symbols associated with the formal parameter A to

be constructed, however complex an expression A may represent,

(¢) A precise order is forced on these side effects, independently of the
order in which the Algol compiler writer may choose to evaluate the
terms in an arithmetic expression such as P+Q or PxQ.

(d) It is immaterial whether real or integer procedures are used, but we
have chosen real procedures for compatibility with SA/I.

(e) At this stage the values associated with the real procedures have no
significance; only the side effects are important. In $3 we shall
however indicate how a su}tably—chosen assignment of values can be

used to remove expressions which are known to be identically zero.

Generation of Reverse Polish

The reader might be excused for wondering what exactly has been achiéved
so far; starting from the algebraic expression (13) we have converted it auto-
matically or-by hand into the SA/II form (8), and then proved that this is
capable of reproducing the original expression., The real advantages are,
first, that the generated code can represent a considerable expansion of the
original which may be in symbolic vector or temsor form, and second, that
by making small changes in the basic procedures duch as PLUS, STAR, X, Y, Z,

MULT, SUM we can generate the code in a lower-level and therefore more

efficient language.

To illustrate this sec¢ond point we show how to convert (8) into the

Reverse Polish form
X: Y: Z, *a +, (14)

which is in 1-1 correspondence with the Assembler Language (or 'Usercode') of
the TICL KDF9 on which Symbolic Algol.was first developed. To do this we
simply modify the five procedures (9) and (10) in order to add an extra

comma, e.g.

procedure PLUS; PRINT('+,!); (15)

and then reverse the order of the second and third statements in the arith-

meti¢ operators (11) and (12), e.g.

CALL:= A; CALL:= B; STAR; MULT:= 1; (16)

which then enables (8) to generate (14).

Brackets

The question of brackets has not so far been taken into account in

generating algebraic expressions such as (13). Thus at present

X x (Y+Z) (17)
would be converted by
MULT (X, SUM(Y,Z)) (18)
into
X % Y+z (19)

which is wrong, although the corresponding Reverse Polish string is still

correct:
X}Y!Z)-l-’*’ (20)

The simplest way of correcting this is to enclose the output from each
arithmetic operator in a pair of brackets by means of two procedures OPENB,

CLOSEB, so that for example (12) becomes

¥eal procedure SUM(A,B); real(A,B);
begin real CALL; OPENB; CALL:= A; PLUS; CALL:= B; SUM:= 1; CLOSEB ;end; (21)

Then expressions (8) and (18) generate the correct output

X + (Y*z)) (22)
and

(X * (Y+2)) (23)
respectively,

A complicated expression will now produce a large number of unnecessary

pairs of brackets but although these make the expression difficult for a

human to understand they should not trouble a Fortran or Algol compiler; in
fact they might well shorten the compilation time since questions of operator
precedence ne?d no longer be resolved. However in order to make the generated
code more elegant and intelligible we have implemented a method for removing

the unnecessary bracket pairs and this will be described in ref. 5.

Another difficulty which occurs with the KDF9 is that the nesting store
or arithmetic stack has finite depth (in practice about 13), so that a
sufficiently long string of identifiers unrelieved by operators could cause
it to overflow. To monitor this situation (which has not yet occurred in the
problems that we have treated) one can introduce a level counter and print
out a warning to the user when overflow is detected. In most cases he can
then permute the order in the SA/II expression to produce a better pattern.

For example
SUM(MULT(Y,Z),X) (24)
instead of (8) leads to
Y,Z,*,X,+, (25)

which requires a smaller stack. Overflow is more likely to occur with the
IBM 360 which has only 4 floating-point registers, and here we perform

automatic dumping and restoring of registers when necessary as explained
in ref. 5.

-9 -

3. PROCESSING THE EQUATIONS

The central procedure of the SA/II generator program is EQUATE, which for

Algol output is

procedure EQUATE(X,Y); real X,Y;
begin real CALL;
NEXTLINE; PRINT:= false;
if X = O then go to EXIT;
PRINT:= true; SIGN:= O;
CALL:= X; ASSIGN;
if Y = 0 then TEXT(1,'0');
SEMICOLON ;
EXIT:

(26)

end;

A similar version is used for any other target code but the explanation is
simpler for this particular example and may give some idea of the power of the

symbolic method. ASSIGN generates the assignment symbol,'=.' for the IBM 360.
Suppose that (26) is called by the statement
EQUATE (B, SUM(B ,MULT (DT ,CURL(CROSS(V,B))))); (27)

as in Table III but without the resistive diffusion term. Because this is a
vector equation it will be called 3 times with Cl = 1,2,3 and we shall
suppose that Bz has been declared identically zero. The tree of real

procedure calls is indicated in Fig. 3.

The auxiliary call to NEXTLINE does any editing that is required,
e.g. ruling a line across the output page, and printing is then switched off.
The left side X of the expression, in this case Bx’ By or Bz, is next
tested to see if it is identically zero, which as explained in §1 will be
represented by a zero value. If so, there is no point in generating anything
and the right side is skipped. (Cl = 3). DNote that since X 1s a real
procedure the statement if X = O then involves further operations

at a lower level®.

Since X 1is real it is perhaps not good practice to test whether or not it
it is exactly zero but we have found no difficulty on the ICL KDF9 or

IBM 360. The procedure values are always set to integers or sums oOr
differences of small integers and it is hard to see why trouble should arise
with any computer. If it does, one can simply test for X < € where

0<e K1,

s
%

< 1O =

Assuming that the component is not identically zero we switch printing on
again, make sure that no + sign will be printed, and reference X once more,
subsequently calling the procedure ASSIGN. This series of actions will gener-

ate some expanded form such as
B1(/Q/).= (28)

depending on the hardware representation and on the way in which array
components are being referenced. Note that the numerical value in (28) is

that of the formal parameter V.

The whole of the testing and generation of the right side is now con-

tained in the deceptively simple statement

if Y = O then TEXT(1,'0'); (29)

Some possible cases for the right side Y are:
a. Constant. Since printing is now switched on the numerical
representation of the constant is generated.

b. Non-subscripted variable. The character string corresponding

to this variable is generated.

c. Array variable. If this variable has been declared to be

identically zero it will not be printed and the value O
will be returned, causing the second part of the if
statement to print 'O'. If it is not identically zero

it will print its own character representation, including
any necessary vector or tensor components.

d. Arithmetic expression. The outermost arithmetic operator

calls TRIPOP which switches off the printing and tests

the whole of the expression, TRIPOP being called again
recursively by each of the internal arithmetic operators,
including those in CURL and CROSS. If it is finally deter-
mined to be identically zero then 'O' is printed. Otherwise
this outermost TRIPOP initiates a second scan which prints
all those sub-expressions which were found to be not

identically zero the first time they were tested.

As an example, Table IV shows Algol 60 target code generated for the

IBM 360 for Maxwell's two equations

a/
=

oH
= Gurl H, 5e = - Curl E

I

Q/|
T

w T o

in orthogonal curvilinear coordinates using a mesh of size (l4x10x42). The

source statements were:

for Ccl = 1,2,3 do
EQUATE (EFIELD, SUM(EFIELD ,MULT (DCT (8) ,CURL (HFIELD))));
for €1 = 1,2,3 do
EQUATE (HFIELD,DIFF (HFIELD,MULT (DCT(7) ,CURL(EFIELD)))); (30)

In this case no symmetry conditions were imposed. DCT7 and DCT8 are timestep

factors which will usuglly be the same.

- 12 =

4, PHYSICAL CONSTANTS AND VARTIABLES

Provision is made for handling non-subscripted variables which may be
constants or functions only of the time, and scalar, vector and tensor

functions. A typical 'declaration' specified by the user is for example

real procedure B; B:= VECTOR(5,1,'B',1,1,0); (31)

This calls the real procedure VECTOR which in the Algol 60 output version

reads

real procedure VECTOR(ORDINAL NUMBER,LENGTH,S,V1,V2,V3);
integer ORDINAL NUMBER,LENGTH,V1,V2,V3; string S;
VECTOR:= if Cl = 1 then V1 else if Cl = 2 then V2 else V3;

if not PRINT then go to EXIT;
SIGN IT; TEXT(LENGTH,S);
COMPONENT; SHIFT;
EXIT:
end; (32)

The parameter ORDINAL NUMBER is not being used here; it controls the actual
storage region used by B which is important in some Assembler Language versions
and is retained for conmsistency. LENGTH gives the length of the identifier
string 'B' which will be used in target statements, instructions and comments,
in this case 1. The last 3 parameters V1, V2, V3 define whether or not the

X, ¥, z components are identically zero. In this case the user has specified

V3 = 0 so that Bz is taken to be identically zero. Because VECTOR returns the
value 0 whenever Cl = 3 the z-componaent of the magnetic equation will be
suppressed altogether (88), and all terms in which B, occurs as a product will
be suppressed on the right side of any other equation. Otherwise when

PRINT = true the procedure VECTOR will proceed as follows:

SIGN IT Examine the value of a global variable
SIGN and output either a preliminary
'+', '-', or no sign.

TEXT (LENGTH, S) Qutput the string S of length LENGTH,
in our example 'B'.

COMPONENT Qutput the current value of the com-
ponent Cl, e.g. '2'.

SHIFT Output '[' or '(/' followed by the
signed numerical value of the current
displacement from the local mesh origin,
and finally a closing bracket, ']' or '/)'.

- 13 -

Typical output for Algol on the IBM 360 is
+B2(/Q+73/) (33)

and similarly for Fortran except for the absence of the slashes. Several other
versions have been developed; for example the displacements can be handled
symbolically so that the code does not have to be regenerated when the mesh

size is changed or one might generate 'BY' instead of 'B2' for clarity.

The operators RP, RM act on the global variable Cl as determined by
algebraic and analytic operators such as DOT, CROSS, DIV, CURL and therefore
.enable the correct component label to be calculated. Similarly, vector trans-
lation operators EP, EM which are called whenever a space derivative occurs
are used to calculate the position on the lattice relative to the central
point Q of the local mesh 'molecule'. 1In eq. (33) this appears as a numeri-
cal displacement of 73 words within the region of core store occupied by the

array B2.

A scalar is handled in a precisely similar way by the real procedure
SCALAR which requires only a single value O or 1 and does not need to call
COMPONENT, and correspondingly for constants on the one hand, and tensors on

the other.

Core Storage Layout

We have.already mentioned that the generated code can be in any cliosen
computer language. Whatever the language, however, we obviously have to be
able to print some form of address at which the value of a particular vari-
able defined on a specific mesh point is stored. The addressing can be com-

pletely symbolic, e.g. in Algol via an array
B[c1,Q + DX - DY], (34)
it can be coded numerically as in KDF9 Usercode
V34P6M15 (35)

(location 34 of variable block 6 modified by register 15), or it can be partly

numerical and partly symbolic as in IBM 360 assembly code.

0052(,DISPQ) BY(I,J-1,K) } (36)
0312 (PLUSDZ ,DISPQ) BZ(I,J,K+1)

Here the displacement in bytes defines both the variable and the position in

the xy-plane relative to the centre of the mofecule, DISPQ is a general

- 14 -

register which contains the current center, while PLUSDZ is a register which
gshifts one mesh unit in the z-direction. The comments on the right side give
the Fortran notation. Several other choices are possible. 1In any case the
address will depend on the variable in question, on the coordinate direction

on to which a vector variable is being projected, and on the mesh point at which
the expression should be evaluated. These 3 quantities are defined in all the
Symbolic Algol programs [1] by the variable name and by the global integer

variables Cl and Q.

Because the generator program does not evaluate the physical expressions
itself it always has to leave the central point of the difference scheme
undetermined and refer to it as Q, or else to point to the register in which
the current value of Q will be kept during the subsequent execution run.
These registers can be referred to directly (M15) or symbolically (DISPQ).
The variable name on the other hand is known at the time of the generation
run and so the numerical value of Cl (or, if the variable name is coded
numerically, some arithmetic combination of that code number and the value

of Cl) can be output. Table V shows an example of IBM 360 assembly code

produced in this way.

Although in Algol or Fortran we could represent a scalar variable by an
array with as many subscripts as there are dimensions n, and a vector variable
by an (n+l)-dimensional array, this is often not desirable. The use of
multi-dimensibnal arrays requires more registers and address calculations
and slows down execution. l-dimensional arrays are therefore to be preferred
for the representation of physical variables when the execution count is

high.

Decisions must thus be made about whether to have separate arrays for
different vector components of the same variable or, if not, in which order
they are to be stored in a single array. Even for scalar variables it has to
be decided in which way a 3-dimensional set of values is going to be mapped
into a l-dimensional array. These strategic decisions cannot all be made
automatically and the best solution will depend on particular circumstances
like the type of the mesh, the symmetries of the problem, the order in which
the mesh is scanned, the total number of mesh points, the size and type of
core and backing storage available and so on. In practical terms this means
that even when the output language has been selected, small changes to the
generator program will be necessary from problem to problem. In most cases,

however, these changes will be confined to one procedure (SHIFT), and will

- 15 -

consist in replacing one simple function of the component Cl, the lattice
displacement vector (K1, K2, K3), and the core storage 'distances' (DELTAL,
DELTA2, DELTA3) between elements one lattice spacing apart by another simple
function of the same integer variables., Since any SA/II program will in this
way be mesh dependent, we give a brief description of the mesh that the

TRINITY program assumes [1].

Finite Difference Mesh used for TRINITY

The mesh is assumed to be Cartesian, of up to 3 dimensions, and equi-
spaced. The numbers of mesh points in the x, y and z directions are denoted
by PI, PJ and PK respectively, so that the total number of mesh points is
SIZE = PI x PJ x PK. This includes six guard planes introduced to enable the
same difference expressions to be used on the physical boundaries of the volume
as inside it. The mesh points are counted in the x-direction, starting
along the intersection of the first y- and the first z-plane numbered by

integers I, J and K. The numerical relation is
Q = 1 + I+l +(J+1)xPI + (K+1)xPIxPJ (37)

For output in Algol or Fortran we choose separate arrays for each vector
component in which the values are packed with increasing number Q. All the
arrays are then of the same size equal to PI x PJ x PK and are functions only

of one index Q.

This way of mapping the 3-dimensional mesh on to l-dimensional arrays
implies that two mesh points which are adjacent in the y-direction correspond
to array elements PI storage locations apart, and that if the points are
adjacent in the z-direction the corresponding elements will be PI x PJ loca-
tions apart. The single mesh index changes by DELTA3=PI x PJ if the shift is in
the z-direction. It is the vector displacement operators EP and EM that cause,
on a single application, a shift by one mesh point in the direction determined by
the current value of Cl. The number of shifts in the %, y and z directions is
denoted in the program by the global integers Kl, K2 and K3 from which, knowing

PI and PJ, the corresponding change in Q can be calculated.

It is sometimes desirable to interleave the variable arrays so that the
variable values at one mesh point Q are stored sequentially in the memory,

e.g. in the order

RHO,V1,V2,V3,B1,B2,B3, TEM (38)

- 16 -

followed by the same sequence for the next mesh point (Q+l) and so on.
Adjacent values of the same variable are then(say) 32 bytes apart. This
enables physical data planes to be transferred readily to and from the backing
store as a single block, and can be done either in Assembler code or, in
Fortran, by the use of EQUIVALENCE statements. In all cases the SA/II program

can readily be adapted to calculate the correct word or byte position in the

store.

A similar situation exists when the core store is too small to hold the

complete set of physical data. The largest size of mesh on which TRINITY has been
run has 60x80x48 points and requires two IBM 2301l drums to accommodate the 7 Mbytes
of data. All the calculation then takes place within 3 sectors of a rotating
quadruple buffer, the fourth sector being used to transfer data to and from

the core store in parallel with the calculation. The SHIFT procedure has been

adapted so that it always refers to the correct areas of buffer storage.

= 1l =

5. ORTHOGONAL CURVILINEAR COORDINATES

Symbolic vector algebra and analysis on a Cartesian lattice in SA/I
have been described elsewhere [1] and few changes are required for SA/II.
It may however be of interest to demonstrate how the method has been extended
to generalized orthogonal curvilinear coordinates, with spherical polar

coordinates as a special case.

The generalized definitians for divergence and curl can conveniently

be written as

1 ' O + -
div A = 2‘ (h;h.A.) (39)
h1h2h3 by n (N O
1 1
a. d(HWAD) amah)
_ <i il i1
Curl A = E: i gy - = (40)
T Byl Sq; 9

where (El’ 2y, a3) are unit vectors, h = (hl, h,, h3) are scale factors,

and +, - denote positive and negative cyclic rotation respectively.

These are translated into SA/II as

real procedure DIV(A); real A; DIV:= MULT(DOT (DEL(MULT(A,HPHM)),R2DQ),RH1H2H3) ;
(41)

real procedure CURL(A); real A;
CURL:= MULT(DIFF (RP(MULT (DEL(RP(MULT(A,H,))),R2DQ)),
RM(MULT (DEL (RM(MULT (A, H))) ,R2DQ))) ,RHPHM) ;

42
where 42)
real procedure DEL(X); real X; DEL:= DIFF(EP(X),EP(X)); (43)
This leaves to be defined the real procedures
H = (hy, hy, hj) (vector function)
RHIH2H3 - 1/(hjy, hg, h3) (scalar function)
RHPHM ~ 1/(htT h™) (vector function)
R2DQ - 1/(2.DQ) (vector) (44)

= LB =

The mnemonic 'R' means reciprocal and signifies that division is avoided
in the interests of efficiency, and for similar reasons h1h2h3 and

H+h_ are defined separately instead of being constructed from h.

When using the leapfrog scheme [1] we find it useful to store the scale
factors and quantities that are constructed from them on a subsidiary mesh
centered on the point Q, which may either contain 7 points if only one displace-
ment + Aqi occurs at a time (Fig. 4) or 27 if they occur together. Then for

example RHPHM becomes a real procedure which generates the code
rREPHML[1], RHPHM2[1], RHPHM3LI] (45)
with I in the range (-3,3) as in Table IV.

The generated target module is therefore still independent of the
coordinate system although it does depend on the symmetry. To run the target
program we must reload the variables on the subsidiary mesh whenever they alter.

In spherical polars the scale factors are

h =1, h =r, h = rSinf (46)
r 8 ¢

so that we can minimize the amount of recalculation by assigning the variables
in order of q; = ©®, 9y = 8, qy = T with the innermost scan over q;» although

this is not necessarily the best choice on other grounds.

Some further improvements can be made if the coordinate system is specified
at generation time; for example h_ might be automatically suppressed since
r

it is known to be unity.

- 19 =

6. THE PROBLEM PROGRAM AND THE GENERATOR PROGRAM

By no means all of the problem program need be constructed automatically.
For a typical computational physics program involving the solution of sets of
coupled partial differential equations it is only necessary that those sections

which have a high execution count should be coded in the most efficient form.

Execution counts vary widely, e.g. with a 60x60x60 leapfrog mesh run for
500 timesteps the coding for an internal point of the mesh will be executed
5 x 10 times while some of the initialization statements will be executed

only once.

One therefore starts by developing a strategy for the problem which
takes into account its modular structure, the layout of core and backing
storage, the communication between program modules, the choice of language
and programming style for each module and so on. Those parts of the program
whose execution count is low should be optimized according to considerations
other than those of CPU efficiency; for example they should be made intelligible

Oor easy to write and to debug.

In the final production program some of the modules may be in SA/I, some
in conventional Algol 60, some in Assembler code which has been automatically
generated from SA/II, and others in hand-coded Assembler code, Fortran or any

other appropriate choice,

So far as possible the production code is to be developed from a more
symbolic prototype code by the simple process of successively 'unplugging'
some of the modules and replacing them by faster but eaquivalent versions,
and this must be taken into account in designing the structure and the link-
ages. Portability should also be planned right from the start, so that low-
level modules designed for one computer system can be rapidly replaced by

those written for another.

The Generator Program

An Assembler code replacement for an SA/I module of the prototype program
is constructed by incorporating the corresponding SA/II module into the generator
program which is then run (Fig. 5). We visualize a series of related physical
problems, run either on one computer at a single laboratory or on a range of
different computers at several laboratories. If the generabor program has been
constructed properly only a small part of the work has to be repeated for each
new situation. This saves time and makes it easier for one person to under-

stand a range of programs, since they share a family resemblance like members

- 20 -

of related biological species.

The generator program ought to be highly modular since there are a num-
ber of requirements which may well need to be changed independently. Examples
are:

a. Computer System on which the code is generated.

i. Algol character representation
ii. System output procedures
b. Computer System for which the code is generated.
i. Character representation.
ii. Language.
iii., System facilities,

. Number of dimensions and coordinate system.

a0

Mesh and storage layout,

Symbols used for variables and constants.

]

Numerical methods and difference schemes.

Hh

g. Physical equations.
h. Boundary conditions.

i. Physical coefficients (e.g. thermal conductivity).

Fig. 6 shows the relation between the modules which have been developed
so far while Table V provides a list. In &7 we shall go through this list
briefly, indicating what the various modules do. A detailed description -

together with a program listing and test runs will be published elsewhere (51,

Relation to Compilers and Macro-Generators

In mathematics or theoretical physics it is always possible for an
author to devise a new notation or extension to the accepted 'language'and
having defined it for the reader, to use it throughout a paper or a course
of research. This flexibility has been largely unavailable in computing
science, where it has been customary to use rather standardized and limited
languages such as Fortran, Algol or PL/I which are constructed either by
manufacturers or by international committees, and translated by compilers
which are expensive and time-consuming to write and to maintain. The only
degree of freedom left to the individual has been the ability to define sets
of library subroutines or procedures which in effect become additions to the
standard notation. There is no limit on the extensions which can be achieved
in this way but programs tend to run slowly if they make considerable use of

procedure calls, as in SA/I.

- 21 -

Macro-processors such as STAGE2 [4] enable any string of symbols to be
given a meaning. The user is free to define sets of macros which convert
any string into any other string and eventually, into the code of some high
or low-level language whose efficiency depends solely on his own ingenuity.
Thus the full flexibility of mathematics is achieved provided that the

character set is wide enough.

SA/II appears to lie somewhere in between. The formal structure of the
input string is constrained by the syntax of Algol so that there is usually
an excessive number of brackets as in Table III, but the manipulations that
can be carried out are quite general and it is remarkably easy for the
individual user to make alterations or additions to the 'language' by changing
the basic procedures of the generator program. An SA/II generator program is also
quite short; usually only a few hundred Algol statements. Thus we have effec-
tively at our disposal an ultra high-level 'language' compiler which is
difference scheme and problem dependent, but is also easily changed by any

user.

% 39 =

7. STRUCTURE OF THE GENERATOR PROGRAM

The current version divides logically into 6 main modules and 15 submodules

as shown in Table VI.

I. BASIC OUTPUT. In transferring the generator program to a new computer

system the first task is to rewrite this module, which forms a link to the
standard Algol output procedures of the computer on which the generator

is being run. (This need not of course be the same as the computer for which
the optimized code is being produced). The ICL KDF9 version occupies about

25 cards and it can usually be rewritten for another system in a few hours. The
module defines the output channel and sets up standard formats, and contains
procedures which enable the output to be manipulated in a straight-forward

system-independent way; e.g.

BLANKS (N) Qutput N blank spaces
LINE Start a new line

OUTNUM(L,F,X) Output the value of an arithmetic
expression X in format F, length L

TEXT(L,S) Qutput a string S of length L*.
The complete set is enough to generate code and comments in any language.

II. CHARACTERS. This also contains no submodules. It is made up of a dozen

or so simple statement procedures which enable one to refer to symbols like
(, + ; = etc. by symbolic names : OPENB, COMMA, PLUS, SEMICOLON, EQUALS.
Although this somewhat slows down code generation it makes the program much
easier to read and quicker to write, particularly in view of the awkward way

in which string quotes are often represented in Algol. Examples are:

procedure EQUALS; TEXT(1,'=");
procedure CLOSEB; TEXT(1,')");
procedure OPENSB; TEXT(1,'[")
procedure MINUS; TEXT(L,'-"'); 47

The first argument gives the length of the string, in this case 1.

* The simpler procedure PRINT discussed in §2 did not contain the parameter
L, which helps the output procedures to organize the layout of the line.

-8

IIT. MATHEMATICS A. The first mathematics module comprises the submodules

ARITHMETIC
ALGEBRA

The former of these contains a set of procedures

SUM(X,Y) MULT21(X,Y)
DIFF(X,Y) QUOT(X,Y)
MULT (X,Y) SUM3(X,Y,Z)

which are all dealt with by a single fairly complex procedure TRIPOP (triple

operator) to be explained elsewhere [5], e.g.

real procedure SUM3(X,Y,Z); real X,Y,Z; SUM3:= TRIPOP(5,X,Y,Z,1,1); (48)

The first argument of TRIPOP is an operation code, the second to fourth are

the operands, and the last two specify the first or second indexes (in the case
of a second-rank tensor). Procedure SUM3 is convenient when handling 3D
scalar products and divergences while MULT21 is used for handling tensor

contractions. The others deal with the arithmetic operations +, -, x, /.

The ALGEBRA submodule contains the rotation operators RP and RM and the

vector-algebraic operators DUT and CROSS.

IV. MATHEMATICS B. In the simplest version the second mathematics module

contains the two submodules

1. CARTESIAN ANALYSIS LEAPFROG
2. SPACE AND TIME SCALES

As its name implies, the first of these submodules depends on the mesh geo-
metry and on the difference schemes used (although not on the physical
problem or on the computer system). The procedures EP, EM, DEL, GRAD, DIV,
CURL, SAV, DELSQ are fairly direct translations of the SA/I versions already
published [1]. The other submodule deals with the constants At, 2AS and

(/_\.S)2 and can be also readily extended.

V. OUTPUT ORGANIZATION. This module depends on the output language. It

may contain up to 6 submodules of which number 5 is omitted in the Algol

target version:

(V.1) TRANSLATION LOGIC. Contains most of the logic needed to generate the

output code and to eliminate expressions which are identically zero, as well
as unnecessary brackets. It therefore deserves a more detailed description

which is given in ref. 5.

- 24 -

7. STRUCTURE OF THE GENERATOR PROGRAM

The current version divides logically into 6 main modules and 15 submodules

as shown in Table VI.

I. BASIC OUTPUT. 1In transferring the generator program to a new computer

system the first task is to rewrite this module, which forms a link to the
standard Algol output procedures of the computer on which the generator

is being run. (This need not of course be the same as the computer for which
the optimized code is being produced). The ICL KDF9 version occupies about

25 cards and it can usually be rewritten for another system in a few hours. The
module defines the output channel and sets up standard formats, and contains
procedures which enable the output to be manipulated in a straight-forward

system-independent way; e.g.

BLANKS (N) OQutput N blank spaces
LINE Start a new line

OUTNUM(L,F,X) Output the value of an arithmetic
expression X in format F, length L

TEXT (L,S) Qutput a string S of length L*.
The complete set is enough to generate code and comments in any language.

II. CHARACTERS. This also contains no submodules. It is made up of a dozen

or so simple statement procedures which enable one to refer to symbols like
(, + ; = etc. by symbolic names : OPENB, COMMA, PLUS, SEMICOLON, EQUALS.

Although this somewhat slows down code generation it makes the program much
easier to read and quicker to write, particularly in view of the awkward way

in which string quotes are often represented in Algol. Examples are:

procedure EQUALS; TEXT(1,'=");
procedure CLOSEB; TEXT(1,')');
procedure OPENSB; TEXT(1,'[")
procedure MINUS; TERT(L, *=']3 (47)

The first argument gives the length of the string, in this case 1.

* The simpler procedure PRINT discussed in §2 did not contain the parameter
L, which helps the output procedures to organize the layout of the line.

-~ 923 -

IIT. MATHEMATICS A. The first mathematics module comprises the submodules

ARITHMETIC
ALGEBRA

The former of these contains a set of procedures

SUM(X,Y) MULT21(X,Y)
DIFF(X,Y) QUOT(X,Y)
MULT(X,Y) SUM3(X,Y,Z)

which are all dealt with by a single fairly complex procedure TRIPOP (triple

operator) to be explained elsewhere [5], e.g.

real procedure SUM3(X,Y,Z); real X,Y,Z; SUM3:= TRIPOP(5,X,Y,z,1,1); (48)

The first argument of TRIPOP is an operation code, the second to fourth are

the operands, and the last two specify the first or second indexes (in the case
of a second-rank tensor). Procedure SUM3 is convenient when handling 3D

scalar products and divergences while MULT21 is used for handling tensor

contractions. The others deal with the arithmetic operations +, -, x, /.

The ALGEBRA submodule contains the rotation operators RP and RM and the

vector-algebraic operators DOT and CROSS.

IV. MATHEMATICS B. In the simplest version the second mathematics module

contains the two submodules

1. CARTESIAN ANALYSIS LEAPFROG
2, SPACE AND TIME SCALES

As its name implies, the first of these submodules depends on the mesh geo-
metry and on the difference schemes used (although not on the physical
problem or on the computer system). The procedures EP, EM, DEL, GRAD, DIV,
CURL, SAV, DELSQ are fairly direct translations of the SA/I versions already
published [1]. The other submodule deals with the constants At, 2AS and

(AS)2 and can be also readily extended.

V. OUTPUT ORGANIZATION. This module depends on the output language. It

may contain up to 6 submodules of which number 5 is omitted in the Algol

target version:

(V.1) TRANSLATION LOGIC. Contains most of the logic needed to generate the

output code and to eliminate expressions which are identically zero, as well
as unnecessary brackets. It therefore deserves a more detailed description

which is given in ref. 5.

- 24 -

(V.2). SIGNS, SPACES, NUMBERS AND FUNCTIONS. A number of standard utilities

are provided here, some of which depend on the output language or format.
For example a line overflow in Fortran requires that a continuation symhol
should be punched in column 6; overflow in assembly language is handled
in a different way while at the end of an Algol statement a semi-colon is
required. Signs, integer and real numbers and elementary mathematical
functions are also provided for. The most important procedure is EQUATE

which has been discussed in §3.

(V.3). VARTABLE CLASSES. Contains procedures which deal with constants, scalars,

vectors and tensors of which (32) is an example.

(V.4). COMPONENTS AND DERIVATIVES. Contains the procedures COMPONENT and

SHIFT which generate the code for referencing storage locations, including any

subsidiary calculations that are needed.

(V.5). COMMANDS AND REGISTER CHECKS. (IBM 360 Assembler code only). Contains

procedures REGISTER REGISTER, REGISTER STORAGE which issue IBM 360 instruction
mnemonics, and STORE IF OVERFLOW which determines whether or not the required
register is already in use, if so copying it into a reserved location in core

store.

(V.6). INITIALIZATION. Contains a procedure START which initializes the

variable of the generator program.

VI. PROBLEM DEFINITION. This module is provided by the user and consists of three

submodules which have been kept as simple and as close to the physics as

possible:

1. PHYSICAL CONSTANTS AND VARIABLES
2. CONTROL STATEMENTS
3, SOURCE STATEMENTS

Table III gives the source statements for TRINITY while (31) is an example of

a variable declaration. Typical initialization statements are
NDIM:= 3i PI}= RBI:= PEi= 8 (49)

(use an 8 x 8 x 8 mesh in 3 dimensions).

- 25 -

8. CONCLUDING REMARKS

A satisfactory solution to the slowness of programs written in Symbolic
Algol I has been found. Using a style known as Symbolic Algol II it has been
possible to translate finite difference equations automatically into fully
explicit codes in a number of target languages. The best of these codes are
fully competitive in speed with hand-optimized Fortran and are fast enough
to make the solution of time-dependent magnetohydrodynamic equations in
three space dimensions a feasible proposition. 1In a recent exercise, a 3D
plasma code in rotating spherical coordinates was designed and written in
about four days using the SA/II method. The same translator program can be
used for other systems of fluid equations and also for problems in two dimen-
sions. Although the advantages of the method are smaller when applied to simpler
problems, repetition of effort can still be avoided. More importantly, the
use of well-tested procedures reduces programming errors, in particular those
of a numerical nature which are often impossible to detect except experimentally
through a comparison with another calculation. Though at first sight trivial

this may prove to be one of the important attractions of the method.

The underlying principle is that instead of writing a problem program
by hand, one constructs a generator problem which writes it automatically.
Because this generator program is built up from prefabricated modules and is

also highly symbolic it can be developed and altered very quickly,

In essence we are using Algol as a powerful macro-generator which is capable
of substituting one expression into another as well as performing many sub-
sidiary calculations. Because a value is associated with each substitution,
extra information can be carried along which allows some optimization to be
done. A further extension might be to relate this value to a generalized

variable type (e.g. logical, integer, real, complex, quaternion, matrix or

whatever), so that any necessary conversions can be carried out and the basic
operators SUM, DIFF, MULT etc. can be interpreted in the appropriate way in
each case. This is close to the procedure which is followed in mathematics
which. allows operators such as +, -, x to be freely generalized to new classes
of object. Other interesting possibilities are to apply the SA/II technique

to other kinds of program such as operating systems and compilers, and to other

types of computer such as the CDC STAR.

The features of Algol 60 that appear to be necessary or useful for this

kind of work are:

- 26 -

Call by name. Needed for the symbolic substitution of one

expression into another.

Parameterless typed procedures. Just as in mathematics, a

function need have no explicitly-indicated arguments.
(Fortran does not allow this).

English-language identifiers of any length, with blanks ignored.

Can be used to make programs more intelligible and to
avoid bulky comments.

Elimination of the unnecessary word 'CALL'.

Ability to have several statements on one line. Both d. and e.

make programs more concise and attractive.

No overhead on procedure declarations. Often these declara-

tions are only one card long, and one line in the compiler
listing, instead of several pages as in Fortran.

Block structure for variable scopes. Global variables can

be passed into a procedure implicitly without the need for
a bulky COMMON deck or argument lists.

Recursion. Typed procedures can be substituted into one
another without restriction as required by the mathematical
physics.

Side effects. Available also in other languages, but men-

tioned here as being crucial to the whole method.

= BF =

9. ACKNOWLEGEMENTS

The early planning of SA/II was carried out in collaboration with
Dr J P Boris. We should like to thank Dr F Hertwetck and his colleagues at
the Institut flir Plasmaphysik, Garching, Federal Republic of Germany, for
making available to us the excellent facilities of the IBM 360/91 Computing
Centre at the Institute. We should also like to thank Mr R S Peckover for
many discussions on Symbolic Algol, and Dr N K Winsor for providing an

improved compiler,

w O s

REFERENCES

K.V. ROBERTS AND J.P, BORIS, 'The Solution of Partial Differential
Equations using a Symbolic Style of Algol', Journ. Comp. Phys.,
in the press.

K.V. ROBERTS AND R.S. PECKOVER, Symbolic Programming for Plasma
Physicists, paper presented at the 4th Conference on Numerical
Simulation of Plasmas, U.S. Naval Research Laboratory, Washington D.C.,
November 1970, to be published. Culham preprint CLM-P 257.

G. KUO-PETRAVIC, M. PETRAVIC AND K.V. ROBERTS,'The Translation of
Symbolic Algol I to Symbolic Algol II by the STAGE 2 Macro-Processor',
to be published.

W.M, WAITE, "The Mobile Programming System STAGE 2', Comm. ACM 13
415 (1970).

M. PETRAVIC, G. KUO-PETRAVIC AND K.V. ROBERTS, 'Automatic Optimizaticn
of Symbolic Algol Programs, II Code Generation', to be published.

M, PETRAVIC, G. KUO-PETRAVIC AND K.V, ROBERTS, 'The Symbolic Algol II

Generator Program', to be submitted for publication in Zomputer Physics
Communications.

- 29 -

Table I

3D MHD Equations used in the TRINITY Code

Continuity equation

Momentum equation

Magnetic equation

Temperature equation

Pressure

Current

]

2
D T v
S By)+ Wy

e(y x B) + VB

SV.(Tv) + 2 - Y) T Yy + APT

F =D N e+ (o - D@ v

1

& - BB
pTrSij + pvivj + 5 6ij Bi ;

"
|

+ @]

Table IT

3D MHD Equations Programmed in Symbolic Algol I

procedure INVOKE DIFFERENCE EQUATIONS;
CONTINUITY EQUATION: DT: = 2 x DELTA T; Cl:= C2: = 1;
Q: =1+ I+l + (J+1) x PI + (K+1) x PI x PJ;
NEW RHO: = RHO - DT x DIV(RHO x V);

MOMENTUM EQUATION: DT: = 2 x DELTA T/(l + NU/EPS);
for C1: = 1,2,3 do
av[c1l,Ql: = (RHO x V + DT x (-DIV2(P) + NU x DELSQ(RHOx V)))/NEW RHO;
ARHO[Q]: = NEW RHO;
MAGNETIC EQUATION: DT: = 2 x DELTA T/(1 + ETA/EPS);
for c1: =1,2,3 do
AB[C1,Q]: = B + DT x (CURL(CROSS(V,B)) + ETA x DELSQ(E));
TEMPERATURE EQUATION: DT: = 2 x DELTA T/(1l + KAPPA/EPS); Cl: = 1;
ATEM[Q]: = TEM + DT x (-DIV(TEM x V) + KAPPA x DELSQ(TEM)
+ (2 - GAMMA) x SAV(TEM) x DIV(V) + (GAMMA - 1) x (ETA x
SQM(CURL(B))/SAV(RHO) + NU x (SQM(CURL(V)) + DIV(V) * 2)));

end;

real procedure P;

P: = if C1 = C2 then (RHOX(TEM+V x V) + 0.5xDOT(B,B) - BxB) else (RHOXVxV2-BxB2);

Note The differences in the treatment of p and j between Tables I, II
and III are not essential.

Table III

3D MHD Equations Programmed in Symbolic Algol II

CONTINUITY EQUATION:
EQUATE (NEWRHO, DIFF (RHO,MULT (DT (1) ,DIV(MULT(RHO,V)))));
MOMENTUM EQUATION:

for Cl:=1,2,3 do
EQUATE (V,QUOT (SUM(MULT (RHO,V) ,MULT (DT (2) ,DIFF (SUM(DIV
(DIFF (TEN(B,B),MULT (RHO(TEN(V,V)))) ,MULT (NU, DELSQ (MULT (RHO,V)))),
GRAD (SUM(MULT (RHO, TEM) ,MULT (RNUM(0.5) ,DOT(B,B))))))), NEWRHO));
MAGNETIC EQUATION:

for Cl:=1,2,3 do
EQUATE (B, SUM(B,MULT(DT(3) ,SUM(CURL(CROSS (V,B)) ,MULT (ETA,DELSQ(B))))));
TEMPERATURE EQUATION:
EQUATE (TEM, SUM(TEM,MULT (DT (4) , SUM(DIFF (SUM(MULT (MULT (D IFF
(RNUM(2.0) ,GAMMA) , SAV(TEM)) ,DIV(V)) ,MULT (KAPPA ,DELSQ(TEM))) ,DIV (MULT
(TEM, V))), SUM(QUOT (MULT (DIFF (GAMMA,RNUM(1.0)) ,MULT (ETA, SQUARE
(CURL(B)))),SAV(RHO)) ,MULT (DIFF (GAMMA ,RNUM(1.0)) ,MULT (NU, SUM
(SQUARE (CURL(V)) ,EXP(DIV(V),INUM(2))))))))));

Note Equations (1.5) and (1.6) have been incorporated into the main
equations although they can be defined separately. The 4 calls [1]
of the procedure DT take intc account the Dufort-Frankel factors

Table IV

Maxwell's Equations in 3D Orthogonal Curvilinear Coordinates generated

in IBM360 Algol

" COMMENT ¥ —= == === — == = e e e ;

HFILD1(/Q/).=HFILD1(/Q/)-DCT7*((EFILD3(/Q+ 14/)*H3(/+2/)-EFILD3(/Q- 1
4/)*H3(/-2/))*R2DQ2-(EFILD2(/Q+ 140/)*H2(/+3/)-EFILD2(/Q- 140/)%
H2(/-3/))*R2DQ3)*RHPHML;

D CBHBREIIITIEN i i .

HFILD2(/Q/).=HFILD2(/Q/)-DCT7*((EFILD1(/Q+ 140/)*H1(/+3/)-EFILDL(/Q- 14
Q/)*H1(/-3/))*R2DQ3-(EFILD3(/Q+ 1/)*H3(/+1/)-EFILD3(/Q- 1/)*
H2(/-1/))*R2DQL)*RHPHM?2;

k BIIIDE it s S S S e i B A :

HFILD3(/Q/).=HFILD3(/Q/)-DCT7*((EFILD2(/Q+ 1/)*H2(/+1/)-EFILD2(/Q-
1/)*H2(/-1/))*R2DQ1-(EFILDL(/Q+ 14/)*H1(/+2/)-EFILD1(/Q- 14/)*
H1(/-2/))*R2DQ2)*RHPHM3;

1 AT L oot i s i i et i 6 ;

EFILD1(/Q/).=EFILD1(/Q/)+DCT8*((HFILD3(/Q+ 14/)*H3(/+2/)-HFILD3(/Q- 1
4/)*H3(/-2/))*R2DQ2-(HFILD2(/Q+ 140/)*H2(/+3/)-HFILD2(/Q- 140/)*
H2(/-3/))*R2DQ3)*RHPHML :

Y TR i i s e e ;

EFILD2(/Q/).=EFILD2(/Q/)+DCT8*((HFILD1(/Q+ 140/)*H1(/+3/)-HFILD1(/Q- 14
Q/)*HL1(/-3/))*R2DQ3-(HFILD3(/Q+ 1/)*H3(/+1/)-HFILD3(/Q- 1/)*
H3(/-1/))*R2DQL)*RHPHM2 ;

' COMMENT " === = m s m i :

EFILD3(/Q/).=EFILD3(/Q/)+DCT8+*((HFILD2(/Q+ 1/)*H2(/+1/)-HFILD2(/Q-
1/)*H2(/-1/))*R2DQ1L-(HFILD1(/Q+ 14/)*H1(/+2/)-HFILD1(/Q- 14/)*
H1(/-2/))*R2DQ2)*RHPHM3;

Table V

IBM 360 Assembly Code generated for the

second component of the magnetic equation

The code is efficient,

Out of the 48 instructions, 4 are concerned with stack overflow.
comments are also generated automatically.

Operation

code

LE
LE
LE
ME
LE
ME
SER
LE
ME
SER
LE
ME
AER
ME
LE
ME
STE
LE
ME
SER
LE
ME
SER
LE
ME
AER
ME
SER
LE
LE
AE
AE
AE
AE
AE
STE
LE
ME
SER
MER
ME
AER
LE
MER
LE
AER
STE

Location

0,0308(,DISPQ)

2 ,CONSTANT+008
4,0296 (PLUSDZ,DISPQ)
4,0312(PLUSDZ,DISPQ)
6,0300(PLUSDZ,DISPQ)
6,0308 (PLUSDZ,DISPQ)
4,6

6,0296 (MINSDZ,DISPQ)
6,0312 (MINSDZ,DISPQ)
4,6

6,0300(MINSDZ ,DISPQ)
6,0308 (MINSDZ,DISPQ)
4,6

4 ,CONSTANT+016
6,0324(,DISPQ)
6,0340(,DISEQ)

0, STORAGE+000
0,0328

0, 0336(,DISPQ)

Ch

,

0,0260(,DISEQ)
o, 0276(,DISPQ)
,
0264(,DISPQ)
0272(,DISPQ)

0

CONSTANT+016

6

CONSTANT+004
0,0564(,DISPQ)
0,0052(,DISPQ)
0,0308(PLUSDZ,DISPQ)
0,0308 (MINSDZ,DISPQ)
0,0340(,DISPQ)
0,0276(,DISPQ)

2, STORAGE+004
2,=E'+6,0000'+00"
2,0308(,DISPQ)

2

ONSTANT+020
TORAGEA-004

0,
6,0
6
A
2
2
0, STORAGE4000
0

0]

1

415
,6
5
o4
25
.
510

308(,DISPQ)

Variable Level
00

B2+0+0 01l
DT 02
V2+0+0 03
B3+0+0 03
V3+0+0 04
B2+0+0 04
03

V2+0+0 04
B3+0+0 04
03

V34+0+0 04
B2+0+0 04
03

RECDS2 03
V1+14+0 04
B2+1+0 04
05

V2+1+0 05
B1+1+0 05
04

V1-1+0 05
B2-1+0 05
04

V2-1+0 05
Bl-14+0 05
04

RECDS2 04
03

ETA 04
B240+1 05
B2+0-1 05
B2+0+0 05
B2+0+0 05
B2+1+0 05
B2-1+0 05
06

06

B24+0+0 06
05

04

REDSSQ 04
03

02

02

01

0l

B2+0+0 0l

001
002
003
004
005
006
007
008
009
o010
ol11
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048

with no extra address-manipulation instructions.

Note that

I1.
LLL,

IV,

VI.

Table VI

List of Generator Program Modules and Subrniodules

BASIC OUTPUT
CHARACTERS

MATHEMATICS A

III,1 ARITHMETIC

ITII.2 ALGEBRA

MATHEMATICS B

IV.1 VECTOR ANALYSIS

IV.2 SPACE AND TIME SCALES

OUTPUT ORGANIZATION

V.1 TRANSLATION LOGIC

V.2 SIGNS, SPACES, NUMBERS AND FUNCTIONS
V.3 VARIABLE CLASSES

V.4 COMPONENTS AND DERIVATIVES

V.5 COMMANDS AND REGISTER CHECKS

V.6 INITIALIZATION

PROBLEM DEFINITION

VI.1l PHYSICAL CONSTANTS AND VARIABLES
VI.2 CONTROL STATEMENTS

VI.3 SOURCE STATEMENTS

R
RP J RM

RM

>0

RP

Figure 1
Positive and Negative Rotation Operators

RM

The operators RP, Rl rotate vector components cyclically

in the positive and negative directions respectively, and

3

satisfy the symbolic relations RJ =R =RR=R R+ =1,

- = 4

2
from which R, = R_etc. (Here R, = RP, R_ = RM)

I.

SUM

X PLUS MULT

PRINT PRINT

-4
+ -—-

R

[}

I |
v v
Y' |*-

Figure 2
Generation of Code by the Expression SUM(X,MULT(Y,

AN

STAR

PRINT PRIINT

Z))

Z

P

==

INT

N a-——

CLM-P274

EQUATE

(xl/ \(y)

B SU{*
’/, *
B MULT

7S

Figure 3
Procedure Tree for the Magnetic Equation (27)

Each arithmetic operator indicated by * calls the TRIPOP
operator recursively to control the optimization process.
Branches broken off with // are similar to the full branch
shown on the diagram. Terminal symbols V, B, DT, R2DS
generate the code, while RP, BRM manipulate the global com-

ponent variable C1, and EP, EM manipulate the mesh location.

CLM-P274

Figure &4

Subsidiary Mesh used to store the Scale Factors

PHYSICAL
PROBLEM

SYIBE%EIEEWI_AL SOLUTION
EQUATIONS ALGORITHM
Express algorithm symbolically
<1 Plan program structure
Work out storage
/ PROTOTYPE PROGRAM
Modules in
appropriate Run
languages

SA/T MODULE

GENERATOR PROGRAM /
Utility modules /

a—

Compare
SA/11 MODULE}'| P
PRODUCTION PROGRAM
Modules in
appropriate
Run to generate Run
Dptimizgd } languages
module OPTIMIZED
A/C MODULE

Figure 5
Programming Strategy

The method of solution is first tried out by writirg a
prototype program which is used to produce sets of test
results. Modules of the prototype are next reconstructed
either by hand or with the SA/II generaltor program to make
them more efficient. Test results from the production pro-
gram are then comparecd with those from the original tests

to make sure that the updating has been carried out correctly.

CLM-P274

VI-2
CONTROL
STATEMENTS

VECTOR
ANALYSIS

; Iv-2
fir2 SPACE AND
ALGEBRA TIME
SCALES

V-3
VARIABLE
CLASSES

-1
ARITHMETIC

vl
TRANSLATION
LOGIC

I
CHARACTERS

Figure 6

Relation between the modules of the gencrator program

An arrow indicates that one module makes use of procedures
belonging to the other. WNote that all output is chaunclled
through asingle short wodule BASIC OUTPUT so that only this
module has te be changed to run the program on anotihes com-
puLer.

CLM-P274

