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As a result of recent experimental studies1 made on
Tokamak T3-A it is of great interest to take the theoretical
study of magnetohydrodynamic equilibria (and stability) in
Tokamaks as far towards the reactor regime as possible.
Analyses of magnetohydrodynamic equilibria in Tokamaks have
usually been made in terms of the inverse aspect ratio

3,

E(—-QVR ), where € « 1. Most studiesz’ have been
o

concerned with arbitrary pressure distributions, where

Bg ~ 1> Bs being the ratio of plasma pressure to magnetic
pressure due to the poloidal field. In the work of
Shafranovz, and Ware and Haas4, it is shown that to 0(g?)
the flux-surfaces are circles with the centres of their
cross-sections displaced inwards by a variable distance A
from the magnetic axis, and where A ~ €. Very recently,
using the same ordering and studying a model in which a
sharp~boundary separates plasma and vacuum, Greene et al3
have carried their calculation to 0(e®) and shown that

the flux-surfaces are elliptically distorted as well as

non-concentric.

Considering specific pressure and current distributions
a number of workersS’ . have studied models in which
By ~ g™t and A ~1. Thus Laval et a15 have studied a
diffuse plasma contained in a torus of elliptical cross-
section. Strauss7 has shown, again for a specific form of
pressure distribution, the plasma being contained in a
torus of rectangular cross-section, that equilibria with

5

arbitrary Bg are possible. In both™’ . these pieces

of work the pressure vanishes at the surrounding conducting



wall but the pressure gradient is finite. Thus in the
vicinity of the wall there will be a finite current flowing
- a feature undesirable in a reactor. Jukes and Haas

have described both diffuse and sharp-boundary models
for PBg 5 e!'. For the sharp-boundary case, however, their

model has a heavily distorted interface.

In the present note we show the existence of a very
simple sharp-boundary Tokamak equilibrium for which
Bg ~ el and A~ 1. In our model the pressure, which has
an essentially parabolic radial dependence, falls to zero
at a circular boundary. The note concludes by relating

the present work to that of Greene et a13.

We begin by considering the solution of the equations

and AV « B =0

within an axisymmetric toroidal surface. Asg is well-known8
the introduction of a stream function | leads to the

equation

v2y cos 0 . 9y + sin® « O
R, + r cosB ar r(R, +T cos®) a6
+ II° (V) + (Ry+ T cos6)%p” (¥) = 0, (1)
2 _ 1.2 L 2¥ .1 2%y
where v e = (r ar) + I‘z 'a—ei »

and where I and p, the current stream function and pressure

respectively, are arbitrary functions of . The coordinates



r, © are local polar coordinates based on the peint 0.

(see Figure 1). In our particular model we assume the plasma
to occupy a toroidal surface with circular cross-section

centre 0, the major and minor radii being R, and r,
respectively. External to the plasma it is assumed that

~there exists a vacuum magnetic field capable of maintaining

the required pressure balance at the surface., We choose

I and p to have the forms
b 3 a 2_ 2
I = . and p = IR_Zr ? (bg®- v7), (2)
the latter ensuring that the pressure vanishes at the plasma
boundary V = WB - The dimensionless quantities a and b

are free parameters. Equation (2) now becomes

v2y - € cosB . oV + € sinb - oy + [b2- (1 +er cosORali=0,

1+ €r cos® oOr r(1+ er cosB) 006
(3)

where r 1is now dimensionless and r = 1 represents the
plasma boundary. Taking € « 1 we further choose a and b
such that b? ~ a ~ 1 and that b® - a ~ €. Expanding V

in the form

V= Vg (r, 8) + Y (r, 8) +
we can solve equation (3) order-by-order. Choosing Vo to
be a constant then the leading order equation is trivially
satisfied. Setting VYo = yg it follows that the pressure

is given by

awo qjl (4)

B 5 = e



the pressure vanishing at r = 1 for {y; = 0, Since the

toroidal magnetic field B¢ is given by

I (V)

B¢ = R, (1+ er cosB)

it follows that f (the ratio of plasma pressure to pressure

due to the magnetic field) is given by

The first order equation to be solved is
VA + (b?-a)Yy, - 2eay, r cos® =0 ,

for which the appropriate solution is

Uy = - if (1-12) [a-b?+€a = cosB ] . (5)

By (4) the pressure has an essentially parabolic dependence

on T. The positions of the pressure maxima and minima,

and hence the magnstic axes are given by the equation

3vr? + 2ur - v = 0, (6)

where Vv = €a (a=-b®*)"! is taken to be positive and U =X 1.
Equations of this form have been obtained by Adam and
Mercier9 and Laval et al? but with v defined differently.
For v < 1 there is one (outward) magnetic axis corres-
ponding to a pressure maximum. For Vv > 1 there are two
magnetic axes, the second corresponding to an inward axis
with a pressure minimum, which for p = 0 at the boundary
means a point of negative pressure. Thus we are only con-

cerned with v < 1, for which the displacement A of the



magnatic axis is given by

S O 212
8 =353 {-1+ 01+ 3v2)3} (7)
and is a quantity of order one. Writing equation (5) in
the form
Q= -(1-1r2) (v-i+ r cos0) , (8)

then a typical plot of these surfaces is shown in Figure 2.

We now consider the vacuum region. The equation to be
solved comprises the first three terms of (3). Expanding
the stream-function as before and taking the zero-order

solution to be a constant, then to first-order

%v- =Alnr+ K (r-1"!') cos06, (9)

where A and K are constants to be determined. We now
show that this solution is of sufficient generality to
satisfy .the pressure balance condition at the boundary.
Since the boundary is a circular flux-surface on which the

pressure vanishes, this condition becomes
Va2 va

+ BG2 &= B¢ + By . (10)

Now the toroidal field in the vacuum region is given by

C

B,V =

0] Ry (1+ €r cosB) ’ (11)
where C is a constant. To leading-order equation (10)

gives B¢0 = B¢Z and hence C = byg/r, . This implies that

» which is, in fact, automatically

to first-order B¢1 = B¢¥



satisfied. To second-order
2 v 2 v
By 2 + 2By, Byp = By} t 2By B¢2"'. (12)

For p to vanish to second-order at the boundary, VY = 0,

and it follows that B¢2 = B¢Z » and hence the poloidal

field must be continuous at the interface. Since B6 is
given by

1 2y

Bg = B, T, (1+ €r cosB6) j3r

it follows that
A=Y (a-b%)Y, and K= Yseal,. (13)

Equation (9) can bz written in the form

Q=2v'iinr + (r-r"')cosH, (14)

for which a typical plot is shown in Figure 3, We observe
that the terms involving Inr and r-'cos® arise from the
currents in the plasma, whilst the r cos® term indicates
the presence of an external uniform veftical field, which

is given by

= Ty €a Yo

(15)
rORO

vert

For a given Vv equation (14) exhibits families of open and

closed surfaces with a separatrix given by

1
@) :2.1.)-1 2"1)/2.

c cosh™! (y71) - 2(v

We note that as v > 1, Q. > 0, the value of Q on the

boundary.



We have demonstrated the existence of a simple sharp-
boundary, B ~ & (or Bg ~ e'), A~ 1 equilibrium. We
now show that it is compatible with the recent work of
Greene et a1.3, in which they consider a sharp boundary,
B~ c€?, A~c¢ equilibrium. In the present note the
poloidal fluxes have bzen evaluated to Ofg). If we now
take B ~ g2 (i.e. v ~ €) then the fluxes will contain
terms up to O(e?). They will not; of course, be correct
to 0O(e?). We wish to show, however, that quantities
derived from these fluxes do agree with the appropriate
terms evaluated in the work of Greene et a1.3. Express-

ing the poloidal flux within the plasma as

@ = (1-1r2) (1 + vr cos 0) ,
and taking v ~ € (B ~ 82), it follows that the flux-
surfaces are circles displaced outwards by an amount VzV@
from the origin 0. Alternatively, denoting the displace-
ment inwards from the magnetic axis by A(r), we have

A(r) =0(1) + Yav(r2-1),

where A (1) is the distance of the magnetic axis from the
origin. The latter equation can be written as

A(r) = D(1) + Y2 A7 (1) (x?2-1). (16)

Expressing the poloidal field in the vacuum as

W - 2 1lnr + vir -r!)cos b,



and taking Vv ~ €, the flux-surfaces become circles dis-
placed inwards by an amount % ( exp (@V]- 1). The
displacement inwards from the magnetic axis is also given

by (16). Now equation (47) of Greene et al.3 is

- 2
Ale) = Ay + Yo (g2 42y 28 - 1\, £ r (17)
a (r a<) Ses 7 + 5 1n ( /a) ,
where r is the radius of a flux-surface, and r = a 1is

the boundary. For Ay ~ A; ~ 1, the last two terms are
negligible. Then taking Vv ~ €, r as defined in the
present note and r as defined by Greene et al.3, agree
to O(e). Thus setting a = 1 we find that equation (16)

agrees with the appropriate terms in (17).

As a further check we consider equation (42) of Greene

et al., that 1is

1 vy (1)2 2rp ' (r)
A" (r) = EDL: /.(f (r) -—“23—-)r dr, (18)
: Rr £ (r) B,
(o]
_ (1) - Bo1 .
where By = B¢0 and f = E__ Since we are concerned
$o

with p ~ € the first term in the integrand can be neglected.
Taking Vv ~ €, and using the flux obtained earlier in this
note to evaluate p and Bg, A'(r) within the plasma is

given by A°(r) = vr, from which equation (16) is obtained.
If we evaluate (18) for the vacuum region, we again recover

equation (16).

Finally, we consider the externally imposed vertical



field. From equation (80) of Greene et al.,

B af_ (1), RA®
—ext _ _ _ 2 . (1n (ﬂ{) -3 ¢ —a ), (19)
B, 2R a 2 a
B.(1) ,
where f;l) o (a) For A, ~ 1 only the last term
Bo
- need be considered. From equation (15),

vert _ 1 _S2Vo
Byo 4 TyRo Bgo

which can bes written as

Bvert _ A1) B@’(I).

B(,?SO 2 B¢o

Setting a = 1 in equation (19) and noting that the
difference in sign is due to Bg being taken in the
opposite direction by Greene et al., we see that the

results are in agreement,

The author is grateful to Dr J.L. Johnson for

numerous stimulating discussions.



(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

References

N.J. Peacock, D.C. Robinson, M.J. Forrest, P.D. Wilcox,
and V.V, Sannikov, Nature 224, 488 (1969).

V.D. Shafranov, Voprosy Teorii Plazmy, edited by
M.A. Leontovich (Atomizdat, Moscow, 1963), Vol. 2,p.92
[Reviews of Plasma Physics, edited by M.A. Leontovich

(Consultants Bureau, New York, 1966), Vol. 2, p.103].

J.M. Greene, J.L. Johnson and K.E. Weimer, Phys. Fluids
14, 671 (1970).

A.A. Ware and F.A. Haas, Phys. Fluids 9, 956 (195%).

G. Laval, E.K. Maschke, R, Pellat, M.N. Rosenbluth,
IC/70/35, (International Centre for Theoretical
Physics, Trieste) (1970).

J.D. Jukes and F.A, Haas, 4th Int. Conf. Plasma Phys.
and Controlled Nuclear Fusion Research, Madison (1971)
(to be published by I.A.E.A. ).

H.R. Strauss, Phys. Rev. Letters 26, 616 (1971).

E.W. Laing, S.J. Roberts and R.T.P. Whipple, J. Nucl.
Energy, Part C : Plasma Physics 1, 49 (1959).

J.C. Adams and C. Mercier, 3rd. Int. Conf. Plasma
Physics and Controlled Nuczlear Fusion Research,
(Proc. Conf. Novosibirsk, 1968) I, 199 (1969).



Y,

Fig.1 Coordinate systems
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Fig.2 Flux surfaces in the plasma for v =%
The magnetic axis P is displaced A=0.25 from the centre O of the plasma

Fig.3 Flux surfaces in the vacuum in the vicinity of the plasma for v =%
The Q-value for the separatrix (the broken curve) is Qg=0.65
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