

il
\AlT L g i L

CLM-P 281

COMPUTERS AND PHYSICS
by
K.V. Roberts
(Paper presented at the IAEA International Centre for

Theoretical Physics, Seminar Course on Computing as a
Language of Physics, August 1971)

ABSTRACT

This introductory lecture begins by discussing from a fairly

fundamental point of view what computers really do and why they should

be important to physiecs. For example, how significant has their

impact been in the quarter century which has elapsed since the
tronic digital computer was invented, and what may be expected
in the future? How can we ensure that they realize their true

tific potential and that massive programming effort is used to

elec-
of them
scien-

maximum

effect? Does Computational Physics have something to contribute to

Computer Science and Software Engineering? A brief look is then taken

at one particular field of computational physics, namely the numerical

solution of sets of coupled partial differential equations which des-

cribe the time evolution of classical systems.

U.K.A.E.A. Research Group,

Culham Laboratory,
Abingdon,
Berks.

August 1971

L INTRODUCTION

I shall begin this introductory lecture by discussing from a fairly
fundamental point of view what computers really do and why they should be
important to physics. How significant has their impact been in the quarter
century which has elapsed since the electronic digital computer was invented,
and what may be expected of them in the future? How can we ensure that they
realize their true scientific potential and that massive programming effort
is used to maximum effect? Does Computational Physics have something to
contribute to Computer Science and Software Engineering? I shall then take
a brief look at one particular field of computational physics, namely the
numerical solution of sets of coupled partial differential equations which
describe the time evolution of classical systems, in preparation for some of

the lectures which follow.

An excellent review of the subject is given in the recent book 'Computers
and their Role in the Physical Sciences', edited by Fernbach and Taub (1970)
This describes the origin of the electronic digital computer (in which com-
putational physics played a considerable part) and gives many references.
More specialized papers can be found in Journal of Computational Physics
(Academic Press), Computer Physics Communications (North-Holland) and the
annual review series Methods in Computational Physics (Academic Press). The
International Physics Program Library, operated by Queen's University, Belfast
in association with Computer Physics Communications, has recently been

established to publish the programs themselves in digital form.

Figure 1 indicates the main branches of computational physics, together
with certain fields which might more properly be regarded as part of computer
science (languages and translators) or software engineering (operating
systems). The relation between these fields and computational physics may
be compared to the relation between mathematics and theoretical physics, or

between engineering and experimental physics (Figure 2). Good languages and

good operating systems are vital to the proper growth of computational physics
and therefore physicists can be expected to play a part in their development

just as they have always done in many branches of mathematics and engineering.

Figure 3 represents the interplay between the three main ways of
approaching a physical problem; experimental, theoretical and computational.
Each has its characteristic methods of approach, its advantages and limita-

tions, some of which will now be mentioned.

Theoretical Physics

Theoretical physics makes considerable use of analogies, many of which
are geometrical in character; for example the calculus was originally based
on the idea of gradients and areas. Familiar concepts in three dimensions
are generalized to n or to an infinite number of dimensions. It relies
heavily on the use of symbolism, enabling many actual cases to be described

by a single algebraic formula. Theoretical physics is position-free, since

it can survey any portion of space-time with equal ease, for example the
inside of a neutron star at some distant epoch. And it is scale-free, rang-
ing at will from the scale of a quark to that of the whole universe, and
from 10-23 seconds to 1010 years. It is universal, in the sense that one
piece of theory, such as Coulomb's law or Laplace's equation, can be applied

to innumerable actual situations.

Theory makes extensive use of linearization. There is almost a motto,

"When in doubt, linearize'". Any linear process is relatively easy to solve
by analytic techniques, and weakly non-linear processes by perturbation theory.
Strongly non-linear processes are much more difficult. Symmetry and

conservation laws are related to one another and play an essential role, not

only in basic theory but also in the solution of practical problems, as by

the method of separation of variables. Complex function theory has a simi-

lar dual role; it appears to be fundamental to high-energy physics and to
the theory of ordinary differential equations and at the same time is of
great practical use in the solution of 2-dimensional problems because of its
relation to Laplace's equation. Many of the mathematical methods used in

theoretical physics have been summarized by Morse and Feshbach (1953).

Approximation techniques are essential. Sometimes this means separating

out a few of the many degrees of freedom of a large system, or distinguishing
between widely different time-scales as in the method of adiabatic invariants.
In other cases such as statistical mechanics the number of degrees of freedom

is treated as infinite since this makes the formulae much simpler.

These are some of the mathematical tools; practical tools include pencil
and paper, chalk and blackboard, books, journals and meetings. Theoretical
physics is cheap but it requires high IQ. Another important feature is that
theory is self-enhancing; by practising it one becomes a better theoretician.
This is not necessarily true of experimental physics (which requires the
organization of staff and finance, the building of apparatus and the manage-
ment of contracts), nor of computational physics (which involves struggling
with awkward and unreliable computing systems, much handling of cards and
paper, and a continual search for errors in the programs). A major task will
be to build this feature of 'self-enhancement' into computational physics by

improving the techniques.

Experimental Physics

Experimental Physics provides the ultimate test and source of informa-
tion for theory, just as theory provides the equations to be solved by
computation. With great ingenuity the scope of experiments and observations

has gradually extended both ways from human scale to the range 10713 em -

10 years in time. But

1010 light years in length, and 1023 secs - 10
experimental physics is neither position-free nor scale-free, and the cost
of an experiment depends very much on the scale of the phenomenon which is
under investigation. Where the expense is high it may be preferable to use
theory or computation, although experimental modelling is often also of

great use.

No experiment is exact and the potential sources of error must always

be éarefully examined.

Computational Physics

Computational Physics combines some of the features of both theory and

experiment. Like theoretical physics it is position-free and scale-free,

and it can survey phenomena in phase-space just as easily as real space. It
is symbolic in the sense that a program,like an algebraic formula, can handle
any number of actual calculations, but each individual calculation is more
nearly analogous to a single experiment or observation and provides only

numerical or graphical results.

To some extent it is possible to solve the equations on a computer with-
out understanding them just as one can carry out an exploratory experiment.
With more complicated phenomena involving a considerable range of length and
time scales it is however essential to make analytic approximations before

putting the problem on to the computer otherwise impossibly large amounts of

machine time or storage space may be needed. WNot more than about 106 degrees
of freedom can be handled on present-day computers, or lO3 if they all inter-
act with one another. Thus computational physics can fill in the range

between few-particle dynamics and statistical mechanics.

Diagnostic measurements are relatively easy compared to their counter-
parts in experiments. This enables one to obtain many-particle correlations,
for example, which can be checked against theory. On the other hand there
must be a constant search for 'computational errors' introduced by finite
mesh sizes, finite timesteps etc., and it is preferable to think of a large-

scale calculation as a numerical experiment, with the program as the apparatus,

and to employ all the methodology which has previously been established for

real experiments. (Notebooks, control experiments, error estimates and so on).

Computational physics is particularly suitable for non-linear,

non-symmetrical phenomena where the usual theoretical methods do not apply

(such as in weather calculations), but often the programs are easier to write
and the calculations go much faster in simple situations such as rectangular

Cartesian geometry with rigid perfectly conducting walls.

It is often possible to take situations that normally are only handled
algebraically and to display them in pictorial form. Thus computing can put
life into somewhat abstract subjects and might be of great help, for example,

in the teaching of complex variable theory.

Finally, there is great danger if computational physicists become too
preoccupied with mundane details of computing at the expense of the physics
itself, but the only solution here seems to be to get the details right once
for all, just as at onme stage it was necessary to introduce rigorous limit-

ing processes into mathematics.

Examgles

Sometimes one method of approach will be more appropriate and sometimes
another; frequently they will work in pairs and at times all three methods
must be used together. An example where computational techniques are
particularly appropriate is in the solution of equations which describe the
internal structure and evolution of stars (Ibem, 1970). The equations are
complicated and non-linear but they are well-defined, and provided that
spherical symmetry can be assumed they are well within the range that com-
puters are able to handle. On the other hand analytic methods have difficulty
because of the non-linearity, while it is clearly awkward to do experiments
or even to make observations (except with neutrinos) in the interior of a

star.

The book by Betchov and Criminale (1967) on The Stability of Parallel
Flows gives a good account of the way in which analytic and computational
techniques can support one another in one branch of fluid dynamics.

Harlow (1970) has provided a general bibliography of papers dealing with
numerical techniques for solving 2- and 3-dimensional time-dependent problems

in fluid flow.

Physics and Information

The purpose of a computer is to process information as we shall see in
§2. Now physicists do spend a great deal of time handling information of ome
kind or anothér and any impact that computers have on physics must eventually
result from this fact. Many of the techniques used for handling scientific
information have reached a high degree of sophistication, particularly in
theoretical physics, and here it is likely to take a long time before com-
puters can compete on equal terms; for example the developments in the
physical sciences which occurred within 5 years due to the discovery of
Schrodinger's equation can hardly be paralleled by those which have occurred
within 25 years due to the invention of the electronic digital computer. But
in cases where conditions have been more suitable for the introduction of com-
puters, such as the processing of large amounts of digital data from measuring
devices and the automatic control of experimental equipment, their impact has

been more obvious.

2 HARDWARE

Let us therefore go right back to the beginning and try to see what com-
puters can in principle do. Basically, an electronic computer is a device
for handling binary information or data contained in a fast memory or store.
The data is conventionally represented as an ordered set of 0's and l's (bits),
grouped into bytes and words. In processing this data the computer obeys a

sequence of imnstructions which are themselves represented by binary informa-

tion and are drawn from the same store (Figure 4). The sequence of

instructions is called a program.

It is preferable to think of the program as fixed information, while the
data will in general vary during the course of the computation. There is in
fact an interesting analogy between a data processor and a dynamical system,
in which the program corresponds to the Hamiltonian H (q,p) while the data
values correspond to the complete set of canonical coordinates and momenta
[q,p] which between them define the current state of the system. The

progressive modification of the data by the program as the computation pro-

ceeds then corresponds to the time evolution of the dynamical system.
The data values can be made to control:

(a) The action of the current instruction.

(b) The location of the next instruction to be obeyed.

This facility enables the program to make decisions which depend on the
current data values, and is nowadays usually implemented by first transferring
the necessary control information from the main store into subsidiary fast
storage devices called registers, one or more of which can be consulted while

an instruction is being interpreted.

Dynamic Program Modification

Because the program instructions can also be regarded as data it is
possible, in principle, for a computer to process its own instructions during
the course of a run. This is quite a fundamental idea because it means that
the program itself can evolve dynamically, as well as the data values. At
one time this property was regarded as essential (Goldstine and Von Neumann,
1963; Elgot and Robinson, 1964; Goldstine, 1970), but it seems that the
essential tasks have now been taken over by the use of registers, and self-
modifying programs are currently regarded as bad practice because they are
so difficult to understand. No legal Fortran or Algol program can modify

itself for example.

In mathematics one sometimes finds that a generalization is remarkably
productive and leads to a host of new results (real = complex numbers); at
other times it almost seems to kill progress altogether (time-dependent
Hamiltonians H (q,p,t) or non-Hamiltonian systems; groups = semi-groups).
We do not know on which side of the fence these dynamically, self-evolving
programs are likely to lie. I shall not discuss them further here but it
may be that this is an area where substantial advances in computational

physics will one day be made.

The Universality of Hardware

There is a sense in which all computers are the same (Pasta, 1970)

"As an example of the kind of thing we are talking about, consider
the Turing machine, a model invented in the 1930's by the mathe-
matician A M Turing*. This abstract model is very simple. In
one form it is a device with a finite number of internal states

and a tape of arbitrary length marked into squares. At any moment

it can read a symbol on the tape. Based on that symbol and on
the internal state, the machine can initiate actions to change

the symbol and to move the tape one square left or right.

One would expect such a machine to be limited in the kinds
of things it could do and yet Turing showed that any effective
computation performed on any computer can be performed on a
Turing machine. The universality of this machine allows us to
establish truths about it which will apply to all other mach-
ines and consideration of this and other equivalent models has
increased our understanding of computers, programs and computa-

tions, all of which can be fit into this simple model".

Turing's theorem suggests that any fundamental advances in computational phys-
ics are much more likely to come from better theoretical techniques, from
improved algorithms and languages or from software engineering than from
improved hardware. During the past 25 years there have been steady quanti-
tative improvements in the architecture of computers and in their speed,
storage size, reliability, versatility and convenience, together with a
parallel decrease in the cost per unit of computation, but there have been

no radical changes of principle.

Some Practical Improvements

There are however a number of potential improvements of a practical kind
whose combined effect might be so dramatic as to appear fundamental. These

include:
(a) Networks of computers linked together via the communications
system.
(b) Massive direct-access storage devices.
(¢) Ultra-high-speed character and vector displays.

(d) An extended character set, including the Greek alphabet and
mathematical symbols.

(e) Improved ergonomics of man-machine interaction.
(£) Further decreases in cost, and improvements in reliability of
on-line systems.

These developments might make it practicable for a 'power-assisted' algebra
facility to be introduced, by which a theoretical physicist working at a
console could automatically and almost instantaneously manipulate analytic
expressions appearing on the screen by issuing commands to the system to
perform standard transformations and integrals. This has already been partly

implemented at Stanford University in an experiment on the teaching of

elementary algebra in schools, but in order to compete with pencil and paper

it is important to get the practical details right.

Very fast, powerful and selective information-retrieval facilities might
also become possible, enabling a scientist working in ome field to familiar-
ize himself rapidly with the state-of-the-art in another. In this connection,
a fundamental technique that has been developed in computer science might well
be applied to reduce the bulk of the regular scientific literature, namely

that of the subroutine or macro. Theorems, diagrams, formulae, definitions,

conventions etc. which are constantly being reproduced in full could be stored
in one place and automatically called into use when required simply by naming
them. At the same time, the notation could be automatically changed to fit

that of the paper in which they were called.

Another possibility is to have a dynamic style of publication, containing
not only algebraic formulae but programs for evaluating them numerically or
displaying them graphically on a screen as a function of parameters selected

by the 'reader'.

34 DATA TRANSFORMATIONS

So far we have only considered binary strings of O's and 1's. These are
not in themselves very interesting and their importance lies in the ease with
which they can be transferred to and from other types of data format (Figure 5).
Binary or 'digital' data is freely interchangeable between electrical signals,
magnetic recording media and holes in punched cards or paper tape although at
different speeds. Electrical information can readily be converted from ana-
logue to digital form and vice versa although with some loss of content.

Apart from this, it should be emphasized that output by the computer is
usually much faster, cﬁeaper and more convenient than input as illustrated by
the dashed lines in Figure 5. It is relatively easy for a computer to display
a table, draw a graph or make a movie film or even to talk, but much harder to
get this information back into digital form. Therefore so far as computers
are concerned digital information ought to be regarded as the primary form,
while printed output, graphs, speech etc. are temporary forms intended only

for communication with people.

Digital Information

Digital information has a number of important advantages. It can be
transmitted almost instantaneously from point to point, updated, duplicated,
stored and retrieved, automatically manipulated in different ways and dis-

played to people in a variety of forms. We can in fact regard a set of data

as an operand D and a display program as an operator Py , various forms of

display A; being generated as products

A; = P, D (1)

i i

If for example a calculation leaves its output in a random access file, then
not only can a physicist working at a console cause the results of the cal-
culation to be displayed in various ways so that he can understand their
meaning, but he can also use the same file as input for a further series of
calculations. These advantages are lost if the output file is simply prin-

~ted and then destroyed.

Digital information does however have a number of grave disadvantages
which must be carefully taken into account if it is to serve as a medium
for scientific communication. It is extremely fragile, and on many com-
puter systems even minor damage to an index can cause all the data on a
storage device to be lost. Few of the scientific discoveries of antiquity
would have survived if their recording media had suffered from this disabil-
ity. And digital information does rely heavily on good indexing; compare
browsing through a magnetic disc file with browsing through a library of

scientific books.

4. ALGORITHMS, PROGRAMS AND SOFTWARE

Computers can carry out any process which we know how to reduce to

algorithmic form; that is any process for which we can prescribe a definite
set of rules no matter how complicated. Ultimately this process must be
reduced to the manipulation of a binary bit pattern and the algorithm itself
must be expressed in a similar form (Figure 4), but in practice we can develop
our algorithms in a more convenient language and then use a second algorithm
to carry out the conversion automatically (Figure 6). In fact a primary in-
put device such as a teletype usually performs a preliminary conversion to
binary form, and this is then subsequently transferred by one or more systems
programs such as compilers, link editors etc. until the binary instruction

code of the machine is finally reached.

Three requirements are:

A. It must be possible to find an algorithm to carry out the required
process.

B. The algorithm must be coded for a specific machine.
C. The number of computer operations required for the process must
not be too large.
Much of the effort in computational physics at the present time is occupied

by B, and since this is rather a mechanical task it tends to divert attention

from the physics proper. However just because it is a mechanical task it
should itself be automated. The ultimate solution is one in which the

languages which are most suitable for people who are investigating and

expressing the algorithms are also intelligible to computers, and can be
automatically converted by them into efficient binary code. Some comments
on how this may be achieved will be made in §8, in connection with Symbolic

Algol.

Algorithms for some of the processes used in physics have existed for
many years, for example, arithmetic, and the solution of sets of coupled
ordinary differential equations by finite difference methods. Here the com-
puter was able to make an immediate impact. In high energy physics a great
deal of effort has been put into algorithms for pattern recognition in
connection with the processing of bubble chamber data, and with considerable
success (Snyder, 1970; Kowarski, 1970). Some success has been achieved with
automatic theorem proving and with the automatic solution of elementary
integrals by analytic methods, but neither have influenced physics as yet.
In other cases where theoretical physicists have no algorithms and must pro-
ceed intuitively, as in the formulation of new concepts, computers have also

naturally had little influence.

Algorithmic and Programming Languages

In order to satisfy A and B it will be necessary to develop

D. Powerful, intelligible algorithmic languages.

E. A substantial body of algorithms expressed in these languages,
for the solution of physical problems.

F. Means for converting E into efficient binary machine code for

the various types of computer system.

A high-level programming language such as Fortran or Algol enables
algorithms to be expressed in a form which is relatively convenient for
people to use, while at the same time allowing them to be translated with-
out too much difficulty into reasonably efficient machine code. Algorithms
are in many ways similar to mathematical theorems, and need to be made
intelligible and universal for the same reasons. Unfbrtunately the existing
languages cannot be compared in scope to mathematical notations such as non-
commutative algebra and the tensor calculus. Furthermore it is nowadays
very difficult to introduce a new programming language because of the cost
of developing and maintaining the necessary translators or compilers for a
variety of different computer systems. The result has been that for phys-
icists the state-of-the-art has remained frozen for many years; although

many research languages have been developed by individual computer scientists

- 10 -

during the last two decades only Fortran (introduced in 1957) and Algol
(introduced in 1960) are of major importance in physics. These have awkward
deficiencies which in principle could be easily put right, but which remain
uncorrected because of the difficulty of reaching international agreement and
then modifying all the existing compilers. The restriction to 6-character
identifiers in Fortran and the omission of complex numbers, COMMON and
EQUIVALENCE declarations and standard input-output facilities from Algol are

typical examples.

It was hard for mathematics to progress until a good notation had been
introduced in order to express the operations of arithmetic and algebra
(Ball, 1908); try calculating in Roman numerals! It has also been said that
the development of English mathematics was held up for more than a century
by reliance on the methods and notation of Newton rather than those of
Leibnitz. Computational physics is likely to remain equally constrained
until it becomes a straightforward matter to introduce powerful new notations
in which algorithms can be expressed. Even the hardware restriction to upper
case letters, numerals and a few special characters constitutes a severe
limitation, compared to the great variety of symbol types, sizes and positions

which are exploited in mathematics.

The solution appears to be for scientists themselves to develop and pub-
lish machine-independent or portable compilers, program generators and
macro-processors in addition to the growing literature of applications pro-
grams and packages. If these are written in modular form and well documented
it should be relatively straightforward to extend them to meet new situations

in the same way that mathematical theorems are continually generalized and

extended.

5. A SCIENTIFIC SOFTWARE LITERATURE

Clearly theoretical physics would hardly progress at all if every worker
had to build up all the mathematics that he needed right from the beginning,
and it will not be practicable to develop the enormously complex algorithms
and programs that will be required in computational physics unless each

individual is able to stand on the shoulders of his predecessors in a simi-

lar way.

The Coding Problem

It might be argued that although the algorithms themselves should be
published in the regular scientific journals, coding them for a specific
application should be left to the individual worker. This however is un-

realistic because of the very high cost of coding and because of the long

- 11 -

delays involved.

Some figures have recently been published on the costs of computer soft-
ware and the effort needed to write it. For IBM 360 software the cost of

each instruction has been estimated at $50-60, with 0.2 instructions produced

per man-hour (Bemer, 1970). Figure 7 shows the growth in software require-
ments in terms of lines of code for successive machines (McClure, 1969), while
Figure 8 expresses it in terms of millions of man-hours spent (Bemer, 1970).
Both increase exponentially with time, by a factor of about 200 in 10 years,
and it seems that both Parkinson's law and the Peter Principle must surely
be in operation (David, 1969). Bemer remarks:

"My nightmares come from imagining a new system scheduled for

1972. 1f the McClure chart holds true to give 25 million

instructions, then the best figures we have say it will cost

a billion and a quarter dollars, produced by 15,000 programmers."
Yet according to Barbe (1970) only 2% of the $36 billions' worth of software
in operation in the USA is transferable from one computer to another; the

rest is doomed to die with the hardware.

Physicists may be doing a little better, since Snyder (1970) estimates
that a 60,000-word bubble chamber analysis program written in Fortran might
require 10 man-years of programming effort which would represent a coding

rate some 15 times faster.

Publication, Portability and Modularity

Since coﬁputational physicists do not generally have this amount of
money to spend, the operating systems, compilers and applications programs
which they need will not get written unless some better method is found. It
does appear however that three techniques which have worked well in science

and mathematics in the past could go a long way towards solving the problem.

The first technique is that of open publication. The new journal

Computer Physics Communications (North-Holland) has recently been founded

to publish details of well-documented, refereed, tested physics programs.
Associated with this is the Internatiomal Physics Program Library at

Queen's University, Belfast which publishes the programs themselves in digi-
tal form. I have argued elsewhere the advantages of such a scheme

(Roberts, 1969). One important advantage is that by 'exposing' the program
listings to public criticism the standards are likely to be forced up. A
primary reason why the standards in software engineering are so low is that
there are so few models to work from, because programs are regarded as

commercially valuable and are not therefore seen by more than a few people.

- 12 -

The existence of a high-quality open scientific program literature should
serve as a stimulus to the whole computing industry, just as the regular
scientific and mathematical literature of books and journals does for

technology.

The next technique is that of portability, which is the same as
'universality' in science and mathematics. Once a new program, subroutine
package, compiler or scientific operating system has been developed and pub-
lished, it should be possible to run it at any scientific laboratory or
university throughout the world, just as one can read any journal article or
textbook. There are two basic requirements for this:

(a) Scientific libraries must be persuaded to subscribe to the

journal tapes, in the same way that they do to the regular

scientific jourmals, and to make their contents as readily
available as are books and papers.

(b) The published programs must be written in universally

available languages.

At present only the universal high-level languages Fortran and Algol are
accepted by Computer Physics Communications. An important further require-
ment is a lower-level universal language in which compilers can be written,
and in which they can generate their output (Figure 9). As soon as this is
available, a single implementation of each new language will make it avail-
able on all machines, thus saving both excessive duplication of effort and
also the dangers of different implementations being out of step as happens

with Fortran and Algol at the present time.

This idea was proposed many years ago, in connection with the so-called
Universal Computer Oriented Language or UNCOL (Mock et al, 1958). It enables
N languages to be implemented on M machines with a total amount of effort
N+M instead of NM. Another possible way of implementing the idea is by
means of macro-processors (Poole and Waite, 1970). It seems unlikely that
new scientific languages can be universally introduced except in some such

way as this.

Figure 10 illustrates what I believe the structure of the scientific

software literature 2 should eventually be; it has been drawn to parallel

Figure 1 which shows the structure of computational physics itself. Note
that it includes the fegular scientific literature, since I have assumed that
in due course books and journals (or at least automatic indexes to them) will
be made available in digital form. There is a significant danger here. 1In
the past the scientific literature has always been completely 'visible' even

though it has been published, in large part, by commercial firms. TIf it

w 5 =

ever gets transferred to proprietary data banks which can be automatically
consulted, for a fee, but can never be openly inspected by the scientific
community as a whole, then there is a great danger that it will become

corrupted. Even the standard Fortran library functions often contain mistakes.

Once established, 2 may be expected to increase steadily with time like
the regular scientific literature and to be equally permanent; there are
already programs that have been in use for more than 10 years and which have
been run on a whole series of machines. At any given epoch, 2 will be run

on a variety of different hardware types Hl’ HZ’ H As 2 expands,

it will be less and less economically practicable tg recode even major por-
tions of it for each new hardware system H,, and this is why portability is
essential. The most that can be done will be to recode certain replacement
modules Rl, RZ’ RS' (Figure 10) which are executed with very high

frequency and so occupy a substantial fraction of the computer time.

The third important technique is modularity, which is the same as the
'"Principle of Abstraction' in mathematics. Theoretical Physics works by
developing a number of separate tools, e.g. vector algebra, tensor calculus,
group theory, Green's functions, Laplace's equation, and then combining them
together in many different ways. This means that when a new branch of
theoretical physics has to be mapped out much of the necessary mathematics is
already available (as with Schrodinger's equation and quantum mechanics in
1926). It also means that theoreticians can often move freely from one

field to another because they recognize the language.

Suppose that we build a set of program modules of n different types,
with m modules of each type. Then by combining these together in all poss-
ible ways the number of complete programs we can form is of order mn, while
the work required is only of order mn. Even allowing for many non-viable
combinations this is still a considerable advantage. To put it in another
way, suppose that a single new module is developed of one particular type;

n ; P <
then m new programs can in principle be constructed from it, an

amplification factor of Nmn-l.

Typical examples might be the introduction of a new type of coordinate
system (e.g. spherical polars), or a new graphical display package. Provided
that the existing programs are properly constructed, many of them can quickly

make use of these with little further effort.

- 14 -

6. THE POWER AND LIMITATIONS OF COMPUTERS

I have stressed the organizational problem at some length because this
is the single most important practical task facing computational physics at
the present time. There are many algorithms in the literature which are not
being exploited because of the effort needed to code them. There are many
good programs that can only be used in one or two major laboratories (notably
the Los Alamos hydrodynamics codes), and others which have gone out of use
because their originators moved on to other work. Also there are large num-
bers of significant research languages which have not moved very far from the
computer science departments where they were developed; meanwhile, Fortran
has been frozen since 1964. However, these are all problems which can be
solved by persuasion and good planning, along the lines I have already indica-
ted. A more basic problem is whether or not there are any fundamental

limitations on the use of computers in physics.

It is sometimes thought that computers will eventually kill theoretical
physics; all that one will need to do is to program the equations and press
the button in order to get a numerical anmswer. This is very far from being
the case. Consider an assembly of N particles, interacting via Newton's
laws of motion and gravitation. If N is small (say equal to the number of
planets together with the sun), then it is indeed possible to solve the equa-
tions rather accurately over long epochs using the computer, and in this sense
one might say that much of the analytic work done in the 18th and 19th centu-
ries on the classical few-body problem in astronomy was not strictly necessary.
Fortunately computers were not available then because the modules developed
during the course of this work (e.g. Lagrangian and Hamiltonian mechanics and
perturbation theory) turned out to be of great use in other fields such as

quantum mechanics and statistical mechanics.

Because the number of elementary interactions between N particles
increases as Nz, straightforward computational techniques become impractic-
able as soon as the number of particles greatly exceeds 100 or at most, 1000.
Statistical mechanics is difficult to apply because of the infinite potential
energy that can be released when two gravitating particles approach each other,

and the two lines of attack, theoretical and computational, must support one
another.

Theoretical physics relies to a large extent on finding adequate
approximations. Often this is a question of separating the various timescales
in a problem. For example the Born-Oppenheimer method used in molecular

theory treats the nuclei as fixed when calculating the electron energies and

= 18 =

wave-functions, from which one obtains a potential function to be used in
solving the motion of the nuclei themselves. Timescales are equally important
in computational physics because if a naive approach is adopted, the cost of
the calculation will be determined by the shortest timescale tin of the
problem and will rise to astronomical wvalues if the ratio of this to the

largest timescale tmax becomes too great.

In the case of an assembly of N gravitating stars the shortest time-
scale is likely to be determined by the orbital periods of close binaries
which can decrease without limit. These must somehow be decoupled from the
problem, e.g. by treating the motion analytically until the perturbations
due to nearby stars become too great. The N2 difficulty might be removed
by replacing the effect of the interactions outside a given distance by that

of a mean field, so that the amount of calculation increases only as N.
Research of this type often proceeds in one of two ways:

(a) Theoretical approximations are devised to remove difficulties
encountered in the computation, and then these approximations
are verified using the computer.

(b} The numerical calculations turn up unexpected and striking
results, which can then be given a simple analytic explanation.
Thus the theoretical and computational approaches are complementary to one

another.

One instance where computers could have been of great assistance during
the 19th century is in the solution of the Navier-Stokes equations for vis-
cous flow. If these equations had been solved numerically in 2 dimensions
at moderate Reynolds numbers, boundary layers of finite thickness would have
automatically developed in the neighbourhood of solid surfaces, and the
interpretation of this phenomenon should have led to the discovery of boundary
layer theory and an understanding of the problem of flight much earlier than
actually occurred. Shocks and Karman vortex streets would have automatically

turned up in a similar way.

It is interesting to notice another complementarity between the theoret-
ical and computational approaches, since theory finds it easier to deal with
thin boundary layers, while computers find it easier to deal with thick ones

(covering several space steps).

Partial Differential Equations

When we turn to partial differential equations the limitations of com-
puters become even more apparent. Excluding high-energy physics for which

the equations themselves are not well-defined but their number seems to be

- 16 -

infinite, we find three situations in decreasing order of complexity as

indicated in the table.

Numbers of Dimensions

Schrodinger Configuration Space 3N
Vliasov Classical Phase Space 6
Navier-Stokes Real Space 3

Vlasov's equation describing the phase space motion of particles interacting
via long-range fields is important in plasma physics, while the Navier-Stokes
equations of hydrodynamics are a prototype for many similar sets of coupled
partial differential equations in magnetohydrodynamics, astrophysics,

geophysics and other fields.

Assuming that we need at least 100 space points in each direction to
achieve good accuracy (i.e 25 Fourier modes with > 4 points/mode), the amount
of storage needed is 1003N for Schrodinger's equation, 1006 for Vlasov's

equation, and 1003 for hydrodynamics.

It is now just becoming practicable to compute with 106 mesh points using
machines such as the CDC STAR-100 so that 3-dimensional hydrodynamics prob-
lems should shortly be fairly routine provided that the Reynolds number is
not too high. To achieve the same accuracy with Vlasov's equation requires
a further factor of 106 in storage capacity and speed which is difficult to
envisage at the present time, although a factor 103 can perhaps be antici-
pated. But this method of solving Schrodinger's equation is out of the

question for all but the simplest situations.

One is again led to the need for making adequate approximations before
putting a problem on to the computer and this of course is done in quantum
mechanics, for example by the method of molecular orbitals (Clementi, 1970).
In general, insight is likely to come not only from the numerical results
themselves but also from studying the accuracy of the various approximations

and trying to understand why they work as they do.

The Turbulence Problem

It has recently been pointed out by Emmons (1970) that a straightforward
numerical attack on the problem of hydrodynamic turbulence in 3 dimensions is
doomed to failure, since to solve the simplest turbulent pipe flow problem

would require 1010 mesh points and 1014 operations altogether for a Reynolds

- 1P w

3 . . s
number R, = 5 x 107, occupying perhaps 100 years on existing computers (or
10 2 operations and the full age of the universe at R = 107). Here again

one must look for a combination of more subtle computational techniques com-

bined with physical insight and good theoretical approximations.

7 DISPERSION RELATIONS

When a partial differential equation is solved on a computer one effect
is to change the dispersion relations of linearized perturbations, or small-
amplitude waves. This happens because derivatives are replaced by differ-

ences, so that for example

df/dx 5 f(x+Ax)2;xf(x-Ax) (2)
dzf/dxz 5 f(x+bx) - 2£(x) + f(x-0x) (3)
2
(Ax)

The result is that algebraic dispersion relations are replaced by more

complex trigonometric ones, since

sin kéx
k = - (4)
k2 N 2(cos kA; - 1) 5)
(46x)

and so on.

Depending on the difference scheme, on the equations themselves and on
the ratio of the 'mesh speed' Ax/At to the various characteristic speeds of
the problem (where At is the timestep), this replacement can cause stable
waves to become unstable or damped, and non-dispersive waves (e.g. sound-
waves) to become dispersive. A good part of the discussion at this Seminar
Course will be concerned with such problems, the situation being quite
analogous to the replacement of a continuum by a discrete lattice in solid

state physics.

This analogy with solid state physics might usefully be exploited fur-
ther. In particular since there is a maximum wave-number kmax that can
be represented on a lattice with finite spacing Ax, when two waves El’ 52
interact to give a new wave k = El o+ 52 with]kl > kmax’ this energy must
be diverted to some other mode Ik'l < kmax by a type of Umklapp process
which is known in computational physies as 'aliasing'. This leads to errors
in turbulence investigations, and the energy at high wave-numbers must be

removed by some form of artificial damping before it can cause damage.

- 18 -

The simplest example of numerical dispersion occurs in the solution

of the l-dimensional advective equation (Roberts and Weiss, 1966)

of of

Eﬂ'\?a; = 0 (6)

where v 1is a constant. This evidently describes a wave moving with uni-
form velocity v, thus preserving its shape unchanged, and the dispersion

relation is
w = kv (7)

.Making the replacement (4) but keeping At small we find

sin kix

= (-) kv (8)

This means that disturbances of short wavelength propagate more slowly and

that for ke = (9)

there is no propagation at all. A pulse can leave a train of waves behind
it which may be misinterpreted as a real physical phenomenon, and a function
(such as the density or temperature), which according to the differential
equations must remain everywhere positive, can take negative values in the

numerical calculation.

Equation (6) is significant because it is the prototype of all the
hydrodynamic equations, in which the left-hand side occurs as the Eulerian
derivative. It is also closely associated with Vlasov's equation. Advective
errors are of importance in meteorology where v represents the speed with

which disturbances are carried by the wind.

8. SYMBOLIC PROGRAMMING

I discussed earlier the possibility of finding a generalized language
which would be suitable not only for the formulation and discussion of
algorithms, but also for programming the computer itself. I should like to
finish this lecture by mentioning how this has been very largely achieved
for one particular field, namely the solution of classical field equations
for initial-value problems (Roberts and Boris, 1971; Roberts and Peckover,
1971; Kuo-Petravic, Petravic and Roberts, 1971). The method is known as
Symbolic Algol and will be described in detail at this Seminar Course by

Dr Petravic and Dr Kuo-Petravic.

Fortran, and more particularly, Algol 60, were designed for this dual
purpose but have two major weaknesses; firstly they do not include much of

the notation that theoretical physicists normally use, and secondly they

= T =

have no power of extension other than through the use of subroutines or

procedures.

We have however been able to show that by writing Algol programs in a
particular way, they can be brought into very close correspondence with the

notation of vector analysis. For example the magnetic diffusion equation
OB
5 Curl(VxB) - Curl(T} Curl B) (10)

can be programmed in Symbolic Algol I as

AB[C1,Q]:= B+DT*(CURL(CROSS(V,B)) - CURL(ETA*CURL(B))); (11)

independently of the coordinate system and of the number of dimensions.
Most of the notation is obvious but it should be explained that the prefix
'A' denotes 'array', Cl stands for the current component (or the first
component of a temsor), while Q represents the local mesh point at which

B 1is being evaluated.

Modularity has been achieved because the same statement (11) will work
just as well for spherical polars as for a Cartesian system, if one simply
'plugs in' or 'switches on' a different definition of the CURL operator.

The definition of CURL in Cartesian coordinates is

real procedure CURL(A); real A; CURL:= RP(DEL(RP(A)))-RM(DEL(RM(A))); (12)

which gives some idea of the conciseness of Symbolic Algol I as well as of
its similarity to the notation of theoretical physics. Here RP,RM are
mutually inverse rotation operators, permuting the vector components (123)
in the positive (231) and negative (312) directions respectively, while

DEL is a vector finite difference operator.

Symbolic Algol I executes quite slowly because of a large number of
nested procedure calls. To get around this problem, we have shown that
statements such as (11) can be converted either automatically or by hand
into an equivalent form called Symbolic Algol II, which when executed will

automatically generate an optimized program in any desired output language.

For this purpose they are plugged in to an Algol program called the Petravic
Generator which is supplied with modules analogous to (12) in order to define
the difference scheme, coordinate system, target language and so on which are

required for the particular job,

The target code is about as fast as well-written Fortran, and an added
advantage is likely to be that code can equally well be produced for com-

puters for which no compiler is yet available, or even for which Fortran is

- 20 -

not particularly suitable, such as the new CDC STAR-100 which is able to pro-

cess complete vectors in one operation without using a DO loop.

What we are doing here is to use the computer itself to write the pro-
gram, instead of writing it by hand. Since much of the work is tedious and
mechanical this is a very natural development, but the interesting point is
that the instructions which must be fed to the computer to make it carry out
this task are in virtual 1-1 correspondence with the original mathematical
statement of the problem. This is a situation which is reminiscent of both
quantization and second quantization, in which the equat%ons always seem to
‘remain the same but get interpreted in different ways. If it can be
exploited further we may be able to use much of the formalism of mathematical

physics itself as the algorithmic language for programming computers.

In this sense I believe that ome of our immediate aims should be to

weld mathematical and computational physics into a coherent whole.

= 9] =

REFERENCES

Ball W W Rouse (1908); A Short Account of the History of Mathematics,
reprinted Dover Publications Ltd., New York (1960).

Barbe P (1970); Software Engineering (Edited J T Tou) 2 Vols. Academic
Press, New York & London, Vol.I, p.1l51.

Bemer R W (1970); Software Engineering, Vol.I, p.1l21,

Betcher R and Criminale W 0 (1967); Stability of Parallel Flows, Academic
Press, New York and London.

Clementi E (1970); CRPS p.437

David E E Jnr (1969); Software Engineering, Report on a Conference sponsored
by the Nato Science Committee, Garmisch, October 1968, p.62.

Elgot G and Robinson A (1964); Journal of the Association for Computing
Machinery, 11, 365.

Emmons H W (1970); Critique of Numerical Modelling of Fluid-Mechanics Phenomena.

Fernbach S and Taub A H (1970) (editors) Computers and Their Role in the
Physical Sciences®, Gordon and Breach, New York.

Goldstine H H (1970)}; CRPS p.51.

Goldstine H H and von Neumann (1963), in John von Neumann, Collected Works,
Vol.5, Pergamon Press.

Harlow F H (1970); Numerical Methods for Fluid Dynamics, An Annotated
Bibliography. Los Alamos Report LA-4281.

Iben I Jnr (1970); CRPS p.595.

Kowarski L (1970); CRPS p.479.

Kuo-Petravic G, Petravic M and Roberts K V (1971); Automatic Optimization of
Symbolic Algol Programs, I. General Principles (submitted to Journal of

Computational Physics).

McClure R M (1969); Software Engineering, Report on a Conference sponsored
by the Nato Science Committee, Garmisch, October 1968, p.66.

Mock O, Olsztyn J, Steel T, Strong J, Teitter A, Wegstein J; (1958), Comm. ACM.

Morse P M and Feshbach H (1953); Methods of Theoretical Physics, 2 Vols.
McGraw Hill, New York.

Pasta J R (1970) CRPS p.203.
Poole P C and Waite W M (1970); Software Engineering, 1, 167.

Roberts K V (1969); Computer Physics Communications 1, 1.

* Referred to as CRPS.

Roberts K V and Boris J P (1971); The Solution of Partial Differential

Equations using a Symbolic Style of Algol, Journal of Computational Physics
(to be published).

Roberts K V and Peckover R S; (1971) Symbolic Programming for Plasma
Physicists, Culham Laboratory Preprint CLM-P257.

Snyder J N (1970); CRPS, p.463.

Turing A M (1937); Proc.Lond.Math.Soc. (2) 42 230.

SCIENTIFIC
LITERATURE
RETRIEVAL

SCIENTIFIC
DATA

COMPUTATIONAL
PHYSICS

HOUSEXEEPING
PROGRAMS.

LANGUAGES
TRANSLATORS

CON TFR oL
APPARATUS

ALGEBRAIC
MARIPULATION

OPERATING
SYSTEMS

Fig.1 Some of the areas in which computing has an impact on physics.

THEORETICAL
MATHEMATICS
PHYSICS
EXPERIMENTAL
PHYSICS ENGINEERING
COMPUTER COMPUTATIONAL SOFTWARE
SCIENCE PHYSICS ENGINEERING

Fig.2 In the past the progress of mathematics and theoretical physics
have been closely associated with one another and similarly for experi-
mental physics and engineering. Computational physics requires
advanced techniques in computer science and software engineering and
in turn may be expected to contribute to these disciplines.

CLM-P281

EXPERIMENTAL
PHYSICS

THEQRETICAL
PHYSICS

Provide equations Suggest, theory

Interpret results Accurate calculations
Large-scale calculations

COMPUTATIONAL
PHYSICS

Fig. 3

STORE

INSTRUCTIONS DATA

DATA
PROCESSOR

Fig.4 The computer processes data by means of a sequence
of insiructions, both being drawn from the same store.

CLM-P281

HARDCOPY
GRAPHS
s FILMS

SIGNALS

MAGNETIC
————————— RECORDS

PUNCHED
CARDS &
PAPER
TAPE

FORMAT

Fig,5 All forms of digital data are freely convertible into one
another (full lines). Printing and display are also straightforward.
Analogue-digital conversion can be carried out without difficulty
and a computer can be made to talk (long dashes). Those trans-
formations which are represented by short dashes are much more
difficult to carry out and should be avoided where possible by
storing all data in digital form.

ALGORITHM
IN SOURCE
LANGUAGE

PRIMARY
INPUT DEVICE

CONVERSION
ALGORITHM

(Translutor pg‘ogrum)
or compiler

BINARY
MACHINE
CODE

Fig.6 An alpgorithm can be expressed in any 'source language’,
a second algorithm or sequence of algorithms being used to con-
vert this automatically into binary machine code.

CLM-P281

10M ij:
360\/
2M i /"
4
7090
L 500K “F—oag
8 / o~
O 200K |
w = 1
re 1401
2 7070° s [
& 100K ,os.?ﬂ
= : 1604
T so0k |]
1 %4
20K
10K ~— DATATRON |
5K A] |
56 58) 62 64 66 68
YEAR —=

Fig.7 IExponential growth of the software required by operating
systems (McClure 1969). In 10 years the amount of software
associated with a typical scientific computing system has increased

by a factor 200,

SOFTWARE PRODUCTIVITY

50 - (TOTAL BUDGET FIGURES)

/
Vi
05360
20 o —° Ve
4
10 o /
& 00
é Q\l’/ O(o/ /
S . e@)‘,/‘lSSL/O &
[V
& N 7 U1107(1964-5)
2 & %”"
o éc'c,/ / GE 400
3 N
- 0.5 = @/
= > 7N
" s s 3usaF
024 , /7 s
g d
0.1 - P
A
_— ?—704 FORTRAN
I] | 1 I I 1 1
0.025 005 01 0.2 05 | 2 5 10

MILLIONS OF INSTRUCTIONS

Fig.8 Effort spent on software construction (Bemer 1970),
Because productivity has not increased with time, both the
cost and the effort required for software construction are
increasing exponentially at a similar rate to that of Fig, 7.

CLM-P28B1

HARDWARE

Fig.9 It is now difficult to introduce new scientific programming
languages because of the need to reach agreement on standardiza-
tion and the cost of constructing a new compiler for each type of
computer system . A better solution would be to construct just
one compiler which would then be published. Both the compiler
itself and its target code must be expressed in a suitable univer-
sal language so that they can be used on any system.

SCIENTIFIC
LITERATURE
AND
RETRIEVAL
PROGRAMS

HOUSEKEEPING
PROGRAMS

LANGUAGES
AND
TRANSLATORS

SYSTEMS

REPLACEMENT
MODULES

HARDWARE

Fig.10 Programs and data of significance to science should be
published in digital form to ensure that they are freely available
and that their efficiency and reliability can be checked. This
'digital literature' Z should include not only scientific applica-
tions programs but also operating systems and compilers. Most
of it should be expressed in universal form so that it can be used
on any machine. Replacement modules R; written in assembly
language are used in the interests of efficiency for those modules
which have a high execution frequency.

CLM-P281

