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ABSTRACT

The motion of a two-dimensional incompressible inviscid and homo-
geneous fluid can be described by a Hamiltonian formalism based on
the concept of vorticity. A particle model appropriate to this
description is presented with a finite difference scheme approxima-
ting the equations of motion. The effects of replacing the exact
equations by the difference scheme are studied separately. The
results from computer simulations employing the scheme on a test
model reveal certain undesired features, which are explained by a
theoretical analysis in conjunction with various numerical experi-
ments. These experiments have been aimed at understanding the
relative importance of each approximation, and also at acquiring a
quantitative estimate for possible inaccuracies., It is concluded
that the particle model is useful and versatile for a variety of

problems in hydrodynamics and plasma physics.
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I. ; INTRODUCTION

Incompressible fluid flows have been the subject of many investigations
in plasma physics and hydrodynamics. The nonlinearity of the partial differ-
ential equations renders them insolvable except for special cases, but many of
the most interesting flow properties must be explained through the nonlinearity.
The advent of computers has over the last decade made it a challenging problem
to study fluid flows in the nonlinear regime by applying suitable numerical
techniques. So far efforts have mainly been concentrated on systems of 1 or
2 dimensions because of computer storage requirements. Many of the numerical
approaches to a study of 1- or 2-dimensional hydrodynamic systems work well
for continuous flows, but since for many flows discontinuities can be the all-
important feature we shall approach the Subjeét with this in mind. This paper
describes a useful technique for a numerical attack on nonlinear problemslin
hydrodynamics, a technique which has also been applied with success in plasma
physics.

The motion of a 2-dimensional incompressible,inviscid and homogeneous fluid
can be described by a Hamiltonian formalism [1,2] based on the concept of vor-
ticity. This feature makes the system attractive to simulate numerically,
especially if one adopts a particle model for the continuous vorticity distri-
bution., The fluid system is in many ways analogous to l-dimensional systems
in plasma physics, gravitational theory, electron beam-plasma systems etc.,
since these systems exhibit an incompressible flow in 2-dimensional phase space.
These analogies emphasise the fundamental character of classical incompressible

fluid flow.

A century ago Helmholtz, Kirchoff, Kelvin and others initiated a study of
hydrodynamics based on the concept of vorticity, although this quantity had
been defined and interpreted by d'Alembert, Euler, Lagrange and Cauchy many
years before. (The first treatment of vorticity occurs in the work of
d'Alembert (1749)). The initial investigations were concerned with simple
vorticity systems; usually uniform vorticity distributions were studied.

Despite their simplicity such systems exhibit a great deal of the dynamics



contained within the subject. It is noteworthy that the same simplifications
have been made in the study of the analogous l-dimensional plasma systems during
the last decade. The model used in both cases has been called the 'Waterbag
Model', since the studies extend to the contours confining uniform distri-

butions.

It is of great interest to study even simple flow configurations in a
2-dimensional phase space to acquire a fundamental understanding of the dynamics
of nonlinear flows. In Figs.7 & 8 at the end of this paper we show 7 examples of
hydrodynamic systems to emphasize the complexity of nonlinear processes. These 7

systems have been simulated using the numerical techniques discussed in this paper.

To interpret the phenomena that we discover from numerical simulations it
is however necessary to understand in detail the effects of replacing the
partial differential equations by finite difference forms. These effects can
most easily be determined by comparing the numerical solutions of simple well-~
known problems with their analytic counterparts. Any anomalies such as
numerical viscosity which are contained within the numerical scheme will then

appear.

In this paper we shall compare the exact Hamiltonian formalism with its
equivalent difference form. To illuminate the differences between them we
present results from numerical experiments on a test model. In choosing a
test model we have found it useful to eliminate the time dependence by study-
ing steady-state equilibrium flows. Any time variations in the numerical
simulation then result from anomalous characteristics of the difference scheme.
Finally, by a trial and error method we shall detect the sources of the

anomalies disclosed by the numerical experiments.

IT. EQUATIONS OF MOTION

A 2-dimensional incompressible, inviscid homogeneous fluid (ideal £fluid)

satisfies the continuity and Navier-Stokes equations

V.u = 0 (1)

3
= —%VP (2)

I
+
L
g
I

where u, p and P denote fluid velocity, density and pressure respectively.
We introduce the vorticity £ and the stream function H by the vector

relations
f=Vxuy , u=VxH, (3)

the notation being chosen to emphasize the analogy with Vlasov's equation in

particle dynamics.



Since f = (0,0,f) and H = (0,0,H) we can consider f and H as
scalars. If we take the curl of (2) the equation of motion becomes the

d'Alembert-Euler vorticity equation

of

s+ [£.H] =0 (4)
with £ and H related by 2
: VOH = - (5)

(For any two functions A and B the Poisson bracket is defined by
_ OA OB OB 2A

The system is Hamiltonian, since by (3)
. _ OH . _ OH :
=% b= - ; (6)

where the position vector r is r = (q,p) .

The well-known stream function therefore behaves as a Hamiltonian, and real
space acts as phase space. Because of analogies with l-dimensional systems
mentioned earlier we find this notation appropriate and it will be used through-
out this paper to emphasize the structure of the equations. Equations (4) and
(5) are just Liouville's and Poisson's equations respectively. The invariants

of the motion are

.
Linear momentum P=p Jj u dqdp (7)
A
Angular momentum L=p jJ (r - r.) x u dqdp (8)
A
re2 i ‘
Kinetic energy E =% |||y “dqdp = %PJJfqudp (9)
A A
Area elements A (£)4df , (10)

where A(f)df is the area of fluid between two vorticity contours f,f+df,

which by Helmholtz theorem remain attached to the fluid throughout the motion.
The Hamiltonian is invariant to translation and rotation in the phase plane
(unlike the corresponding Hamiltonian in particle dynamics). The total energy

of the system is purely kinetic and the second integral of (9) is correct if

§H§ﬂds=o , (11)
C n

where C 1is a contour bounding the region A.



Any state of this system is entirely described by the vorticity distri-
bution £, which also behaves as a phase-space density distribution. Any part
of the fluid with a pa;ticular value of f behaves like an incompressible
'vortex fluid'. For equilibrium steady-state flows we have, just as in the

analogous case of a plasma

g% =0, or [f,H] = 0, or £ = f£(H) . (12)

III. A PARTICLE APPROACH

There is a variety of ways in which one can develop computational tech-
niques for studying this fluid system. The two functions £(q,p,t) and
H(q,p,t) can be represented on a discrete mesh as in the method of Fromm and
Harlow [3]. Another technique is to calculate the motion of a limited number
of point vortices, interacting with each other via their individual 2-body
velocity potentials. This was done by Abernathy and Kronauer (4] in their
study of the formation of a von Karman vortex street. A third possibility
is to follow the motion of contours f=constant. This has been done success-
fully in plasma physics for the analogous case of the l-dimensional Vlasov
equation by Roberts and Berk [5] who used the waterbag model earlier adopted

by de Packh [6] and Dory (7].

The method used by Christiansen and Roberts [8] is more analogous to the
particle methods used in plasma physics. It approximates f by a large num-

ber of "point vortices"

N
£ =Ef 6(q - q) 8(p - p) (13)

n

n=1

where f = +1 or -1. Each pair of coordinates (qn, p,) is called a point

vortex and satisfies the equations of motion

where H is a solution of Poisson's equation (5)

! \
q = 2_112 ;B log r__ (15)
n=1 m=1
n#m
with
r2 = l r - T 2 (16)
nm =n —m



excluding the infinite self energy.

Particle models have primarily been used to simulate plasmas. Groups at
Livermore, Los Alamos, Stanford and Princeton have developed a variety of
numerical techniques and calculations have been reported by Birdsall, Fuss,
Byers, Morse, Hockney and Dawson. The techniques discussed in this paper have
been used by Taylor and McNamara to study 2-dimensional guiding centre plasma
problems [10] which are formally identical to those of an ideal fluid. The
diochotron type instability illustrated in Fig.7 was studied by Birdsall and
Fuss, whilst the Kelvin-Helmholtz type instability was investigated independ-
ently by Byefs and Hockney. These authors included a finite Larmor radius,
but despite this and other differences in the models used our results agree

qualitatively with theirs.

This paper discusses the implications of applying finite difference
methods to hydrodynamic problems. Such a study has been made before but
usually in connection with plasma problems. Notably the effects of employing
the NGP and CIC interpolations have received attention from Birdsall and
Fuss [17], Morse [15], Hockney [18] and more recently Langdon [19]. 1t should,
however, be emphasized that the pPresent investigations differ from previous
ones. In our case the particle model represents a true continuum, rather

than a physical assembly of particles.

IV. A NUMERICAL SCHEME FOR THE MOTION OF POINT VORTICES

Suppose we are given N sets of coordinates (qn, pn) on a Cartesian mesh
of size N by NP . To evaluate f as given by (13) we use the CIC-method
(15] and approximate f at a mesh point (i,j) by

N
£(i, j) = ZJ An.® (i +1 - q,»d + 1 - pn) o) (qn - i, p, - i) (17)

n=1

where © (x,y) denotes the Heaviside function. The evaluation of A is

shown below. Poisson's equation (5) can then be solved using the usual 5-point

approximation

H(i,j+l) + H(i,j-1) - 2H(di,j) + HG+L,5) + HGE-1,5) - 2H(E,5) _ “£(4, 1) (18)
2 2 ?
(4p) (8q)

where Aq, Ap are the mesh spacings. Eq.18 is solved by the Hockney method

[14] allowing for a variety of boundary conditions. The velocity field



evaluated at a meshpoint (i,j) is

H{Ls 1) - H{i,j-1) , _ H(i+l,j) - H(i-1,3)

u (1,3) = y w (iz]) = (19)
q 28p P 2Aq
To advance the set of positions (qn,pn) one timestep a leapfrog scheme is
d. T i i
use wo sets of coordinates (qn,pn)even and (qn’Pn)odd are introduced
expressing the coordinates at alternate times 2sAt and (2s+1)At.  The
equations
I = uq Pn 7 p
then become, letting superscript s denote the time sit
s+l _ s-1 s s s
a, q, * o (qn, pn) 20t
(20)
s+l _ s-1 s S s
L - Py + up (qn, pn) 20t

The set of coordinates (qi, pi) determines the velocity field (also fs, Hs)
which is used to move the other set. Suppose i$q§€i+l and jépiSj+1 and

let 6éq = qi -1i, &p = pz - j. The velocity used in (20)is evaluated as

u(aS, p%) = (1-89) (1-6p) u(i,§) + 6q(1-8p) u(i+l, ;) |
(1-8q)8p u(i,j+l) + 8qdp u(i+l,j+l) . (21)

The 4 coefficients represent 4 areas A, that are also used to evaluate £

such that (21) is consistent with (17).

V. THE COMPUTER CODE

The computer code VORTEX [8] solves Egs. (17)-(21) on a square mesh
with Np =N =64, Ag = Ap = 1. Part of the code is the Hockney-Poisson
solver POTL ﬁ14] which allows 9 different sets of boundary conditions in
q, p- Amongst the more prominent features is the vector integration tech-
nique described by Boris and Roberts in an earlier paper [9].

The VORTEX code has also been used extensively to study the diffusion
in a two-dimensional plasma using the guiding centre model. This work has

been reported by Taylor and McNamara [10].



VI. THE EFFECTS OF THE FINITE DIFFERENCE FORMULATION

Our numerical approach described in sections III to V is an approxima-

tion to Egs.(4) and (5). This approximation is principally limited by

1. The square-shaped boundary
2. The time integration (At finite)

3. The mesh (square mesh, Aq, Ap finite)

In the following we will briefly establish the general effects introduced by
these limitations and then later apply them to a particular numerical

experiment.
VII. THE SQUARE-SHAPED BOUNDARY

Imagine that our simulation problem is that of following the motion of a
number of contours enclosing areas of constant f = fo' Initially our distri-

bution function is described by a set of contours expressed by functions

Gj(q,p) = 0.

The solution to Laplace's equation in a suitable coordinate system is

(~ denotes value outside any contour j )

H = H(q,p) (22)

where gi(ﬁ5 - 0 (say) for “E(q,p) I* ® , The solution H of Laplace's
r

equation satisfies the set of conditions

H(G, = 0) = H(G, = 0)
] ]

where H is a solution of (5).

We then introduce a square boundary and require that H = Hl’ a constant,

along this square Go' The solution (22) can be expanded in the normal way

H (23)

H =
n

i D8

with

~ -1 r _ -1 by
H = 77 log r'4Af(q,p)da = 4n(10g £) £ LJAj *E,

where r 1is the distance from the origin to the variable point P and



Aj is the area enclosed by contour j. Aj is positive if £ = £ and

o
negative if f = —fo . In general the nth term of the expansion (23) is
g4 (n-1)1(-1) { (n)}
Hn n+1 7, ,} JLD

where the bracketed quantities are tensors of ramk mn. If %JAj # 0, ﬁ;
will normally be the dominant term for sufficiently large r values. This
means that, regardless of the choice of coordinate system, ﬁ exhibits
rotational symmetry. The contour GO is hence approximately a circle and
for convenience we replace the Hamiltonian variables (q,p) by (r,8) in this
section only. The introduction of a square boundary can then be interpreted
as a superposition of four images of the set of contours. The images further
away are neglected. The resulting potential can be calculated.as a super-
position of 5 potentials arising from the actual system of contours (k=o) and
four image systems (k = 1,2,3,4) placed symmetrically with respect to each of
the four boundaries.

If we look at distances r inside the square but

far from any contour the dominant term in the expansions (23) is Ho' This

gives
$ gL
o — 1
- i fD (ZJ.Aj) 0g T
where @ = -1 for k = 0 otherwise « = +l. Inserting r, as rkz = r2 + 4L
- 4Lr cos (6 + &), & = 0, - %, m, % for k = 1,2,3,4 we get when expanding
the log term
~ 1 ,r.4m
H K log r + sz}l o= (57) cos (4m) (24)
with
K="= f LA,
47 o, ]
Eq.24 shows that rotational modes m=4,8,12 .... have been imposed on the

original solution.

For higher order terms in the expansion (23) we find that

ﬁn Bo(n) 3 + 2 B (n) (cos 4m8)(JL)4m

P |
where coefficients ﬁam(n) as function of cos(4mB) arise from the expansion
1
of — g a For n=1 aﬁm(l) become the Legendre polynomials.
i
k



In order to evaluate the effect of introducing a square boundary we see
that first we must estimate the relative weight of the terms Hn for

n=0;1,2 ...

Once this is done we must evaluate the coefficients for m=4,8,12 modes
in the expansion of Hn and compare their amplitudes with the log r term.
The maximum effect on the distribution of vorticity will occur when the

coefficients are evaluated at the largest r for which f # 0.

VIII. THE EFFECT OF A FINITE TIME INTEGRATION

We are primarily interested in the stability of the finite time integration
implemented by the leapfrog scheme. To examine this assume that we move two
independent sets e and o of points. We assume for simplicity that the
points move in a time independent velocity field so that H is constant in
time. As a result of applying finite At to the motion of the points e
and o we imagine that the limit At = O results in a symmetrical displace-

ment around the correct value Ec

Ee(t) =R +8 r(t)=R -3

-8
dr
Inserting for r, and r in H% = u and subtracting we get
db du
_ = - —=§ 5 25
dt dr — ( )

Suppose & (Gqﬁ + Gpﬁ) e:l'St where both Bq, Gp may be functions of q, p
and ﬁ and P are the base unit vectors of an orthogonal coordinate system.,

To find whether s can become complex we insert for 8§ in Eq. 25

d " d ~ ’ A A
— (6 + — (6 + & + 86 YVu + 86 W =0 . 26
pra ( " q) = { i p) + is (6q q . B) 4 g 5 Vi (26)

Eq.26 will express the eigenvalues A of s as g(§) = A8, through a

quadratic equation in s which, since V.,u = 0 becomes

2
- +S (u, u)
s q’ p

0]

The condition for stability is then

S(u,ul)=zo0
q P

In cartesian coordinates (q,p) = (x,y) we get



du du du_ du
= _¥ __X J=p
dx Oy dy ¥x °

In polar coordinates (q,p) = (%rz, B) we get

y2 L ° 42 I - _-—=—30. (27)

We notice that for a simple steady state flow described by

u=w(r) x r with u_ = 0 uy = w(r)r Eq.27 becomes

02 (r) [1+r%]>o.

from which we deduce that the leapfrog scheme causes the frequently encoun-
tered irrotational flow w ~ r-2 to become unstable. The implications of

this result will be dealt with in the description of the test model.
IX. EFFECTS INTRODUCED BY THE MESH

In IV we have presented the finite difference forms used to approximate

Eqs. (4) and (5).

Let us look at each difference form separately to see how good an approxi-
mation it is. Throughout this section we will consider functions represented
by a finite series of harmonics. For simplicity we choose

cos rq COs sp
£ 2mh 217 . :
with r = il or — and s = Hle or 755 depending on which type of
q q P P
boundary condition is imposed on the functions.

a) Poisson's equation

Consider a mesh function represented correctly at all meshpoints as

f =?%§3 cos rq cos Sp . (28)
le

The analytic solution to Eq.(5) using (28) is for a particular mode r,q

F =9 =271
H = |_r + s 2—J LCOS rq cos SP] k (29)

- 10 -



Insertion OE Eq.(29) in (18) setting 2 4 g2 = K gives us £, . We form
the ratio F and get the expression

£ -

F “K[{2cosr+2coss - 4] . (30)

b) Evaluation of fluid velocity

Similarly for Eq.(19) we can assume that say uq = cos rq cos sp with

the solution (analytic)

H = i cos rq sin sp (31)
Inserting Eq.(31) in Eq.(19) we get
uA = L cos rq sin sp sin s (32)
A @ s
Yq _ 1
such that Eﬂ b sin s ® 1 when p is small
q ud
Exactly the same relation holds for ER with q inserted for p on
p

the righthand side.

To get an idea of the truncation of harmonics caused by the difference

forms (18,19) we can assume that we are given

_ s
f=2 —5 5 COs rq cos sp
r +s

which results in a velocity uq

uq = = cos rq sin sp

Combining Eqns. (30 and (32) gives

A ,r, ,
uq = T cos rq sin sp
2

where 1 = sins T 52

q s 2(cos r + coss -2)
and similarly M = - r2 + S2

P r 2(cos r + coss =2) .

4 _ 1k ;

Set r = r and s = oL (VORTEX) and let us see how many modes are subject
to a truncation less than 5%, i.e. T > 0.95. A rough estimate gives
L =k = 16.

w11 =



c) Area weighting of velocities

The approximation (21) finds an interpolated velocity (u , u_) at the
position (qi, p:) by what is known as the CIC method [15,17%. go find the
effect of this interpolation we assume that uq is correctly given at all
meshpoints as

@ = cos rq coOs Sp

Setting the positions inside the box to §&q, 6p then the analytically correct

velocity at q, + 6q, P, + 6p 1is

u = cost (q0 + 8q) cos s (p + 8p) . (33)

The velocity found by Eq.(21) is

ug = Alcos(rq)cos(sp) + Azcos(rq+r)cos(sp) + A3cos(rq)cos(sp+s)

+ A,cos(rq+r)cos(spts) , (34)

A
where superscript A denotes the finite difference form.

A
To find the net difference between uq and uq we perform a Taylor

expansion of A at the point (qo,po).

du du 2,
u (q+8q,p+6p) = u (q,p) + == 6q + 3+ 6p + 3] —2 8q
q q dq e p an
3%y ) 32u
+ ——59 5p° + 2 —3 8qdp (35)
op dqop

A .. .
The form u can similarly be written in terms of the finite difference

forms of the derivatives

A 8, B g *azuq .
uq(q+6q,p+6p) B uq(q,P) +t.ap J 6q + | Sp |op 4 Soop ]Gqép ; (36)
%,0 0,% %,%

2It is apparegt from Eqns.(35) and (36) that the term
d4u 3cu
y —4 6q2 + % ———ﬂ-épz has disappeared in the finite difference approxima-

tion. The area-weighting is just a bilinear interpolation which introduces an

effective viscosity with no physical counterpart.

= 17 =



The velocity of a point inside a mesh cell can then be given by

dr

ac - Lt

where o, is the correct velocity for an incompressible inviscid fluid, i.e.

a solution to

E’.Ec 1
Tt TRV T -5V

The velocity a, =, + u, is, however, a solution to

o)
= .
=t + u VUM = 5 Vp v (\)MV!! )

with Vv, being the kinematic viscosity (%).

The velocity u, caused by area-weighting can be calculated assuming

again that the correct velocity u, is given by Eq.(33).

We expand the coefficients of the terms in Eqns.(33) and (34). This

gives for the q ., component for mode (r,s) taking terms of second order
u, = L%rzéq(éq-l) + %szép(ﬁp-l)] cos rq  cos sp (37)
such that B = g uc(qo i Po) .

The coefficients for sin cos, sin sin, cos sin result in higher order terms.
The coefficient of u,, represents a non-physical viscosity that depends on
the position (6q, 6p) within a mesh cell as well as on the mode number

(r, s). Since this non-physical viscosity depends on (q, p), the velocity
Yy does not satisfy Eq.(l). The interpolation used to evaluate Uy will
thus introduce a non-physical compression of the fluid. The point vortices
therefore experience a compressible flow field which will cause them to

cluster.

We notice that if 6g = 0 or 1 or &p = 0 or 1 then the corresponding
dependence of r or s respectively correctly vanishes. From Eq.(37) we
find 9 9
€ = %r"6q(6q-1) + %s"6p(6p-1) ,
so that § £ 0 for all r, s, 8q, 6p. We also notice the quadratic depend-

ence of the mode numbers 4, k. For a given mode gmax occurs for 8q = 6p = %.

We can then roughly state that there is little interference from the
interpolation on the long wavelength modes (r, s small), whereas the ampli-
tudes of the short wavelength modes will be diminished. 1In Fig.l we assume

that p is kept constant and plot u, and u, as functions of gq, and 6q

» 13 =



for a long and a short wavelength mode. The maximum amplitude of U is for

a given mode % r? .

We notice how the short wavelength mode is virtually reduced to zero

over the length of a mesh cell.

d) Area-weighting of vorticity

In the approximation (17) £ is made up of area contributions as indica-
ted. Analytically we regard a point vortex as described by a Dirac Delta

function. Hence the contribution from the point (q,p) = (q0+6q, po+6p) is

f = 5(q—q0—6q) S(P-P0-5P)

This function can be Fourier analysed and written as

i

5. B :
f et et 3

N N

q p 4

ag, C€Os rq COS sp (38)

P

where we have chosen a cosine expansion in both directions. The coefficient

a‘ek is

_ =L
ag, =) J £ cos rqcos spdpdq = _-cos r(q0+6q) cos s(p0+6p) « £39)

The area-weighting method credits to the surrounding points amounts An _
given by Eq.(21). Each contribution can be expressed by Eq.(38) but with
a coefficient a;, obtained from (39) by setting (8q,8p) = (0,0), (0,1)
and (1,1) respectively. The procedure is therefore quite analogous to the
one before and the difference between fA and f for mode (r,s) is then

to second order

6f = £ -f = % % é r26q(6q—1) + szép(ép—l)J cos rq cos sp . (40)

=i

The question of interest is now: how many modes in the expansion (38) are
required to produce fA ?  Or conversely: how many modes in the expansion
of fA differ from those of (38) by an amount which is less than a given A ?

We compare Eqns.(33) and (34)

approximation analytic
(1 - 8q +8q cos )P (cos(rﬁq))D
(6q sin r)? (sin(r&q))D

where D is the dimension of the system.

We form the difference A" between the upper two terms and let D=1 for

- 14 -



simplicity,
2n

- <
AT = 5 1-6q- =2 = -1)™ | 6q-647 | .
| q cosr+l-8q-cos(rdq) %i N (-1) | 89-89 J (41)

As an example we can ask how many modes are reproduced to within 5% if

N 1is say 64 as in VORTEX.

The expansion (41) becomes

r 242 1
A = = % 8q-6q
1 gyl 1
(42)
ot .
r _ 1 m& 471
By = 3 e | 8a-8q" |

We notice that ﬂ; < (A{)z. If we roughly set Ai = 0.05 then

AL € 0.0005. So (42) gives for 8q = k

2
2T
’ :J/B.ea Ay 4o 12
= 5 5

T

i.e. the 12 first modes deviate less than 5% from their correct values.

X. FLOW PROPERTIES OF TEST MODEL

Consider a system in which f = f0 inside a circle of radius Rb and zero
elsewhere (Fig.2). The stream function resulting from this distribution is

a solution to Poisson's equation (5) which in the Hamiltonian coordinates

2
q=% ,p=8 (43)
becomes 2
0 g, Oy 1 9E . 4
3¢ (459 * g Sz (44)

As solution we choose

Hl zfo(q qo) for qSq

and

=.% ks
H2 2ﬁ) d, log Q. for q?qO
oH . , i 2
such that 3 is continuous at the interface q, = 2RO .

Since f=fO for OSH%%quO and f=0 for H<0 we have a system in
equilibrium (12). The system is often referred to as Rankine's combined

vortex [11,12]. The metrical coefficients corresponding to q, p given by

(43) are
h =

L
q /29

h =.2q .
5 V2q

- 15 -



The velocities u_, ug then become in view of (3)

_ 1 OH _
u, == _; =0 (45)
P
1 oH
vy =~ 5 £ w2q for O0sgsq
q
and '2q0
ug = %fo == for u, &AL » (46)

Although the f-distribution is discontinuous at q=q_ other quantities
like velocity and pressure are continuous functions (Fig.2). The system is
an analytic approximation to a motion that is often encountered in real
flows. However, viscosity present in the latter will smooth out the f£
distribution, vorticity will dissipate since %% = vzﬁzf and the vortex will
decay exponentially such that in the limit t=® the flow is fully irrotational
(f~0) [13]. As we neglect viscosity in our study of hydrodynamics we define

equilibria as flows obeying Eq.(12).

We can communicate a slight irrotational disturbance, &H, to the system
described above such that an oscillating disturbance will cause a stable
azimuthal corrugation to travel around the interface q, with an angular

velocity
wly = §F_ B (47)
if 8~ 0% ST (48)

The equilibrium state of Rankine's combined vortex is linearly stable which

is important for our experimental measurements.

XI. THE SET-UP FOR NUMERICAL SIMULATION

To attain a circular region of constant f=fO we distribute point vor-

tices as shown in Fig.3. On J rings of radii rj = jd, j=1,J we

place point vortices at angles eij =1i %% , i =1, jM. This distribution
. 2 2] . .
credits onstant a md“ ——=—  to each point vortex.
ac nt area 10N P

In the experiments we set d = 0.3, J =24, M = 10. The total number of

particles is 3,000 plus 2 particles in the centre. The area is 163 and the

period of rotation is T = - L 0.682. We have chosen a value of At which is
16 o fo

3002 such that the approximate number of timesteps for one rotation is 128.

The maximum velocity occurring at r =R, 1is Vpay = £ R, = 66.4 so that

the Courant-Friedrichs-Lewy condition is satisfied (Vma At = 0.35).

X

= Tt =



An arrangement similar to the one described has been studied by ﬁorikawa
and Swenson [14]. Their study extends to N point vortices, geostrophic or
logarithmic, distributed on a circle. The stability analysis of this system
is already quite complex as N varies from 2 to 10. With 24 rings present
in our experiment we shall make no attempt to analyse the stability. If,
however, we simplify the f distribution to be a series of 6-functions 6(r- ~T; )

a stability analysis is feasible and the result will be published elsewhere.

In the first series of experiments we place the vortex made up of particles
in the centre of a square mesh and normally restrict H to be a constant (0)
along the perimeter of the square. The simulation is run for about 1,000
timesteps. Ideally all jM point vortices on ring j should remain on this
ring. To see whether this is the case we define the radius function for ring
j as

rj(e) = [En - (49)

where Eg is the fixed centre of gravity of the jM  points on ring j

eime (50)

where ay, 1s complex. Evidently 8, =a; = 0. Since at t=0 ap = 0 for
all m any development of an azimuthal mode will represent effects that are
due to the finite difference formulation or the arrangement of points as

explained above,

Analysis of the positions 1., i = 1, jM provides us with a, (m=1,16)

i»
as well as the perimeter and area enclosed by the curve they define., The
last two quantities are conserved in all experiments to within the level of
rounding off errors. In order to assign the anomalies detected to any one
of the difference approximations we carry out a number of experiments which
are all like Experiment 1 apart from what is outlined below.

Experiment 1: Standard experiment on the vortex as

described above.

Experiment 2: Along the square boundary H becomes a
function of the distance from the centre

of the vortex.
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Experiment 3: At is varied.

Experiment 4: A single ring of radius R; = 6.0 is moved
' in a time independent velocity field
inherited from Experiment 1.

Experiment 5: As 4 but with Ry = 7'%

6.
Experiment 6: As 4 but with Ry =Ry = 7.2 .

Experiment 7: Test of area weighting method for amalytic
velocity field.

XII. RESULTS OF THE NUMERICAL EXPERIMENTS

The standard Experiment 1 exhibits an anomalous instability at r = R,
accounted for by a growth with time of the azimuthal modes a,, ag, ajn as
shown in Fig.4. All other modes remain at the level of truncation errors.
In order to assign this anomaly to any one of the effects mentioned earlier
in this paper we performed the Experiments 2-7 guided by the principle of

elimination.

A study of Experiment 1 reveals a deviation in the azimuthal velocity
profile as indicated qualitatively in Fig.5. First we look at the effect

from using a square boundary since this seems most likely to cause the

anomaly. The amplitudes b4’ b8 ... of the potential ﬁsq (Eq.24) are
linearly related [11,12] by
2m
am = ?; bm

With our data a3, ® 10_5. Because of the vector integration technique [9]
the accuracy on a position is given by 18 bits or 10-5 (in cell length units).
We can, therefore, expect the influence of a square boundary to be negligible
and indeed Experiment 2 verifies this since a, develops in the same way as in
Experiment 1. We might now expect that the time integration method could
cause the anomalous behaviour in the face of the instability described in

Section VIII.

We have however devised a method [8] of preventing the 2 sets of
coordinates from getting out of step. The method can be applied at a variable
frequency during the time integration and whether used at any frequency or not

the development of a,, ag is still present (Expefiment 3).

In Experiments 4, 5 and 6 we eliminate all calculations except for the
time integration and the area-weighting of velocities (Eq.21). It is now

found that inside the vortex the azimuthal modes oscillate with their eigen-
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frequencies given by Eq.(47) without growing in time as shown in Fig.6. On

the edge and outside the vortex we get the same growth as in Experiments 1-3.

One might have been tempted to attribute fhe results given above to the
leapfrog scheme, since we have shown in Section VIII that this is unstable
for irrotational flows, and the outermost ring of the vortex is partly moving
irrotationally. However, the area-weighting method can equally well con-
tribute to the results of Experiments 4, 5 and 6. As noticed earlier the
area-weighting is a linear interpolation and is thus an exact method when
dealing with a flow where u varies linearly as it does inside the vortex.
In Experiment 7 we move a particle in a velocity field which is exactly
represented at all mesh points. To find the particle velocity we use the
formula for area-weighting (Eq.21), and as a trivial test of the method we
find an exact representation for a flow described by a linearly varying
azimuthal velocity. When moving a particle in a flow field with uq =0 and
u, = %fo ;;g (Eq.46) it is found that the area-weighting pushes a particle
off the circle it should remain on. The radial velocity component that is
introduced by the interpolation will change the radius of the particle orbit
by an amount up to 1% during half a rotation period. This is roughly equal
to the amplitude of a, by that time. Moreover, Experiment 7 confirms the
necessity of preventing the two sets of positions from getting out of step
as indeed they should in an irrotational motion. The reason why the
m=4, 8, 12 .... modes are enhanced is not as we thought initially the intro-
duction of a square boundary. The circular geometry interacts with the square
mesh to produce a four-fold symmetry so that only modes with this symmetry can
be present. The growth of these modes is caused by the area-weighting and
one way to remove this anomaly would be to adopt a higher order interpolation
scheme for evaluating the particle velocity. It would be interesting to see
whether a change in the structure of the mesh (hexagonal, triagonal etc.)
would improve on the accuracy rather than employing more mesh points in the

interpolation.
XIIT. ADVANTAGES AND DEFICIENCIES OF PARTICLE APPROACH

Two questions that inevitably arise from the foregoing discussions are:
How useful is the particle model for a further study of hydrodynamics? And

how does it compare with other numerical techniques?

The answer to the first question is based on our experience from a series
of numerical situations on a variety of hydrodynamic problems. The particle

model has proved useful and reliable within a time range that naturally
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depends on what accuracy is needed and what kind of distribution is required.
Good agreement has been achieved between theory and a number of experimental
results. For a given flow problem that can be described analytically in the
linear regime we can by comparing theory and experiment acquire a quantitative
understanding of how the inaccuracies are related to the length of the time
integration. In most of the cases that we have encountered the prominent part
of the evolution takes place before the accumulation of errors can distort

the result. For example, in our study of the interaction between vortices the
picture of evolution is almost complete within 3, 4 or 5 periods of rotation
of a single vortex, limiting the anomalous growth of azimuthal modes to say

5-6%.

A second advantage of the particle approach is its applicability to simu-
lations of guiding centre plasmas [10], thus extending the versatility of the
method.

The most serious deficiency is, however, the effect of using a finite num-
ber of particles to describe a continuum (hydrodynamic case). The area-
weighting inherent from the particle approach introduces a local compression
of the fluid, i.e. particle density, and with this effect present the quality
of simulating a waterbag system by a discrete distribution of points is lost.
A study of the frequency spectrum of £ which in the waterbag case should be
a delta-function reveals an undesired relaxation of the initially peaked

spectrum.

There seems little doubt about the saving in computer time, if the
Roberts, Berk method [5]) would be applied instead of our method in the study
of waterbag systems. But their method sets a limit on the length of the time
integration due to a finite computer core store, since the shredding of con-

tours requires more and more points.

The only alternative to our method seems to be a mesh method like the one
used by Fromm and Harlow [3]. Their method is subject to conditions for
numerical stability analogous to those outlined in [8] but it causes vorticity
to diffuse very quickly. In the history of developing our technique the
graphical display of the particle positions seemed an attractive feature.

With no comparison between the mesh and particle method available at the time
of development we were also attracted by the latter because it became clear

how to optimize the equations of motion for particles (ol.
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CONCLUSION

We have described a particle approach to simulate the motion of a con-
tinuous hydrodynamic fluid. We have shown how the numerical scheme like
any finite difference form contains certain anomalies. Our test problem
has however proved that the approximations we have made will not affect the
results seriously over a timescale appropriate for a study of many hydro-

dynamic flows (see Figs. 7 and 8).
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Fig. 2 Rankine's combined vortex as test model
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Fig. 3 Point vortices arranged to simulate Rankine's combined vortex
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Fig. 4  Amplitude of the m=4 azimuthal mode versus time, measured at r = 7.2
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Fig. 5 Azimuthal velocity profile. Dotted line indicates
the profile found in the experiment
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Fig. 6 Amplitude of the m=k azimuthal versus time, measured at r = 6.0
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Time =0

Time = 144 Time = 232 Time = 328

The onset of the Kelvin-Helmholtz instability

Time =0

P

Time = 120

Time = 200 Time = 280
The formation of the von Karman vortex street

Time =0
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Time = 80.0 Time = 168.0

Time = 360.0
Sheared rotation. Diochotron type instability
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Time =0

Penetration of a jet. The

Time = 0.370

Time = 0.750 Time = 1.250

crinkling up of the edges results in two vortices of opposite polarity

Fig.7 Flow problems simulated by program VORTEX

CLM-P282



,._
,.aw""T
1

Time =0 Time = 40.0 Time = 80.0 Time = 136.0

Two vortices coalescing because of sufficient initial proximity

_ |

Time =0 Time = 48.0 Time = 96.0 Time = 160.0

Two vortices precessing around each other. Large amplitude oscillations on their surfaces

' ;
Time =0 Time = 48.0 Time = 96.0 Time = 132,0

A

Time = 196.0 Time = 240.0 Time = 288.0 Time = 332.0

Two vortices with a critical initial proximity. At the approach they exchange vortex fluid

Fig.8 The elementary interaction between two vortices of the same polarity
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