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ABSTRACT

The transfer of power between an external circuit and a
collisionless plasma is described. A very simple model is used
which enables heating for arbitrary vaiues of the frequency to be
analyzed. Transit time magnetic pumping and ion cyclotron heating
are described in detail. The simple model used enables the
mechanism of magnetic pumping to be described much more precisely
than has been done previously. The mechanism is two-dimensional,
i.e. if only one dimensional variations are included there is no
powér absorption, It is shown that for magnetic pumping the current
parallei to the static magnetic field ahsorbs ﬁo power. It is also
shown that the heating rate at the ion cyclotron frequency is very
much greater than the magnetic pumping rate. Finally, the conditions
are given for the electric field components (which give rise to the

power absorption) to be vacuum fields.
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1. INTRODUCTION

Since the classical resistivity of a thermonuclear plasma will
be too low for ohmic heating to be effective other methods of
heating must be used. Two such methods are transit time magnetic
pumping which operates well below the ion cyclotron frequency and
ion cyclotron heating which works close to this frequency. Both
of these uetﬁods involve the collisionless absorption of power
from an external field, although both methods require a small
nunber of collisions to maintain a near Maxwellian velocity distri-
bution of particles in the region of the phase velocity of the
imposed wave field. The cyclotron heating described below is just
cyclotron damping and does not require a magnetic beach.

Transit time magnetic pumping was first suggested by
SPITZER (1953) using the concept of the motion of the guiding
centre and fhe force due to a magnetic field gradient. A number
of papers (BERGER et al,, 1958, DAWSON and UMAN | 1965,

CANOBBIO , 1970), have appeared since, most of which make use of
the magnetic field gradient force. In these formulations it is
the oscillating magnetic field which appears to transfér power to
the plasma. In fact, the force due to a magnetic field does no
net work and it is the electric field which provides the transfer
of energy from the external fields to the plasma. STEPANOV (1964%)
has calculated the power transfer from an external current source
to a plasma by calculating the electric fields produced by such a
source and then evaluating the work done by these fields on the
plasma. The results of this calculation were essentially the same
as other workers. Unfortunately, Stepanov's calculation which

was more exact than the other treatments was obscured by the
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cylindrical geometry he chose to use.

In this paper a similar model to Stepanof's will be analyzed
but in plane geometry. The fields will be excited by an oscillating
external current. In the treatment of other workers an oscillating
magnetic field, which violated Maxwell's equations was assumed.
Also, in these othef treatments variation in only one spatial
direction was allowed whereas any practical system will vary in at
least two spatial coordinates.

Using the simple model to be described below the problem of
transferring power to a plasma from an external circuit can be
analyzed for arbitrary values of the frequency. Thus, after
obtaining an expression for transit time magnetic pumping similar
methods are applied to calculate the power absorbed in the vieinity
of the ion cyclotron frequency.

2. FORCED OSCILLATIONS DUE TO AN EXTERNAL CIRCUIT

We choose the simplest model which still contains the
essentiai ingredients of the problem. Thus, we consider an infinite
uniform plasma with a static uniform magnetic field pointing in the
z-direction. The external current is assumed to flow in the
x-direction and to vary as

ei(kzz+kyy-wt). .. (1)

~

J )
~ext 'x “ext.

Since the plasma is uniform we could obtain the solution for a more
realistic current distribution by Fourier synthesis after we have
obtained the solution for the current distribution given by
equation (1).

The forced oscillation problem is much simpler than that for
the natural or characteristic oscillations since w and k are

given and we can calculate the fields explicitly in terms of IjE—
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from Maxwell's equations.

In order to calculate the fields and -currents
in the plasma we must know the conductivity tensor 0. We now outline

very briefly the calculation of g.

We assume that J : is sufficiently small such that the fields
ext-

satisfy the small amplitude condition. We may then linearize the
Vlasov equation to obtain

at

4§ 6f1j Ei. afi. Ei at .
. ‘l — . O‘! S
75 t Y ox + o (v X‘EO) av - "y (Eh + ¥ X Ei) 3 . (2)
where j refers to electrons or ions, fOJ is the equilibrium solution
which for simplicity is taken to be Maxwellian with TLJ = T”j. E,, By

are the electromagnetic fields resulting from Jext and the plasma.
All the other symbols have their usual meaning.

The solution of equation (2) is obtained in the standard way by

integration along the equilibrium particle orbits

q. .© af .
— __J_ 1 ’ ! 0 ! .
By s m_[,ﬂi(}: (t'),8). -2t av (3)
J (o]
. af | o,
- _21/ ok, 2(t) + ky(t)-at’), 0
m, ~1 v _
J L | . con (&)
af |,
where the teru E'X_Qi- —E%J-= 0 since fo is a Maxwellian.

With the solution (4) we can calculate the plasma current produced

by the electromagnetic fields
s
J

and hence the conductivity tensor 0. Performing these integrations

we finally obtain for the elements of o

= rco 2 2
-k p-
AN 07] n? 2 214 ek}'-]
5 = \ 2 Ko \I - keI Y(z .)
; I & t P ) n P n] V ) nj
s >LJ“ / mJ [( pJ T ¥ - kZ vTJ
J n=-

. (6)
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where V
cyclotron frequency qj Bo/mj
Larmor radius
of the first kind and I;
function will always be

is the Plasma Dispersion function of FRIED and CONTE (1961).

argument of Y is (w + nw, )/VQ k VT..

the
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are the thermal velocity (k Tj/mj)2

of the jth

is the nth

its derivative.

The function Y

species and Pj

and

is the

order modified Bessel function

The argument of the Bessel

is -7 where 7

The

For the remainder of

elements of ¢, YWlll be used to denote Z 7
= L

nJ

the other elements we have
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. (9)

(10)

(11)

(12)

. £13)

(14)

The above expressions are valid for arbitrary frequencies and an equili-

brium distribution which is Maxwellian and where

T .=T ..
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5. TRANSIT TIME MAGNETIC PUMPING

The frequency range for this form of heating is such that 'w « wci'
In the original conception of this heating mechanism the particles
traversed a finite region over which the magnetic field was changed
periodically in time but was effectively constant outside this region.
The magnetic field inside and outside this region differed typically
by a factor ~ 2. 1In more recent forms (DAWSON and UMAN, 1965,
CANOBBIO, 1970) of this heating mechanism the magnetic field oscillates
about its equilibrium value ofer the whole of the plasma but the ratio
of the amplitude of the field oscillations to the background field is
only a few per cent. In our model the oscillating fields are created
by the external current in the x-direction.

For the frequency range already mentioned (w « wci) and for

k;pg « 1 the conductivity tensor simplifies to the form

(o} 0 o
XX XZ
= (op
2 0 Oy O_O
sz 0 ZZ

and where terms kipg have also been neglected. We now calculate
the'electromagnetic fields produced by the external current with the
aid of Maxwell’s equations. From the two curl equations we have

2 WP L _ A

( X x +-(k?.E;)£ HH, g) E W, Jext. ‘x .+ (15)

where k° = k; + ki and I is the unit tensor. Solving equation (15)

for the electric field we obtain

iwp 4 4 w? ; 2 w?
o e - - i . -i o (k¥ - —
Ex -~ TA Jexti.{ S K Lo Tz (k; EE-) o yy'y ¢ )
2 1
—wzpo 0‘yy o-zz ( 6)
2 (17)
Ey:-(wp Pk k I, cz/
w? ... (18
By == 2 l"'0)2 Jext ( z ¢ 1 UYY) GZX/A a8
where
A=det. (-kk+ (k- 9) I - v, g)- (19)
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Having calculated the electric fields excited in the plasma by the
external current we may now obtain an expression for the power
absorbed by the plasma. This is given by the usual expression

L Re J.B* ... (20)

Pza J

where J in equation (20) is the plasma current

i:

na
Il

Owing to the form of the conductivity temsor ¢
Re (J_E *¥) =0
(9, E%)
and therefore

P =

o |

Re (JX B¥ & J_ E;). ... (21)
However, from equations (16) and (18) and the condition
g _=-0
zZX Xz
E*¥) = 0.
Re (J %) =0 cis (22)
This result is in agreement with DOLGOPOLOV and STEPANOV'(1963). The
expression for the power now becomes

P=%M{%J%P+GHE2%}, .. (23)
The power gained by the plasma is of course lost by the external
circuit. One can easily check this by making use of equations
(16) - (18) to obtain

Re (J . BX + J.EX) =0 . . (24)

Assuming o « czki(kzm ky) the power per unit volume absorbed by

the plasma is
‘ 2

(Ciﬁl-lo)"r IJext.|2 3 5 L lop,
P=— e Iczzl 1+ E@- Ly o Re(o )
Z ZZ Z
(wu, ) 1o, I?
2 T i o) 61
T 9 . IE o¥ iwy
X Re'{ "“zﬁf—z—'(l + Eg-3§1 + G;y) }' en (29)
ZZ Zz ZZ z



The factor IA.I2 in the demoninator of the expression for P
gives rise to resonances in the heating when @ is one of the normal
modes of the plasma. The ion acoustic resonance has already been
discussed by STEPANOV (196%). However, there are two other low fre-
quency waves that can give rise to resonant heating. The magnetic
. acoustic or compress.onal alfven wave and the shear alfvén wave.
These resonances will be considered in a later publication.

Now under the conditions assumed the elements of the conductivity

tensor are given by the following expressions

N i i R o (26)
g ., = Pl Y )= ... 2
xx 2&;{ B; V2 kz VTj (ZOJ) B2 }
3 o
i n wm,
O‘yy = Y‘ - T—‘l . (27)
- 0
J
ol Ky 08
Txz = > B, kz (Zoj Y(Zoj) ~ 1) ... (28)
=l
J
) noq; w
‘ = - . ve L2
Gzz S;j kK Tj Ei-(zoj Y(Zoj) 1) : (29)
5
J

Substituting equations (26) - (29) into equation (25) gives the
power absorbed by the plasma in transit time magnetic pumping as a
function of Te/Ti and the phase velocity of the forced wave. We
will not write down the expression for the general case but only for

and w/kz % v... From these two

the special case when Te = Ti i

conditions and equations (25) - (29) we obtain

o k 2 . Y(z .
p_ L [lext.] W Y Im [z . Y(z .)[2 + “oi Y(%o;) }
4 €, cz(k; . kz)z oi ol 2-zoi Y(zoi)

. (30)
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where [, the ratio of plasma pressure to magnetic pressure, haé been
assumed to be much less than unity. The expression in the curly
brackets in equation (30) is exactly Dawson and Uman's function H.
Also, like Dawson and Uman P 1is proportionai to wP. The only
significant difference between the above expression and that of
Dawson and Uman is that equation (30) is proportional to k;/k? and
hence P = 0 if ky = 0. The reason for this difference is that
Dawson and Uman simply assume the existence of an oscillating
magnetic field in the z-direction which does not satisfy .laxwell's
equations. When the source of the fields is included the z-component
of the oscillating magnetic field is found to depend on ky and we
obtain the result that P = 0 if ky = 0. Subject to the restriction

that kypi « 1, ky should be as large as possible.

The above analysis shows that the power absorption in transit
time magnetic-pumping is due to the plasma current transverse to the
static magnetic field. However, the necessary phase difference
between this current and the electric field is due to the motion of
the resonant particles along the static magnetic field. Thus magnetic

pumping is due to a rather subtle interplay of transverse and longi-

tudinal motion.

Previous estimates of the power absorbed in magnetic pumping
have shown it to be proportional to the square of the amplitude
of the magnetic field perfurbation. However, this was due to the
approximation of replacing particles by their guiding centre motion.
In fact, as shown by equation (23) it is the electric field components
Ex and EZ which give the power absorption.

From the point of view of experiment it is worth considering

the origin and magnitude of these electric field components.
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Comparing these components with the aid of equations (16) and (18)

E g
—.-J-{.A.. L% ~ 1 b3 l
E a k_p.
z zX y i
where we have again assumed w? « cgky2 or cgkz2 . In other words

the electric field excited is predominantly transverse. However,
due to the difference in magnitude of the elements of g the term
in the power proportional to. EZ is comparable to the part propor-

. 2 P o
tional to lExl . Since Uxx/bxz kypi we have

c _|E [2
xxx
o) E EX
Xz 7z X
Finally, for a low-B plasma

A= -dw o kz(k; +12) eve FLY

Z

and from equations (16) and (18) we have

imp'o Jext.
£ o oxt - Ge)
(k2 + k).
y z
T ox
E = " E_ ... (33)

i.e. the E; component is a vacuum field for low B whereas EZ is
due to the presence of plasma. In any experiment designed to
demonstrate the effect of transit time magnetic pumping it should

be Ex or its equivalent which should be maximized.

4. POWER ABSORPTION NFAR THE ION CYCLOTRON FREQUENCY

We will now use the same model of forced electro-magnetic waves
to obtain an expression for the power absorbed by the plasma when
the particles 'see' the electromagnetic field oscillating close to

the ion cyclotron frequency. In other words we choose  and kz



such that

W~ V2 k Vo = wci(l + 12 k Pi) - (34)

This corresponds to what STIX_(1962) calls cyclotron damping and not
ion cyclotron resonance heating which requires a 'magnetic beach'

(cf STIX, 1962). Nevertheless, this is a resonance method in the
sense that the condition given by equation (34) must be satisfied
within certain limits which will be considered after we have obtained
an expression for the power absorbed. By contrast transit time
magnetic punping works for any frequency provided it satisfies
W« w . The conductivity tensor does not simplify so much as in the
previous case, all the elements being non-zero even though

k;_ﬁa « 1 1is again assumed. Solving for the electric field compon-

ents from Maxwell's equations, as before, we can again calculate

the power absorbed by the plasma

1 . 1
%Re J.B* =5 Re (@ ) |EX + 1Ey|2 + 5 Re (e ) IEZ |2

X

~ Im (dxz) Im (EZE;) + Re (Gyz) Re (EZE;) e (35)

where we have used equation (34), the symmetry properties of o and

the approximations o =0 _,0 %10 for ¥ p%«1l . If
XX yy’® Xy XX yPi

we further assume

w =, 1
pi
« 1 k L« 1 T
= e &0, , Eopy (36)
%

conditions which are satisfied by the proposed heating experiment on

Proto-Cleo the electric field components are given by

E = (wm ) kK J o /A ... (37)

X 7z ext. 2z
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B, = SCTS T (k; - iwp o )/A ... (38)

E
Z

_ 2
(wpo) Jext. ky kz G&x/A .- (39)
where A 1is of course numerically different from the previous case

but is still given by equation (19).

For this case the elements of g are given by

0o i 1
Txx ¥ 2 m, 2k v, Y(Z_ii) ... (40)
1 z Ti
To ki EX “oe
®xz ¥ 2 B ké (3 = 24 Y(Z_ii) - _E“IY(Zoe)> ce. (41)
in 4k
%z % T3 B, kz< =L HE Y(Z_11)> . (42)
in, 8
T2z ¥ % £ E§'<— L+ LI Y(Zoe)>- ... (43)

The remaining elements are related to these through symmetry conditions
or the k; pg « 1 approximation.
Using equations (37) - (43) and égain considering T ~ T, we
can simplify the power expression given in equation (35). First Ex
is again the dominant electric field component since
E ~E
y z
and E/E ~0 /o ~k .. Secondly, the ratio of the second,
z' "x yx' zz z i :
third and fourth terms to the first in equation (35) are (me/mi)f,
k? p? and kK p? respectively. Thus, we may write
yoa y'1
oL 2
P35 Re (0 ) [EX, ) oo (4k)

It follows from the approximations already made that

Az-(k;J,k;)k‘;iwpocrzz- oo (45)

w ]



This means that the dominant electric field excited by the oscillating

external current

B ow lw“o Jext.

- (46 )
(12 + 1)

is again a vacuum field. Using equations (40) and (46) the final

expression for the power per unit volume absorbed by the plasma in

the vicinity of the ion cyclotron frequency is

|2 2

3 |

p-i x P ext. ! (- z2 ) “pi Tei (57 )

= E\E E exp- 22 ) T o A )
0 z ' i v Z

The variation of P with w has a resonant behaviour due to the
exponential factor. [Ihe maximum for P occurs when ® = wci and
the half width i i .
e half wi is approximately 212 kz Vi
We may now compare the power absorbed by the plasma due to

transit time magnetic pumping with that due to cyclotron damping.

For the saue exciting current and Ti ﬂ'Te,

P w .
cycl. 1 ci (48)
2 p
P pmp k;Piszpi @

where we have taken the exponential factor in equation (47) and the
function of =z ; in equation (30) both to be of order unity. In
equation (48), w is the frequency for magnetic pumping so that
wci/w » 1, Thus, power is evidently absorbed much more efficiently

by the plasma close to the ion cyclotron frequency than by transit time

magnetic pumping.
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5. CONCLUSIONS

Although the cyclotron heating rate is much greater than
that due to magnetic pumping there is one respect in which the
latter method is superior. It does not depend critically on the
value of the magnetic field. On the other hand, in the ion cyclotron
case,'if w departs far from ® the heating rate becomes exponen-
tially small.

Heating methods of the type described in this paper may be
applied to plasmas in magnetic traps where very complex magnetic
fields are used. To carry out an analysis similar to the above
would be extremely difficult in such fields. All we shall attempt
here is a very simple estimate of the fractional magnetic field

and temperature variation which could be tolerated.

In so far as variations of the confining magnetic field effect
those particles resonant with the forced wave, both methods of
heating.will be equally sensitive to such variations. However, these.
effects are not covered by this analysis. We are only concerned with
the way in which the heating rates calculated in this paper depend on
magnetic field and temperature. Magnetic pumping should not be very

sensitive to small changes of the magnetic field a.ad significant ion

heating will take place provided

0<w<3 kz Vg (approx.)

Since w and kz are fixed by the circuit and Vi increases
during the heating this condition would be satisfied throughout.

For w « kz v, the heating becomes linearly small,

Ti



As already mentioned, heating near the cyclotron frequency is
very sensitive to variations in the magnetic field and temperature.
The condition for a significant fraction of the ions to 'feelf the

electromagnetic fields oscillating at their cyclotron frequency is

w~w . + 12k v
ci Z

Ti *
If we denote the mean value of ® by wzi, its variation by
Aw . and let vo. and Av,. by the initial ion thermal velocity
ci T1i Ti

and its increase then we can get an estimate of the amount of

variation that can be tolerated by taking

- VQ < Z-ii < VQ.

This then gives for the band of allowed W values
(oo o < o o [
(2-V2) k p;, -2k, 8¢ f_\.wci/mci (2 + V2) k Py +2k Ap.

All the analysis in this paper has been linear. Without a
discussion of the non-linear development of the heating no definitive
answer to the feasibility of these methods can be given. The linear
expressions do provide an upper limit to the heating rate however.
Since both methods depend on resonant particles they both require a
sufficient collision rate to re-Maxwellianize the distribution of
these particles. In the magnetic pumping method this results in
there being a critical density below which the effect will not occur.
It seems reasonable to expect that the corresponding density for the
cyclotron case may not be very different but that due to the larger
rate of heating a smaller external current amplitude could be used.

In summary, then, we have analysed a sufficiently simple model
to enable the linearized problem of transit time magnetic pumping to

be solved exactly. The exact treatment shows much more clearly the
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mechanism of the power absorption which depends on the transverse
current (transverse to the uniform background magnetic field) and
the Ex and Ez electric field components. The longitudinal current
gives no power absorption but it is the longitudinal motion of the
particles which produces the phase shift between J and E resulting
in the power absorption. For a low-p plasma the E& field is a
vacuum field whereas Ez is due to the presence of plasma. The
same model has also been used to obtain the power absorbed near
the ion cyclotron frequency. The power absorption was much
greater than in the magnetic pumping case, Finally, in the
cyclotron case the power absorption is dominated by Ex which is

again a vacuum field for wpi/cakz « 1.
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