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ABSTRACT

Statistical Mechanics is developed for a two dimensional
guiding center plasma. Because there is no kinetic energy associated
with guiding center motion this development is unconventional. Thermal
equilibrium is discussed and an interesting limiting case is noted.
Using the random phase assumption a kinetic equation for the density
fluctuations is obtained which has thermal equilibrium and its limiting
form as the only stationary states. However, despite the phase averag-
ing this kinetic equation is reversible and when disturbed the system
oscillates about equilibrium. Similar oscillatory behaviour appears
in the microscopic correlafion function of the fluctuations and the
oscillation frequencies are obtained explicitly; however, these
oscillations do not significantly change the macroscopic diffusion

coefficient derived earlier by McNamara and Taylorl.
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I INTRODUCTION

In a recent paper1 an analysis was given of the diffusion of a
twé—dimensional guiding center plasma. This consists of long filaments
of charge e/£ per unit 1eﬁgth, aligned parallel to a large uniform
magnetic field B and moving with the E x B guiding center drift velo-
city. It was found that in this model diffusion is proportional to
1/B and that in thermal equilibrium the diffusion coefficient is
similar to the Bohm value ckT/eB.

These results and other unusual features make the two dimensional
guiding center model of considerable interest in its own right as
well as of importance for the interpretation of the many two dimen-
sional computer simulations now being undertaken. It may also be
rélevant to the understanding of real plasmas in strong magnetic
fields, where charge fluctuations might be expected to have a fila-
mentary character. The guiding center plasma model is also formally
identical to the proﬁlem of two-dimensional turbulence in an ideal
fluid, the charge density being the analogue of the conserved
vorticity.

The statistical mechanics of a two dimensional plasma has been

3

considered earlier by Salzberg and Prager2 and by May~ who derived
an equation of state of the form

n 92
p=—£<kI|— z"’)

where n is the number of filaments per unit area. The first

==

contribution to the pressure, p, arises from the kinetic énergy, and
the second from the potential energy of the filaments. As we shall
show, the guiding centre model is one in which there is no kinetic

energy, so that the pressure is apparently negative. However, the
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model also depends on the presence of a magnetic field which so
constrains particle motion that compression is only possible if
acéompanied by a corresponding increase in magnetic energy. Conse-
quently in our model the fotal pressure must include the magnetic

contribution and becomes

In reference 1 the spectral distribution for the fluctuating

electric field was considered both in thermal equilibrium, when

L o T o (1)

(BB k)Y = 7 =270y
(where A2= KTﬂ/kﬂneQ is the debye length in two dimensions), and

for a random distribution of filaments when

16 7©% ne®
(BB (X)) = e . (2)
The correlation of the electric field was assumed to be described,

approximately, by the normal distribution;

P(E(t)} « oxp (- & [ B(r)g(ramma) E(w) v, o)

The aim of the present work is to consider the fluctuations in
more detail and to develop a kinetic theory for the 2-D guidiné center
system, This development differs greatly from conventional theories
because of the absence of any kinetic energy associated with guiding
center motion. Accordingly, in section 2, the relevance of thermal
equilibrium for such a system is first discussed. Then in subsequent
sections we show that a reasonable and consistent approximation leads
to a kinetic equation for the fluctuations and that the distributions
(1) and (2) are the only stationary states. We also calculate the
correlation function of the fluctuations and the behaviour of the

system when disturbed from equilibrium. These calculations encounter



the well known problem of reconciling microscopic reversibility
with macroscopic irreversibility and some difficulties remain in
describing the relaxation of the system to thermal equilibrium.

Finally, we discuss the macroscopic diffusion coefficient.

IT STATISTICAL MECHANICS OF THERMAL EQUILIBRIUM

Before considering the dynamics of the guiding center plasma
some remarks on thermal equilibrium for such a system are appropriate.
It is, of course, universally accepted that thefmal equilibrium is a
stationary state of a dissipationless system. However the guiding
center plasma is peculiar in that the velocity, rather than the

acceleration, is determined by the force and moreover this velocity.
E x B
T =&~ ... (3)

is orthogonal to the force. One consequence of this is that there is
nothing corresponding to kinetic energy in this system and this might
appear to preclude the application of conventional arguments.
Nevertheless, despite the absence of kinetic energy, the system
can still be described in Hamiltonian form, The Cartesian coordinates
X5 V5 (the magnetic field being in the z-direction) are canonically
conjugate coordinates and the Hamiltonian is proportional to the
elect?ostatic potential @ ; in fact H = @/B. The potential, and
therefore the Hamiltonian, is a function of the coordinates of all
the particles in the system:
N e, X
2= ) (f) log(R;-R) = ) o
7 |

and is a constant of the motion. However the energy ¢. associated

with an individual particle is not a constant and any particle can

exchange energy with any other. Hence, despite its peculiarities,



the guiding center plasma falls within the scope of the general Gibbs
theory of thermal equilibria which 1eads4, via the usual Canonical
Ensemble, to the thermal spéctrum of Eq.(1). For the formally
identical system of two dimensiﬂnal ideal hydrodynamics, both the
Hamiltonian character and the thermodynamic properties were discussed

5

by Onsager” in his study of two dimensional turbulence.
The spectrum (2) corresponds to a completely random distribution
of particles, F{Xi, X, - - Xng = constant, and it is easily seen

from the Liouville equation for guiding center particles

a

3

. 8F
9%, =0 cen (B)

+

QD

T E(El) x B
t " 4 B
i
that this random distribution is also a stationary state of the

guiding center system . This becomes less surprising when one

observes that if the thermal spectrum (1) is written as

<IB(K) [2) = 16 ﬂ22ean T +hizkz)
then the spectrum (2) can be regarded as thermal equilibrium in the
limit T + » . This accords with the infinite energy of a random
distribution of charged filaments interacting with the coulomb law,
In this connection it is noteworthy that if the coulomb interaction
were replaced by one which diminished more rapidly with distance,
then the completely random state would correspond to thermal
equilibrium at some finite temperature Tc. (A random distribution
always maximises the entropy and the temperature TC to which it

corresponds is determined by the expectation value of the energy).



ITT DYNAMICS OF THE SPECTRAL DENSITY

The discussion of thermal equilibrium, outlined above, yields
information only about the spectrum at any one instant of time.
We turn now to the main topic of the present paper - the derivation,

and solution, of an equation for the time development of the spectrum

of fluctuations. This will, incidentally, show that the thermal
distribution and its limiting form are indeed the only stationary
states.

We fix attention on the charge density in a given realisation of
the system and for simplicity restrict ourselves to a plasma of
identical filaments with a uniform neutralising background.

The density of filaments is
N
=
o (x) = ) Blx-x,),
61

Xi(t) representing the positions of the N filaments. In terms of
the Fourier transform, taken for simplicity over a unit square,

ik-x -i kX
%) = ~~ e ¥ o sl
p(x) Sk Py © Pl S

P
1

~

and the density Py satisfies the equation of continuity

&p N

k.

5?"*15'> Y P’ = 0 -+ (5)
¥

The guiding center velocity can be expressed directly in terms of
Pi using the equation of motion (3) and the two dimensional Poisson
equation which together yield

so that



(Bk'x k)
Pk’ Py v (6]

Q:I =]
| ©
=

1}

2
e |
)

where a = 47tec/B€ and E is a unit vector in the magnetic field
direction.

Eq.(6) is the fundamental equation of motion for the density .
fluctuations. It describes the rate of change of the complex wave

amplitude due to non-linear interaction with other waves. It

must be noted however, that the present problem differs essentially
from the usual non-linear wave-wave interaction in plasmas. The
conventional situation is one in which otherwise independent waves
interact with one another through non-linear processes, whereas in
the present problem there is no meaningful linear approximation.

In the guiding center system the non-linear coupling not only causes

transitions between waves; it is responsible for their very existence.

The equation of motion (6) exhibits the connection between this
problem and the motion of a two dimensional ideal fluid. The charge
density p is analogous to the conserved vorticity ¥ and except for
the constant o the relation between p and v is exactly that between

¥ and v.
The spectral function for density fluctuations is defined as
U = Py Pi)
where the angular bracket denotes an ensemble average, and is

related to the electric field spectrum by
. 2 qy
- A& =
To develop an equation for qk(t) we differentiate twice with

respect to time and consider



G = Py Py + P P> + Cec
The fact that we must work with the second time derivative rather
than the first is one of the consequeﬁces of the absence of linear
waves in the present problem.
Using Eq.(6) for th‘e time derivatives of the P> One obtains
for h; the equation

E.r % ,lé ) kﬂx kl ’
bt {3' k7 P P’ k" Pr-k’ Pk
i’

L /

- 2 ;

qk—QRem‘l
k' k

k'x (k-k') k' xk
_ + J\JJ' e Prc Pre—ic! i P! P ~ b- __E‘TB__ PknPk__k’ Pk" P_k_k”

(7)

So far this equation is exact, however in taking the ensemble
averages we shall now adopt the random-phase assumption:- that only
terms involving products of the form Py p_kl survive the averaging

process and that <Pk Pk Py’ P-k’> may be factored as

<pk p-k><Pk' P-k’> =4 G-
In connection with the random phase approximation we note that for

any spatially homogeneous system
<pk Pk'> = q‘k 5(5 + ,.1;{_,’)

If the particles are also distributed at random then
(P Prr)y =Nk + k)

and

<Pk1pk2 pka Pk4> = N8(ky+ k) 8(kg+ k) + perms
+NG(ky + ky + kg + Ky )

= <Pk1 Pryy <Pk, Pk .7 4+ perms. + O(1/N),



so that the random-phase approximation is exact for a random
distribution of particles in the limit N ®+ o . Furthermore if the
cérrelation between quartets of particles is adequately approximated
by the product of pair correlations, as might be the case if all
correlations are small, the random phase result is again obtained.
Despite its frequent use, it is difficult to justify the random
phase approximation beyond this level and in what follows we shall
explore its consequences.

Using the random-phase approximation Eq.(7) reduces to

(bk x k )
= —_—
0"20?> 6(£0+gi+}52)

where we have replaced the three vectors k, E', K" by k , ki, ko,

~ '\40

and for brevity have labelled the g by the index of K, 1.8
@ = q(ks) = 9, -

Eq. (8) is the equation of motion for the spectral function
qk(t). It can be put in a more convenient form by noting that the

7

factor 6(50 + ki + ks )e(beks x EO)E is symmetric’ under any permuta-
tion of (Eo’ Eiské)’ while the term in braces is antisymetric in
k4 and k?. On interchanging the dummy indices ki, k» and introducing

éhe notation

Ajse =20 8(k + ki +k) (beks xk )2




Eq.(8) becomes

N
1 .
qo = Z §A012B12 (B:L:a%. e + Bao o [10 * BO:'qu ‘11) (9)

1,2

or . .
1, Z 1, Bio (Biz By - Boa > (10)
—= - + + S 5 )
q, 5™ 012 q, q, 4 a, Lo %y q, |

1,2

| (a) Thermal Equilibrium

We can now establish that the thermal equilibrium spectrum
Eq.(1) and its limiting form Eq.(2) are the onlzr stationary solutions

of (10). To show this we first sum over k_  to obtain

L]

S—\ 0 1 (B:La B:o - Bos >2 (11)
—_— = = A + + ... 11
_I 45 ) 6 aa L da gz G 91 9
0 0,1,2
Since A g42 and the g are both positive definite, this establishes
that .
T 2 50 12
) o (12)
k
0

equality holding if and only if

(Bm Bso B )
+ + =0
95 g4 d2

for all k's such that (50 +ki + k) =0,
This functional equation can be solved by setting 9y = ﬂkikz-)- ;
(clearly q, can only depend on |g| in an isotropic system), then

V(k®) must satisfy

(k- 1) ¥ (12) + (@2)¥ (7) + (€ - 12)¥ (In?) =
Writing ks = - (k, + ki) ,

(kz + 2 1«[0 k, cos 6) \I!(ki) ~ (k% 2 k0 k, cos 6 )V (ke?)

+ (ky®- k?))\k(k?) + ky®+ 2 k Ky cos 8) =



and if ¥ is expanded about cos 6=0 , a comparison of the
coefficients of (cos e)n shows that the only analytic solution must
be of the form ¥ = A + B k°. When the constants A, B, are appropr-

iately identified this unique solution corresponds to

n A\ K®
qk=m7—‘%k e (13)
which confirms that the thermal equilibrium spgctrum and its limiting
form are the only stationary solutions of Eq. (10). As noted by _
Onsagers, for finite systems in which k is bounded below, negative
temperatures are possible. This would correspond to a negative
value for A%,

(b) Two Invariants

There are two significant invariants associated with Egs.(9)

or (10), for using Eq. (9) we can write,

oo (%)

S_‘ (io 7 1 (Biz Bzo Boi) ‘

g B "/, ® A KT YRR YR (Biz 9192+B20 929 +Bo 1o s )
0

d

- an

) —

. 1 .
> By = ZEJ E’A012 (Biz + B + Boy)(B124192+Bao 9290 +Bo19091 )
—
'R 0,1,2 (15)
and the right sides of both these equations are identically zero by
the definition of the coefficients Bij' The first result (14) rep-
resents conservation of energy. The second (15) corresponds to the

exact invariance of the quantity

[ & s o

which follows from the Liouville equation (4). It is of interest
that these exact invariants are still preserved after the Random

Phase Approximation has been introduced.

- §l =



IV RELAXATION TO THERMAL EQUILIBRIUM

In this section we investigate how the qk's vary if the system
is displaced slightly from thermal equilibrium. To discuss this we
consider again the equation of motion, Eq. (10) writing

4 = Q . 6q,
and expanding to lowest order in 6qk. The term in square brackets

vanishes for qk' = Qk’ so that

6;1'0 12 Biz B20 B
- —Ao:l.z . \T7 S + o7 5‘11*‘(;25 Q, Q Q ... (16)

Eq.(16) constitutes a set of coupled linear equations, with

12

constant coefficients, for 5qk(t), so that the solutions will be
_made up of normal modes each varying with time as elSt. If we

consider a single mode with eigen-fregquency Sy s multiply (16) by

Ao¥
[qu] and sum over k we obtain

A
o 18t o B B B %
k 1 12 a0 01
S)\z }_} s >_} "G_Ao:.z QoQ4Q2 <Q z 5‘1 + Q.2 6qy + Qz_g' 5‘1;;)
k Q1{ 0,1,2

(17)
which indicates that s?\2 is positive definite and that all the

normal modes are purely oscillatory. [The only non-oscillatory mode
is merely a displacement to a neighbouring thermal equilibrium
[ﬁqk o« Qk)]. Determining the actual frequencies of the normal modes

is difficult, but they must be of the form
1

- Q'Ei_ _cexT |, 1 : 18
W X f (?\k) = -—%—; f(?\.k) : ... (18)
where n. = n\? is the number of particles per debye square.

D
The oscillatory character of the normal modes is unusual, but

this need not itself prevent a form of relaxation to thermal

- Y =



equilibrium. For a disturbance expressed in terms of oscillating
modes would tend to zero as t > « if the eigenvalues were continuous
an& the conditions of the Riemann-Lesbesque lemma were satisfieds. It
must be recognised, howevér, that equation (16) is fully time revers-
ible, despite the introduction of random phase in its derivation,

True irreversibility appears only after some degree of coarse-graining
has been introduced and we shall return to this question after the

auto-correlation function has been considered.

V THE AUTO CORRELATION FUNCTION

So far we have examined only the time development of the fluctua-
ting spectrum itself. In order to calculate the transport coefficients
one needs to consider the correlation of the electric field at two
different times. This is directly related to the auto-correlation of
the density fluctuations which in a steady state is a funection only

of the separation of the two times,

8. (7) = ¢(p_y (#) gy (b= 7))

To obtain an equation for the time development of Sk(T) we again

consider the second derivative, this time with respect to T,

obtaining
s, N bek'x k [ bk'x K
B 2
= ¢ p I: Py # Pyt up !
de -k " k!z k"2 k""k' =k" "k-k

Bk (k')
+ 2 Pkﬂ' Pk_kl —Kk" Pk':l) | SN ( 19)

where the quantity in square brackets is taken at (t-t) but Pk

is taken at t. We again invoke the random-phase approximation and

so reduce (19) to

12 =



- 17 2
k=az>_‘_(~“3_'l~‘-i‘:‘f.)ﬁ{[;__1 L L S T 5
2 _ 2 @ ke | U ' Ui’ [Pk

... (20)

or using the symmetry properties of the coefficients and the notation

of section 3,

a2 Sk('c) ) >—\

2

d Biz(Bo;g; +VBEOQE) Sk(T)- .. (21)

1
L A012

,2

[Ty

It should be noted that the scope of the random-phase assumption
has been extended in this section to a situation in which one of the

four in each term is at a different time to the others. The

P
random-phase assumption is still exact, even in this extended sense,
for a random distribution of non-interacting particles. In other
cases it should be equally as valid as our earlier application so
long as the time difference (t—t') is small épough. It cannot be
relied on at larger (t-t’) where our results may need modification.
Returning to EQ.(21) we note that in thermal equilibrium

(Bos Q4 + Bao Q2) Qo + Bya Q1 gz = 0

so that (21) becomes

s N q, 9,
k 1 [ > 5 1
= = - . A__012B12 e e e } S s ae (22)
a7 & LA 9 k=

The coefficient on the right hand side is negative definite and Sk(T)
must therefore be an oscillating function of T. In fact, since
S#(O) = q, it must be given by

8, (7) = q Cos &t = v 125)
For the guiding plasma, therefore, the behaviour of the correlation

function of the charge fluctuations is extremely simple; each mode

oscillates independently at a given frequency Rk.

« 15 =



This oscillation frequency Rk can be found explicitly by
introducing the thermal equilibrium values of a4 into Eq.(20) and
replacing the sum over k' by an integral (using the substitution

[on]® 2 > [dk). Then

. 2
@ MKLL) _(1_1 \._J
el T s T\ T D) et

— T

Since the separate terms in this integral are individually diverggnt,
a good deal of care is needed in its evaluationg. This difficulty
may be circumvented by introducing a cut off in q at large k and
using k - ¢ as the variable of integration in the second term. The

integral then becomes

a? s g 4 1
Qi = - (gn)a /'dﬂ 6./ d6 sin® 6 £2k3 2~ P AZ -9k cosb

1 1 \n A% €3
(Er F)m@.ﬂﬁ s {25)

. -‘%z- P12 )

where

F(x) = %E.[iliil? log (14x) - (1+-g— x)], sae (OB)

X

a result which is independent of the cut-off introduced to secure

x?, hence in the long wave

convergence, For small x,F(x) - Qin

length limit the frequency becomes

2 A2 1 [«Tc?
Rf(-)llgT lé:g TBE—->I{4 P (27)

For large x | F(x)-+l-x log x, so that at short wave lengths

8n
@ > B2 1 ey 002 £ B
. F—g log = Ztnw 10g()\ ) . (28)

For the guiding center model, therefore, there is a remarkably

complete description of the correlation function Sk(T). As already

- 14 -



noted Sy(7) is purely oscillatory and this behaviour reflects the
inherent reversibility of Eq.(EO). Since these results are based
oﬁ the random phase approximation we expect (26) to give a good
description of Sk only for short times. Its long time behaviour
may be modifiedj in particular it appears that the correlation

function will decay with time only when irreversibility is introduced

by some form of 'coarse aining'.
Yy gr g

VI THE DIFFUSION COEFFICIENT

The diffusion coefficient can be introduced by observing that

the coarse-grained density E is described by a Fokker-Planck

equation

9 1 —— 4
t+"a_2£' E‘ <A,§AE> 5%=0 - s (29)

(a ] Ea 1)

where <Ax Ax> denotes the macroscopic rate of change of the square
of the displacement. This leads to the well known representation of

the diffusion coefficient, in a uniform isotropic system, as

D= %(%>2<E x E(x,t) /mk x B(x[t+7],t + T)d’b’> ... (30)

o

In this equation E is integrated along each particle trajec-
tory so that E-E appearing here differs from the autﬁcorrelation
functions computed in section (5). In terms of the Fourier
compdnents,

D= 2(%-2—)2 f/f kdk d6<pk(t)p_k(t+fc) exp(i 5-A5(¢)> ... (31)

In order to introduce macroscopic irreversibility, essential
to the calculation of a diffusion coefficient, we consider not the
diffusion of the field particles themselves but of a group of
independent test particles. Then the average of Py p; can be

separated from that of Ax and

- 15



D= —"Bg—zg— f/ i S.(7) Lexp(i k-8x(v)> dv
(32)

Furthermore, since we assume that test particles do obey a diffusion
equation

<exp(i E-A5(1)> = exp(-kD1)
Introducing this, and the value for Sk(T) found in the preceding

section, we obtain an implicit equation for the diffusion coefficient

Ly e® ¢ dk 1D :
b~ 5 [ & o, NEE)
In the absence of the ka term this equation could be solved

immediately for D? as
1 c? dk
D? == [F<E2(k)> T (34)
the expression obtained in reference 1. This diverges at small k
which suggests that the major contribution to (34) comes from the
small k vregion and that little error will be introduced if ka

is replaced by its small k approximation Qka = p?k®. Then we

obtain

D?

Il

1 ¢ dk _ @2
T / x (Ek) -P
which does not differ significantly from (34) itself. If we identify

the lower limit of integration km with 2ﬂ/L, I? being the area of

the total system, then for large L/K
L
P

ckT -+ 11 L
D=€-]§-—- nDz[—lﬂ—t-logﬁ'} s (35)

2

. . 1 Ne .
The logarithm may also be written as 5 log;(nEnT>'w§ere N is

the total number of filaments in the system.
If the particles do, in fact, diffuse, then a better approxima-

tion to S should include the effects of this diffusion. This

k
-K*Dt

would presumably result in S _itself decaying as e , at least

k

- 16 -



for small k. If such a factor were included it would alter the

i
calculated diffusion coefficient only by a factor 2 2,

VIT SUMMARY AND DISCUSSION

Although it can be described in Hamiltonian form, the guiding
center system is unusual in that the Hamiltonian contains no kinetic
energy term. Consequently, statistical mechanics for this system
differs considerably from the conventional description of plasma
and introduces many novel features.

The dynamics of the system can be described exactly in terms of
interacting density waves; however even this is unconventional in
that the waves concerned have a non zero frequency only by virtue.
of their interaction with other waves - truly a strong interaction
or bootstrap situation!

Despite its peculiarities, thermal equilibrium for our system
can be described in the usual Gibbs ensemble theory and the station-
ary equilibrium spéctrum calculated. The completely random distri-
bution is also a stationary state which can properly be regarded
as the T » o limit of thermal equilibrium. Its interest lies in
the fact that it can be treated 'exactly' and in recognising that
if the filaments interacted otherwise than with the Coulomb law,
this random state could represent thermal equilibrium at a finite
temperature.

The statistical theory of the guiding center plasma involves
only the amplitudes of the density waves and has been developed
through the random phase assumption. This leads to a kinetic
equation for the waves which is conventional in that it describes

'collisions' between waves but is distinctly unconventional in that

- I



it involves the second time derivative and is time-reversible. Thus
although the random phase assumption discards phase information and
léads to a kinetic equation it does not itself introduce irreversi-
bility. This may occasign some surprise although it has been noted
earlier in connection with a model systemlo. In this connection it
may be significant that there is one situation in which the random
phase approximation is exact.

The kinetic equation derived here, in addition to possessing.
appropriate invariants, has the property that thermal equilibrium,
and its limiting form, are the only stationary states. However when
disturbed from equilibrium the wave amplitudes oscillate about thermal
equilibrium instead of relaxing toward it. This behaviour is, of
course, a reflection of the reversibility of the kinetic equation.
To obtain irreversible behaviour it would be necessary to introduce
a measure of 'coarse-graining' in addition to random phase.

A similar osciiléting behaviour is seen in the correlation
function of the fluctuations. Indeed a remarkably complete descrip-
tion of the correlation function has been obﬁained, at least within
the random phase approximation, in which each mode oscillates at a
calculated frequency. A diffusion coefficient can be defined for a
cloud of independent test particles, and the oscillating behaviour
of the correlation function is found to have negligible effect.

This coefficient is dependent on the size of the system because
it is dominated by long wave length fluctuations.

Once irreversibility has been introduced it raises the well
known difficulty of reconciling it with the reversibility of the
basic dynamics. In our case, this difficulty is very clearly

illustrated because our kinetic equation itself is reversible. It

- 18 -



seems that this equation, although obtained by discarding phase
information, is still a microscopic one and the microscopic correla-
tion function for example d&es indeed oscillate. However, on a
coarse-grained, macroscofic, scale the system is irreversible and
the macroscopic correlation §k(1) would be damped.

We have mentioned earlier that the guiding center model may be
relevant to real plasmas in strong magnetic fields, particularly
when chargé imbalance has arisen during plasma formation or as a
result of an unstable phase. However, the theory developed here is
probably of most interest in connection with computer simulations
and with studies of statistical mechanics. This interest must be
heightened by the detail which can be obtained from the theory and
its freedom from arbitrafy parameters. As it is both detailed and
explicit the guiding center model should helé to illuminate the
relation between microscopic reversibility and macroscopic irreversi-
bility and in this éoﬁnection comparison with a reliable computer

calculation of the correlation function would be of great interest.
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