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ABSTRACT

The steady-state collisional distribution functian of a mirror-
confined plasma which is known from Fokker Planck calculations,
implies a unique relationship between the plasma pressure and the
magnetic field strength at any point within the plasma. Using this
relationship it is possible to deduce the maximum B consistent with
macroscopic stability in a mirror machine with given mirror ratio.
This p limitation is found to impose a rather mild restriction upon
reactor designs. For fields which satisfy this P limitation, the
profile of the magnetic field along its axis is restricted but not
fully determined, by the minimum B requirement, and the remaining
freedom can be used to optimise the magnet design by maximising the
ratio of the thermonuclear power produced to the cost of the magnetic
field windings. It is found that even when the profile has been
optimised in this way, the plasma density and pressure profiles are
rather peaked towards the centre of the reactor, and the ratio of
the thermonuclear power produced in such an optimised minimum B
reactor to the power which would be produced in a reactor of the same
dimensions but with a square well profile (if it were stable) is

approximately 1/4,
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1. INTRODUCTION

In a previous paper(l) we discussed some of the conflicting
requirements which face the designers of a thermonuclear reactor based upon
a winimum - B magnetic mirror confinement system. On the one hand, the
collisional loss of particles into the loss cone represents a serious energy
drain, which must be counteracted by reinjecting a substantial part of the
gross output power from the reactor. This expensive activity is minimised
by making the mirror ratio as high as possible. On the other hand, plasua
stability is only ensured if the vacuum magnetic field (i.e. the magnetic
field which would be produced by the magnetic windings if no plasma were
present) increases outwards from the magnetic axis at all points lying between
the mirrors, and the cost of such a magnet (per unit volume of enclosed plasiaa)
rises rapidly with the mirror ratio R - the cost scaling as R’ for large R,
where v is an index in the range 2-4. It follows from these considerations_
that there must exist an economically optimum mirror ratio, at which the total
capital cost of the reactor per unit of net power output is minimum,

An exact determination of this optimum mirror ratio is not yet possible
because of uncertainties about the costs of various essential reactor
components, and we do not undertake one here. Rather, we are concerned with
a necessary preliuinary - the optimisation of the profile of the magnetic field
strength between the mirrors. 1In our previous paper, the discussion on this
point was souewhat imprecise, and some preliminary attempts to evaluate the
overall cost of a mirror reactor have emphasized the need for greater accuracy
in estimates of the magnet cost per unit of thermonuclear power produced, and

for further optimisation if possible.
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The principal deficiency of our previous paper was the choice of

plasma distribution function, which we took as

fle,u,J) = f(e,J) © (¢ -p Bm) (1)
where €& 1is the particle energy, u and J are adiabatic invariants, Bm is
the mirror field strength and © is the unit step function. This choice of
distribution function has been wmade by other authors (e.g. Yushmann(z)) and
it is made plausible by the curves of the angular distribution in velocity
space for large mirror ratios given by Bing and Roberts ? in their paper
on numerical solutions of the Fokker Planck equation for f in a mirror machine
with norwal mode injection, which are close to the step function in form. On
the basis of this distribution, we argued that the plasma density (and hence
the thermonuclear power density) would be roughly uniform within the region
of plasma confinenent, and hence that it was sufficient to minimise the
magnet cost per unit of enclosed volume. In fact, however, as is shown by
comparison with the work of Ben Daniel and Allis(k) on the Fokker Planck
equation, the Bing Roberts curve is incorrect, and results from an inadmissible
extrapolation of an empirical analytic expression which fits their results
for small mirrér ratio. The true distribution function (for normal mode
inJection) goes smoothly to zero as p tends to e/Bm, and the resulting density
distribution is appreciably non-uniform, with a consequent reduction in the
thermonuclear output.

A more interesting consequence of our previous choice of distribution
function was that it led to a pressure distribution which varied significantly
only in the iﬁmediate neighbourhood of the mirrors, and hence was essentially
a function of the strength of the vacuum magnetic field only. This implied the
existence of equilibria with all values of P less than unity, since the equation
determining pressure balance in the radial direction

P, + (ﬁv + Eﬁ)Q/SK = constant (2)
could be regarded simply as an equation determining the magnetisation field

ahp’ which obviously possessed a solution for all § < 1, regardless of the
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profile of the winimun - B vacuum field ﬁv' However, the true normal mode
Fokker Planck distribution function, which we discuss in Section 2 below,
leads to an expression for P, which is a smooth function of the total magnetic
field strength B, and equation (2) then becomes a non-trivial consistency
condition which possible equilibria must satisfy. Infact, we show in
Section 4 below that if the vacuum field is still required (for stability
reasons, which are unaffected by the precise choice of f) to be minimum - B,
there is a maximum value of B for given mirror ratio, above which no stable
equilibrium exists. For values of f less than this, stable solutions for P
and ﬁﬁ exist, and are uniquely deteriiined by the profile of the vacuum field:
this profile is however arbitrary, and it can be chosen in such a way as to
minimise the magnet cost per unit of thermonuclear output. This optimisation

is reconsidered in Section 5.

2. THE COLLISIONAL DISTRIBUTION FUNCTION IN A MIRROR MACHINE

In most work on Fokker Planck equations describing the collisional
equilibrium distribution functions in a mirror-confined plasma, (for example

Petravic et al(s)), the distributions have the 'separated' form

>
f(v) = £(v,0,0) = U(eo) M(u) | (3)
when B mv® and u = cos 6 = ;uﬁ/vB. The error introduced by this factorisa-
tion of the distribution function is still somewhat uncertain, but the calcula-
. . (3) . (%) . (6)
tions of Bing and Roberts , Ben Daniel and Allis" ‘and Killeen and Marx
indicate that it is not large. In every case, the equation satisfied by M

is Legendre's equation:

d “) M
T l-u)Z+an=o0. (%)

However the boundary conditions to be applied depend upon the assumption made
about the role of the electrostatic potential. In the earliest calculations

this was ignored, and consequently M was required to vanish at the loss cone
R -1 1
u=+4+u =+ -ilif—_ 1 , wWhere R0 is the overall mirror ratio. This poses an

(i
eigenvalue problem for A , of which the solution can be represented with
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reasonable (i 10%) accuracy by A = 1/10g10(Rb)’ with a corresponding
eigenfunction MR’(u). More recently, Fowler and Rankin(7) introduced the
electrostatic pothtial in a somewhat inconsistent manner which nevertheless
seeils to give a reasonable approximation to unseparated solutions, by
defining an 'effective' mirror ratio for each species of particle

Re = Ro/(1 x e¢1n’/80) (5)
where s is the total potential difference between the centre of the plasma
and the walls. On this basis MRE(u) is still a solution of Legendre's
equation, but it depends parametrically on the particle energy, since the
boundary conditions now depend on €5"

In most of these papers, the plasma was assumed to be spatially uniform
out to the mirrors: however, a paper by Ben Daniel and Allis(q) showed that
this was not in fact a serious restriction, and that very similar distribution
functions at the centre of the plasma are obtained even if the plasma is
confined in a mirror machine with a parbolic mirror profile. The distribution
function at other points is obtained by 'continuing' the central distribution
function using the adibatic invariance of p and J, and the constancy of
€ =€ +ep . This mathematically convenient state of affairs results from
the fact that in a mirror with a smooth magnetic profile, the density falls
of monotonically to zero at the mirrors, and with it the net collision
frequency, but the loss cone angle widens, and these two effects approximately
cancel out.

For present purposes it is desirable to have a simple analytic expression
for M. To obtain this, we have observed that there exists an asymptotic
solution of (4), which is accurate in the limit R = « . This is obtained by
an iteration procedure: in lowest order one drops the term AM altogether to
obtain a first approximation to M. In next order this first approximation is

used in the term AM and one selects the constants of integration in the

solution of the remaining equation so as to satisfy the boundary conditions,

obtaining



_ log(l - v® log(l - u?!
0= 10g:l - ucé) = log R : (6)

This asymptotic expression is compared with the exact eigenfunctions in
Fig.l : for R = 1.5 and 3.277 the exact eigenfunctions are (as Bing and
Roberts show) the integral order Legendre functions P2(u) and Ql(u)
respectively, which have trivial analytic representations: for R = 10, the
eigenfunction is derived from the numerical tables of Ben Daniel and Carr(s).
It will be observed that the asymptotic expression agrees with the exact
eigenfunctions to within a few per cent even for R = 1.5, so that in all
practical cases the error involved in using it is comparable with the error
due to the separation of the Fokker Planck equation. For smaller values of
R, the solution obtained by power series expansion, truncated after two

terms:

M=1-p5u (7)
gives a good approximation,
Most of the results obtained below are not strongly dependent upon
the form of u(so): however, for the purpose of evaluating the role of the
electrostatic potential it is necessary to consider particular forms. The
electrons we regard as being confined electrosﬁatically, and we neglect

the effect of the magnetic field on them altogether, taking a Maxwellian

distribution

£ =Ke  %/Te. (8)

Since typically P 2Te’ this is reasonably accurate except in the

imnediate neighbourhood of the mirrors. The ion distributions U(BO) obtained
numerically (e.g. in (5)) are smoothly varying functions, moderately peaked

at (or somewhat below) the energy of injection, and for purposes of estimation

only we take

£, =0(e) M(u) = K_6(e, - T,)M, (u) . (9)



3. THE DENSITY AND ELECTROSTATIC POTENTIAL DISTRIBUTIONS

The density distribution along a given flux tube in the mirror machine
is determined by applying the condition of quasineutrality to the
density distributions derived from the distribution function f+ considefed
in the previous section. To obtain the distribution function ;¥ points not

lying on the mid-plane we ‘continue' them using the invariance of €, p and J,

Thus from (3) and (6)

uB
£, =U(e) (1+ ¢n( —=)/ €n R,) (10)

where € = 3 WV + ep, u = %mvi/B and R = (Bm/Bo)/(l - e@m/E),@ and B being
the local values of the potential and magnetic field strength, P and Bm
being their values at the mirrors, and B0 the value of B at the mid plane (at

which ¢ = 0). Thus the ion density at any point is a function of B,9, R and

Rb:
E-eQ
@ B B
(1 + en(®=2)/enR )

“'=/fda"=/U(e) f £ ° pau de. (1)
1 + + (8 - [J-B _ G(P)E

R E-ePy

R -1 B

0 m

[The limits of integration in (11) are derived by observing that &-eg= Fmv®

z %mvi = pB and that the angular distribution M(u,e) vanishes if Re s1
-e@ E-eQ

1il . £ P i 1 .
Ro'l ) and if B > Re bie if px Bm )]. Integrating

(i.e. if € <
0
by parts, we obtain

e 1R + JR-(e-e@ )/(s-eq)}
UISE! m
ny =/ ©® mw, 1° [ tn { TR - VE-(e-ev_)/(5-00) (12)
_eq:)

1l

R -1
(]

_ Eﬁ B - (e-ep )/(e -e0) }

where R = B /B is the local value of the actual mirror ratio. The electron
m

density is obtained from (8):

. (13)
]
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and the electrostatic potential distribution is determined as a function
of B, Hb and P by solving the integral equation n, =n, using.the
expressions (12) and (13).

The qualitative form of the profile of ¢ obtained in this manner
is a curve which is almost flat in the central region, rising steeply to
the value P in the neighbourhood of the mirror. This can be shown by
expanding (12) and (13) in the central region in powers of ¢ and (RO—R)/RO.
As shown in Appendix 1, this gives an expression of the form

R

R
A/ - ] 1) | (18)

n. =n =n [1 - K(
i e o

where K is a constant of order unity depending on P and Ti’ and

R -R
0
o

g /(1 - (k2] T /1) (15)

Since the ratio Te/Ti«l under mirror reactor conditions, (14) and (15) show
that the main fall off in plasma density occurs in a region where the
influence of ¢ can be neglected, except insofar as the value of 5 affects
the effective mirror ratio Re. Thus for present purposes it is adequate to
neglect ¢'but retain P in the expression (10) for the ion distribution
function.

A further approximation, which is rather less precise but nevertheless

adequate, is to replace the energy-dependent effective mirror ratio Re in

(10) by its energy average:
R, = R/(1 - eo,/1,) (16)

where Ti is a suitably chosen average energy. Since n, only depends
logarithmically on Re and U+(8) is in any case moderately peaked in energy
at (or somewhat below) the injection energy(5), this approximation only

introduces a rather small error, and it greatly simplifies the algebra.



4. THE PLASMA AND MAGNETIC PRESSURE PROFILES

The plasuia pressure tensor is (in good approximation) diagonal,
and as shown in(l), it is the perpendicular component which is of primary
importance in a mirror machine in which the ratio of the length to the
transverse dimension is reasonably large (as is the case in most plausible

reactor designs). To calculate p we proceed as in the previous section,
1

introducing an additional uB into the p integration, obtaining

(= o]

o o] e ] S [ (e AT

} de -
(17)

This shows that P, depends upon B through the "local effective mirror ratio"

(N[

- %{ w i = ecpm)/(e ” ecp)} +ﬁlﬁﬁ{ R - (e - e )/(e -eiP)}

RE = R(e - ep)/(e - e¢m). If, as before, we neglect the terms in e® and

simplify the terms in ep s replacing RE by its energy averaged value
RE = R/(1 - §¢m/8) and we define Re = Ro/(l - e¢m/8) we obtain

1/R,)

0, ®) =5, [ - gt 2 VR
£

+
—~
—

1

L
2

(N[

|7+

(18)

+ 5(1 - 1/R,)

=2
Il
s
(_H
—
+
_
1
—
&

1= (L=1/R )i'}'_ 2(1 - 1/R)® + 51 - 1/R )% .

The density and pressure profiles as a function of B obtained in this
approximation are shown in Figure 2 for a number of mirror ratios Ro'

Equation (18) gives the relationship between P, and B determined by the

form of the diffusional equilibrium distribution function. However there
is a second relationship between P and B, resulting from the requirement
that the plasma be in magnetohydrodynamic equilibrium with the magnetic

field. As shown in(l), for long mirror machines this equilibrium condition

is approximately



B2
5 v (19)

where i and B are the values on the magnetic axis, and Bv is the strength
of the vacuum magnetic field just outside the plasma. Eliminating P between
these two equations one obtains a unique relationship between the profiles

of B and Bv’ and we shall now show that above a certain critical value of

8np
B = —C , the profile of Bv corresponding to any acceptable B profile

Vo

violates the plasma stability conditions.

It is implicit in the whole of the above analysis that B is a monotonically
increasing function of z, the distance along field lines frou the mid-plane,
since otherwise the distribution function could not be obtained by 'continuing'
the mid-plane diffusional distribution function. Now it is readily shown that
PL as given by equation (17) is a monotonically decreasing function of B
(and hence z), vanishing at B = Bm' Thus in the neighbourhood of Bm at least,
P+ BQ/BK is an increasing function of B. In the neighbourhood of the mid-
plane however B, + g;— may be an increasing or decreasing function of B (and
hence z), depending on the magnitude of B. For sufficiently small P it is
obviously increasing, and hence (by (19)) Bi increases monotonically with
z - 1.e. the vacuun field has a single minimum at the mid-plane. Conversely,
for sufficiently large B, since 1 decreases linearly with B near B = Bo’

P, +-§; decreases with B and hence Bi must have two symmetrically placed
minima away from the mid-plane. We show in Appendix 2 that such a field
configuration is necessarily unstable, since stability requires that Bv should

possess an absolute minimum at the mid-plane., It follows that there exists a

f limitation set by the requirement that
aB\P *&rn

Performing the differentiation, we obtain

>0 (20)




1
1 2B

g S0 (. LN, LY, D
& v T -P) * 3R "R ) T 7 ¢

B < 1/{1 + (1 - 1/ﬁe)%(1 * 1/2ﬁe)/2{} - (21)

For large ﬁé (say > 5) (21) can be written approximately as

B < 1/{1 +1/(2 en 4 R - 10/3i} ; (22)
For example, for ﬁe =5, B < 0.73. For values of Eé in the range 1.5 - 5
equation (21) should be used: for swaller values, the above analysis is
repeated with M given by (7) instead of (6), which gives B < (Re-l)/(?/4 Re—l).

The resulting  limitation is represented graphically in Fig.3.

5. THE OPTIMUM VACUUM FIELD PROFILE

Provided that [ lies below the stability limit described in the
preceding section, the profile Bv(z) is arbitrary and can be chosen to
optimise the reactor design. In this paper we regard its overall mirror
ratio as a fixed parameter, and we are concerned only with the optimisation
of its profile. As in our previous paper(l) we perform this optimisation by
minimising the cost/power ratio jhv ds/jhgdv, where v is an index which
determines the manner in which the cost of the windings of the magnetic field
scales with field strength and | ds is taken over the winding surface
(considered to coincide with the outer plasma flux surface) and j‘dv is taken
over the volume occupied by plasma. Our present optimisation is more precise
than our previous calculation in three interrelated respects - we allow the
vacuum magnetic well depth to exceed the winimum required for stability by an
arbitrary amount, if this peruits a decrease in the cost/power ratio, we
ensure that the magnetic field profile flattens out at the mirrors as it
should, and we take into account the variation of the plasma density n along
the machine (an unfavourable effect which did not appear in our previous

calculation because of the different choice of distribution function).
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As in our previous calculation, the equations determining the

vacuum field profile b (normalised to unity at the mid-plane) are (cf

eqns. (35) and (36) Of( 1))

b" " .
b(c’2+(3)-2_};_ = § cosh ¢ (23)
2 be” = - & sinh ¢ (24)

where primes signify differentiation with respect to z (in dimensionless
units) and & is the radial well-depth, taken in our previous calculation
to be kB (where « is a constant of order unity) but here allowed to be
any arbitrary function of z (or c¢) which is everywhere greater than £ .
It is convenient to rewrite these equations with ¢ as the independent

variable:

1 :
4 b°_ 7. . 5 (cosh ¢ -Simhc  db (25)
de” h A -bfg’ & 12 b de
de'? . !
=-296 i 2
b do sinh ¢ (26)

In the limit & - 0, (25) gives immediately the profile

1 + cosh (c; z)

b = cosh® c/2 = L # SDSh g = 5 (27)

obtained before. It will be observed that this profile increases
indefinitely with z, so even in the limit B = 0, it is necessary to exceed
the .iinimum radial well depth for stability somewhere in order to:produce

a profile with finite mirror ratio. Where and how this should be done is
part of the optimisation problem. However, a more serious part of the
problem results from the fact that since the density n is a decreasing
function of B through equation (15) and hence (through (18) and (19))

a decreasing function of b, it is no longer adequate simply to use the
volume of the mirror machine as a measure of the thermonuclear power output.
Rather, one should take the smaller quantity /n®dv, and the profile b(z)

should attempt to maximise this as far as possible. If this were the only
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requirenient, one would be led to a profile with a long uniform field
section in the middle and sharply rising ends, a profile which we shall
see can indeed by obtained from eqns. (25) and (26) with a suitable choice
of 6(c). However we shall also see that this leads to an exponential
increase in the cost of the magnetic field, essentially because of the
greatly increased area of the magnetic fishtails at the two ends of the
machine which are needed to maintain the minimum-B property. Thus in the
optimum design only a rather short uniform-field section can be included,
and an approximate analytic estimate of its length can be obtained.

To substantiate these qualitative remarks, our procedure is in two
parts: we first consider an analytic model in which the machine consists
of a flat central section of half length £, enclosed by two mirror sections,
each of length a, and we seek solutions of (25) and (26) for this case which
have continuous values of b, b’, ¢ and ¢’ at the joints. In the central
section we select 6(c) = 60 sech® ¢ so that b 1is constant: in the mirror
sections we take 6 = 0, a choice which makes the profile rise as sharply
as possible (it will be confirmed that the right hand side of (25) is negative,
at least for solutions similar to the & = 0 solution) and has the further
merit of being analytically soluble. Since the mirror fields do not reach
a maximum in this case, we siuply cut them off when b has reached the
required vacuum mirror ratio R. We optimise this model profile with respect
to the ratio E/a. We then describe some numerical solutions of (25) and
(26) based on continuous functions 8(c) and show that it is possible to
obtain acceptable profiles which are close to the model profile in form.
We have atteupted, with a range of trial functions 6(c), to improve upon
the profiles approximated by the model profile and (as one would expect from
the manner in which it was constructed) have been unable to do so. Therefore
believe that the model profile is close to the optimum profile for a

minimum-B reactor.
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The calculation of the model profile'proceeds as follows, We first

obtain the profile of &(c) for which b =1, b’= 0. Inserting these in (25)

and (26), one obtains two equations for ¢’ and 6, which on eliminating & give

d £n ¢'? d
_T—EE__— = - tanh ¢ = - Ez-én (cosh c) and hence

2 5

c'® = 60 sech ¢ (28)
where 60 is a constant. Hence by (25) &= 60 sech’c and (from (25)), c, the value
of ¢ at the end of the central section, is related to its half length £ by

°e

= 8 5
éi 6./ cosh® ¢ dc. (29)
0

In the mirror section & = 0, and the solution which satisfies the required

continuity conditions at the joint is

1 + cosh (c - CE)

b = > (50)
¢ = cé = constant ., (31)
The length of the mirror section a 1is given by
£+a ey . e
a = /' dz = '%% = ‘EE?——JE (32)
e 4 ¢

and from (30) bm = Rv = %‘(l + cosh (cm - Cg)) so

-1
e, = ¢ = cosh (2R.v -1). (33)

Combining (28) and (29) we have
c

7
i 1
i cé =sech? c, cosh? ¢ de (34)
0
and hence
-1
a _ cosh” ~ (2Ry-1)
— = T i 18 ..
sech? c, 195 cosh?® ¢ dc (35)
0
This egquation shows that even regardless of expense, there is a limit

to the length of the flat section (obtained by taking Cp > )
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-1
cosh™ (2R -1)

> 5 . (36)

S

We now derive the cost/power ratio M for the model profile;

proceeding as in our previous paper (i.e. assuming that RV is large

Cm
enough that e » 1):

£+a £+a

M =[ pVE /2 g, // n® (b)/n®(0) dz/b

c c
& m )
1 i i V=g
="i— L‘/. ec/2 cosh® ¢ dc + cosh® c, /. (l v cosg (c cﬁl) ec/zdc}/(€+aa)
2
60 0 4
where a o+a

; c : ; c
Neglecting terms of order e £ compared with terms in e ™ we have

1

' cosh? c, e Ven Q(RV s %)ve Vs
(= T =T =
6§ (¢ + aa) 2y v(£ + aa) cé
ve
2(r - %)”e #
= S Ce L ] ) (57)
v[ sech? c, 41 cosh® ¢ de + a cosh (2Rv—1)]

To minimise this with respect to c, we note that for large Cp it

increases exponentially and hence the optimum must be at some small value

1 c ag
of Cypo for which sech?® C, f‘a cosh? ¢ de = Cp - Thus ncar the optimum
(0]
2(R ~%)"e"
M= —
X + A

when x = v c, and A =1v a cosh-1 (2Rv - 1), an expression which possesses
a minimum (for positive x) at x = 1-A if A < 1 and at x = 0 otherwise. Thus

the winiumum value of M 1is

M. =2 (R -%)”e(l"ﬁ‘) A<l

min v ( )
v 1. 38
o(r, - ) A A >
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It will be seen that the optimum value of

B 1 - A
=~ = A<l

-1
v cosh (zRv-l)
=0 A>1

is always small, and a flat section is only advantageous at all if A<l,

The quantity A can be evaluated in terms of

” Z+a 2 £+a
e ey | _ n_) dz dz
B —<n >_/ <no> b // b (59)
£ €

o
(which is a measure of the effectiveness with which the plasma is packed

into the mirror sections):

F v cosh™! (2R -1) e i
A= = / T = 2F . (40)
2

Since certainly v > 2, it follows that A< 1 only if F < Z- i.e. if the
density profile fall-off leads to a very unfavourable total reaction rate.
Numerical values of the filling parameter F (and hence of A) are obtained
from the numerical profiles considered beiow  and it is shown that F= g,
so the optimum profile has essentially no flat section.

The above analytical model has two defects: the magnetic field does
not satisfy the radial .inimum-B stability criterion at the inner ends of
the mirror sections, and its profile does not turn over at the mirrors, as
it should. We therefore solved equation (23) and (24) numerically, using
a number of different analytic expressions for &, in order to obtain fully
acceptable profiles. By varying the form of & we sought to obtain profiles
with better values of the filling parameter F. The most satisfactory profiles

were obtained with

§ = Eﬂ [1 + G(1 + tanh H (z—zm)):] (41)

2

b
where & , z , G and H are constants chosen so that the field profile is

acceptable and F is as large as possible. With large values of G and H,
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this leads to a profile which follows the model profile closely until

b approaches the required mirror ratio RVJ and then turns over rapidly.
The profiles are rather insensitive to the value of 50. In Figure 4
we show the profiles of n(z), pL(z) and Bv(z) for R=3, 5 and 10, with
the value of 60 taken as ﬁmax’ the maximum value of $ permitted by
eqn.(22): however very similar profiles are obtained for any value of

60 in the range 0-1. In these calculations we have for simplicity

neglected the effect of the electrostatic potential - i.e. we have set

R =R.
e
6. CONCLUSIONS

The best available estimates of the collisional distribution function
in a mirror machine indicate that the distributions of plasma density and
pressure along the magnetic field lines are significantly non-uniform.

This has two consequences for the design of a mirror reactor. First, there
exists a maximum value of the plasma pressure at the centre of the machine,
above which it is impossible to ensure both that the plasma is in magneto-
hydrodynamic equilibrium in the radial direction and that the vacuum
magnetic field possesses an absolute minimun at the centre, a condition
which we show to be necessary for stability. This leads to a [ limitation
for mirror reactors, given by (21). TFortunately this limitation is
couparatively unrestrictive, particulariy in comparison with the B limita-
tions which arise in toroidal systeus.

Secondly, the thermonuclear power density falls off rather rapidly
away from the centre of the machine. This does not directly affect the
Q value of the reactor (the ratio of the thermonuclear to injection power )
since it is already implicitly taken into account in such calculations.
However it does adversely affect the capital cost of the reactor, and it
is important to design the magnetic field profile in such a way that this
adverse effect is minimised. It might appear at first sight that the

appropriate profile would have a long flat central section with constant

s Bl =



magnetic field (and hence maxiwum thermonuclear power output). However

it euerges from a detailed cost analysis that such a flat section necessarily
entails a disproportionate expenditure upon the mirror sections if the
winimum B property is to be preserved. In the absence of a flat section,
one can only attempt to make the increase in the magnetic field strength

as slow as possible. However the constraint imposed by the minimum B
requirement, which is embodied in the dif’: rential equations which determine
the profile [(23), (24) ], gives little freedom for manoeuvre in this
direction. The optimum vacuum field profile is insensitive to both the
plasma pressure and the mirror ratio,being well approximated by the 'cosh!'
profile (27) except in the immediate neighbourhood of the throat of the
mirror. The ratio F of the thermonuclear power produced in such a mirror

to the power produced in a machine with the same dimensions but with a

square-well magnetic field profile is approximately 1/4.
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Appendix 1
To determine the self-consistant electrostatic potential from (12)

and (13), we represent the peaked distribution U+ by

u, -~ &(e - Ti)

(as discussed in Section 2), obtaining

n, =n (1 - ep/T )%- en ( l—i—g) - 2a /Y (A1)
i o i 1 -oa ]
where o®(R,p) =1 - T - ey and v = ﬂn(fl ¥ CL(R0’0)> - QG(Rb,O)'

- N\ =
R(T.l ecpi 1 csiRo,Oi

Thus if we expand (13) and (Al) about the mid-plane value in powers of

¢ and R - Rb:

e o, ep k-5
- <k =2 Ees | 0
ni—no(l e (T_ = | ) (A2)
i ) i o
n,6=n (1 + %2 ...... ) (A3)
e
and apply the quasineutrality condition, we obtain
R - R o
1 1 a 0 0
@ (T + 37 - v )= % > (A%)
e i ol o 0
and hence
a, R - Ro Te abTe
n, =n =n (l+?;(—-€:—)/(l+§,-r—;—?;'l,—i)) . (A5)

Since for reasonable reactor parameters CLO/-Y0 ~ 1 and Te <« Ti’ it is

seen that the correction to the density profile near the centre of the
machine due to the electrostatic field variation is of order Te/Ti’ so that
the main density fall-off is due to the magnetic field variation, and is
affected by the electrostatic field solely through the dependence of the

distribution function on Re (and hence on @m).
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Appendix 2

Here we show that the stability condition against the "Mirror
instability" is equivalent to having a vacuum mirror field which is
mon0@tonically increasing from the centre.

The first of the two necessary conditions for stability obtained
in Ref.(1) (eqn.c3) is

2p + ¢
1+ —=—— > 0. (46)
B2
. . (9) .
Now as is shown by Hastie and Taylor (eqn. 3.8)Jf0r a mirror

confined plasma

=t
s}

I

|~
@

ds - (c + & pi) s

The above expression may be rewritten in the form

e 2p + ¢ 2
a U a
e, vEF)E -0~ (g). a7

From(A6) the r.h.s. of (A7 ) must be greater than zero for stability.

Since for a mirror equilibrium 3B/8s >0 it follows that

2. 1
ds (P_L +2B)>0

Using equation (19) this reduces to

ad
s (B) > 0.
i.e. the vacuum mirror field must increase monotonically away from the

centre.

w10



(1)
(2)

(6)
(7)

(8)
(9)
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