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ABSTRACT

Plasma containment in toroidal systems is studied
using a fluid model containing the effects of plasma
inertia, resistivity (electron-ion momentﬁm transfer ),
viscosity (ion-ion collisions), and thermal conductivity.
Asymptotjc expansion techniques are used to separate the
problem into two distinct parts - determination of steady
state configurations where time variations occur only on
a diffusion time scale, and investigation of the stability
of these eguilibria. The previously known steady-state
solutions are shown tb be stable. However, terms in the
stress tensor associated with the curvature of +the mag-
netic field lines, which introduce parallel viscosity into
the components of the momentum egquation perpendicular to
the field, are shown to restrict the possible solutions.
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I. INTRODUCTION

The effect of plasma inertia on the confinement of
collisional plasma in axisymmetric toroidal configurations
has received much atfention. The work reported here was
initiated as part of a program to extend the approach of
GREENE et al. (1971). We generalize their model to in-
clude temperature variations (and thus allow for thermal
conductivity) and collisional viscosity. Although it is
still highly idealized - finite gyration radius terms are
ignored in Ohm's Law and in the stress tensor, and ion-
electron temperature relaxation is treated in a highly
phenomenological manner - the present model contains\most
of the important features studied in earlier work and

thus allows for a comparison of results.

One obvious way to attack the problem is by straight-
forward numerical solution as an initial value problem.
The primary advantage of such an approach is that it cor-
rectly follows time dsvelopment into the non-linear regime.
When this was done with a simple fluid model (WINSOR et
al. 1970, GREENE et al., 1971) it was found that an
initially static plasma would start to rotate, increasing
its speed up to a value somewhat below fvth where Vih
is the ion thermal speed and f is ths ratio of the
poloidal to the toroidal magnetic fields. The original
numerical program has bsen generalized (BOWERS and WiNSOR,
1970) to include the effects of finite gyration radius
terms in Ohm's Law and the stress tensor, as well as a

phenomenological parallel wviscous contribution (DAWSON et



al., 1970). As part of this work we extended the numeri-
cal model to include thermal conductivity, recognizing

that it éhould not be difficult to merge the improvements.
HAINES (1970) also approached toroidal confinement as an
initial value problem. Since his coordinate surfaces do
not coincide with magnetic surfaces, however, it is diffi-
cult to interpret his results in terms of plasma diffusion

through the field lines.

Some progress can be made analytically. ZEHRFELD
and GREEN, (1970) showed that in the limit of small resis-
tivity the equilibrium problem can be reduced to one of
solving a Bernoulli type equation and demonstrated a tech-
nique for constructing solutions. Expansion techniques,
using the inverse-aspect-ratio as a small parameter,
greatly facilitate the analysis. The first approach in
this manner was the work by STRINGER (1969) who ob-
tained steady-state expressions for the density and
velocity distributions of the ions and electrons separ-
ately in a large-aspect-ratio torus, such that to lowest
order the distributions are functions of the radius alone.
Then the ambipolar condition, that the charge densities
of the two species be identical, could be satisfied only
if a radial electric field evolved. This provided a
mechanism for the buildup of the poloidal velocity, given

by
ave/a t o VG/D

with D = f2v 2-—V62. He noted that the static equili-

brium Vg = 0 is unstable, and that with any initial



value of Vg the system quickly attempts to approach a
rotation speed Vg = ifvth (where the-expansion is not
valid).

This work was guickly followed by several papers in
which more physics was introduced into the model in order
to eliminate the singular behavioar. ROSENBLUTH and
TAYLOR (1969) incorporated a viscous term into the ion
momsntum equation, showed that ths ambipolar coadition
could be satisfied not only for static systems but for
two other specific values of wvq, and argued that these
two would be stable. GALEEV (1959) noted that when elec-
tron thermal conductivity is inserted into the equations,

the dielectric constant D is modified to the form

(ME2/2)% (£2v2 - v2 )2 + p2v 2 (yiPv P - vg®)?
with A the thermal conductivity and Yy the ratio of
specific heats, and the solution is no longer singular.
This also allows two ambipolar rotational egquailibrium
solutions with poloidal velocity less than the thermal

velocity. POGUTSE (1970) has incorporated all these

features into one model and arrived at similar conclusions.

HAZELTINE et al., (1971) showed that, in the absence
of these effects, an ambipolar solution should exist in
which the deasity possesses a weak discontinuity as a

function of © - a shock solution.

In all these studies the poloidal velocity was
assumed constant for the determination of the eguailibrium

dehsity distribution, although, in actual fact, it was



found to vary on a time scale associated with the time

it would take an acoustic mode to prdpagate around the
torus. Since this is much faster than the resistive
diffusion time, the treatment is not self-consistent and
one should not try to infer '"'stability" from such a calcu-
lation. In an attempt to rectify this problem on the
simplest possible model, GREENE et al. (1971) ordered
(KRUSKAL,1963) all the physical parameters to affect the
results in a significant manner. Self-consistent equili-
bria were found, with time variation only on the resistive

time scale for small poloidal velocity v or large

S

toroidal velocity vy s of the same order of magnitude as
the thermal velocity. They then determined the stability
properties by following the normal mode behaviour of a
system which is perturbed only slightly from the steady-
state solution. With their ordering the equation for the
time variation of the poloidal wvelocity couples with those
for acoustic motion, so they had to study a fifth order
set of equations to determine the stability properties.

The basic conclusion was that for subsonic velocities,

< fvy

th the steady state system was always unstable.

ME
GREENE and WINSOR extended this analysis to equilibria

with discontinuous density variations on the magnetic sur-

faces, and WINSOR and BOWERS incorporated a viscous term

and finite gyration radius effects into the momentum

equation and Ohm's law.

In this work we take account of the exact collisional



stress tensor and thermal conductivity (BRAGINSKII, 1965)
in the limit of largze ﬂi T (where the particles undergo
many gyrations between collisions so that parallel viscos-
ity dominates), and small vthTi/R (where collisions are
sufficiently frequent that trapped particle effects are
not important). To keep the discussion simple we ignore
the effects of finite gyration radius. This is justified
if £ > vth/ﬂir , or the ratio of the ion gyration radius
to the plasma radius be less than the inverse aspect ratio,

a condition barely satisfied in tokamaks.

In the next section we describe our model. In Sec.
ITI we determine equilibrium solutions with time depend-
ence associated with diffusion, and in Sec. IV we perturb
about thesé solutions and obtain a dispersion relation
for stability. In Sec. V we investigate the dependesnce
of equilibria on the various parameters and solve this

di spersion relation. The results are discussed in Sec.

VI.

11 MODEL

We discuss the behaviour of a low-p collisional
plasma in a toroidal device, allowing for the effects of
plasma inertia, resistivity, viscosity and thermal con-

duction. We take the usual axisymmetric magnetic field,

(1)

B = (Bo/N) (£(r) eg + ©2) ,

N1 - & coeby 6= x/R ,



i.e., a system in which the magnetic surfaces consist of
a 'set of nésted toroids of circular cross section in the
(r, ) plan=, (see Fig. 1), Our plasma is described by
the usual fluid equations (using standard notation and

Gaussian units)

P =_1J3xB-VpP, (2)
dt c = = -
Vé¢=~LyxB-ni, (3)
c
L L . = D 4
= * Vo PR , (4)

4 =Yy _ :
Prax (PPTT) = V.AV(RL) (5)

where ¥ 1is the ratio of specific heats,

v.I=0 ; (6)

we use an ideal gas law relating the total hydrostatic

pressure to the mean temperature T = (Ti + Te}/Z and

density p,

P = (kT/M) P, (7)

with k Boltzmann's constant and M the reduced mass.
To simplify the notation we absorb k/M into T so that

T = vtﬁz has the dimension of velocity squared. We

decompose vectors as

B B
+ v B o
b B? (8)

etc.

Most of the approximations and assumptions implied by

-6 -



the use of this model were described and justified by
Greene et‘al. (1971) ; here we comment only on the addi-
tional effects introduced in this paper, viz., the correct
treatment of viscous terms in the pressure tensor E ’

and the physical interpretation of Eq (5) thz energy

equation.

In the limit of large £,7,;(R, is the ion-cyclotron
frequncy, T, the collision time), the stress tensor is

(BRAGINSKII, 1955; SHKAROVSKY et al., 1966)

E:PE{-E (9)
where
T =-% poT(bd - 386) (bb - 38) : W (10)
repcesents collisional wviscosity. Here | is the ion-
jon collision time, & 1is the unit temnsor, Db = B/ |B]
and W is the zero-order tracelesss rate-of-strain tensor,
= : T
E‘%?Y+(YYY - $V.v §} (11)

Since this expression for E has been obtained independ-
ently by several authors usiag both the guiding-center
model (CONNOR and STRINGER) and Grad's thirteen moment
approach (BYDDER and LILEY, 1958)%, it may be adopted with

some confidence.

In a set of coordinates locally aligned with the

#

maganetic field, the stress teasor redices to

I = -3upT (bb - 3

1 Cr

) [.Y (veb) - (5.¥B).y - 37.v].

*We are indebted to Dr R.J. Hosking for demonstrating this
equivalence to us.

#This differs from the expression of RUTHERFORD et al.(1970)
by the inclusion of the field line curvature term (bVDb).v.

o T =



The anisotropy of the plasma, which in more sophis-
ticated models (CONNOR and STRINGER) is described by
energy equations for both parallel and perpeandicular
pressure, may enhance momentum transfer from perpendicular

to parallel directions(magnetic pumping, DAWSON and UMAN,

1965). Thus it is reasonable to write Eq. (2) as
av
Pgr=¢cJ xB-Vp+ %W-[pﬂp@ - 30)[B.V (v.b) -(b.¥b).v
- Kl3V.v] _],
(13)

where if £ > 1 additional bulk viscosity is present.
Because of the curvature of th= magnetic field lines, these
parallel viscosity terms modify the perpeandicular com-
ponents of the momentum equation and affect the buildup

of rotation in the system.

To describe the evolution of energy in the system one
should adopt equations for both the ion and electron
temperatures, as was done by POGUTSE (1970). On the other
hand, some simplification is possible because of the
enormous differences between ion and electron thermal
conductivities (BRAGINSKII, 1965). In the 1limit of large
electron-ion collision frequency, for example, relaxation
between the species is sufficiently large that the electron
and ion temperatures are very nearly equal. Then Eq.(5)

is appropriate with A = Ke . In the other extreme (small

coupling between the electron and ion fluids), Eq.(5)
applies to the ion temperature (A = }i) , while the

appropriate electron energy eguation becomes Y'Ee'zTe = 0,

satisfied with Te constant on a magnetic surface. Thus



it is reasonable to simplify the model by including only
one temperature eguation, which in bath extremes properly
describeé the total temperature in the plasma. It is
difficult to justify the use of a single temperature for
situations lying between these; clearly one should expect
significant entropy transport when wWTe; ~ 1 . Since it
is difficult to justify the use of fluid models under
suczh resonance conditions (CONNOR and STRINGER), it is

reasonable to adopt a simple model.

Just as with the treatment of viscosity, the assump-
tion that ﬂiTi is large makes it possible to retain
only the ﬁ:g@sz term in the thermal conductivity tensor.

Thus, using Egns. (4) and (7) we write Eq. (5) as

B.VI -
Ez_>' (y = 1) pTV.v. (14)

B == + P¥¥T & A B.V(—-

To the order we consider, collisional heating is negligibly

small.

In order to study equilibrium and stability, we use
the expansion techniques of GREENE et al. (1971). We
employ the same ordering as in that work; in terms of

the inverse aspect ratio, we order
e f ~mn/f A pf VS/Vth fvb/vth % 1w

The ordering of the viscosity and thermal conductivity
is chosen so that they affect both the equilibrium and
stability results. Their magnitude can be adjusted

inside the ordering to approximate physical situations.



We allow parallel flow to be large (zero order) to facili-

tate the comparison of the various approaches and effects.

ITTI EQUILIBRIUM

As emphasized earlier, a realistic discussion of plasma
diffusion in toroidal systems must utilize the physical time
scales inherent in the problem. Properties characterizing
the equilibrium configuration change on a tims scale associ-
ated with resistive diffusion [0(€®) in this calculation],
while the stability of such an equilibrium must be invest-
igated by considering small linear perturbations which vary
on the more rapid time scale associated with wave motion
(whose frequencies are of first order in the aspect ratio),
The details of the work parallel GREENE et al. (1971); for
completeness we outline the calculation, concentrating on

those aspects not included in the earlier discussion.

The calculation proceeds up to the second order in €
in the following straightforward manner: we solve the
perpendicular components of the equation for momentum con-
servation Eq.(13) and Oam's Law Eq.(3) for J; and v,
respectively. Now charge continuity Eq.(6) and the parallel
component of Ohm's Law yield two magnetic differential
equations (KRUSKAL and KULSRUD, 1958) which can be integrated
to determine the variation of Jb and ¢ on a magnetic
surface. The solvability conditions for these equations
determine the net current along the field and the average
potential on the surface. The remaining equations, the

parallel component of the eguation of motion, the



continuity of mass and the energy equation, yield a set
of three coupled partial differential equations which can

be solved to find p, vy and T,

(o)

In lowest order the equations are satisfied when P ,

¢(1), vb(u) and T(O) are arbitrary functions of r only.In
the next order we calculate Jl(l) and hence obtain

)2

+ ZT(Q))]'-

thj) = (er cos8/fBgR) [p(o)(vb(o

7 (o)

Knowing b , we evaluate ¢(2)( r, 6) from the parallel
component of Ohm's law and then y£2) from the perpendicular
components, Inserting these into the other equations, we

obtain the coupled system

p(o) zgj‘) avb(]) N iEf ap(1x s EE}O) szl)
T 206 r 90 r a6

:kfa azv (]}
- E?T_ p(O)T(O) d%ﬁﬁ? = o sinf+ B4 cosd (15)

from the parallel equation of motion,

iE.(O) avb(l )_,_VG(I)Q_Q(])

= &, sin® + B, cosO 16
r 26 r 96 . ? (e
from mass continuity, and
r 26 r 00 r? 262
- GS sin® + Bz cosO (17)
from the energy equation. Here

a]E-p(O)(Zve(i) - fvb(o)) v, @R,



ap = - 20000 R,y = L 5piy) ple)ple) o VIR,
4

B, = - Up(o)vb(o) It + H+fP(D)T(O)Ve(1)/R ,

By = - vplo) | Bs = - uplolgpleda,, ,

2 (1 - Kg3) /r , u = 2p (1 - 2Kf5) /It ,

R
e
11

(1) (1)

Vg = LA + fvb :

primes denote differentiation wi th respect to r.

It is easily seen that these equations admit a solution

of the form

(1)

P(ljfr, ) = Pg (r) sinb + Pc(l)(r) cosB

(with similar expressions for vb(l) and Tfl)), where the

coefficients are obtajned by solving the set of six simul=-
taneous algebraic equations in ps(i){ pc(lh Vbs(l):vbc(lh
Ts(l) and TC(I)u The determinant of the matrix of co-
efficients of this system of equations (which corresponds
to STRINGER's (1959, 1970) dielectric constant is

p(OJ4P/rs , where

P[0 -0 22 oy s Rz 2], (18

>
i

fzh/p(o)r , WL = pE£RT ,



The solution of these equations is given in the Appendix,
Since I' is positive-definite colliéional effects remove
the singularity. Of course this still leaves open the
possibility of a shock solution (weak discontinuity) for

small values of T .

Finally the solvability condition for the conserva-
tion of charge
% Ner6 z 0 ,
provides in second order an equilibrium condition relating
the zero-order density, temperature and parallsl velocity

profiles to the lowest order rotational velocity v'e(1J

20Ot giney 4 (v, (002 4 a7r(0)) (o) 5500

b
(O)Vb(O) <Vb(1 Jsin®) + L% fp{ o) (o) (vb(l)c056>=§€p+ p(o)T(o) VGU ).
(19)
Hecre ( > refers to an average over the magnetic sur-
face. It is interesting to obssrve that although the

viscosity terms which are introduced into the perpendicular
components of the momentum equation provide a divergence-

free contribution to gl(j)(so that they do not affect the

oY, o (1)

and T(ll), they modify Jr(z} so as to provide the last

determination of the first-order functions

two terms in this equilibrium equation. This drastically
limits the values of U for which equilibria can be

found with (o). =0

vy .
At this point our equilibrium calculation is completed.

The equilibrium is not a completely stationary one; the

zeroth-order parameters change on a diffusion time scale



(3)

(order €%) . Since V. is a sinusoidal function of
6 and thus contributes no net flow in this order, we can
evaluate the appropriate diffusion rate with no additional

work. Thus
52 - ; 5?; {rp(o)[nczu + 2r2/£2R2) (pl)ple)y/p 2
+ Me?r? (P(O)vb(o)zl'/szosz |} - -:—_ a—i fvp. U1 (20

The first term on the right-hand side is easily recognised
as representing the Pfirsch-Schlliter (1952) torocidal cor-
rection to the diffusion coefficient for a straight cylinder.
The last term provides an additional contribution arising
from the shift of the constant density contours away from
the magnetic surfaces (r = constant). Zero-order parallel
flows also contribute to the diffusion. Analogous expres-
sions relating to transport of toroidal angular momentum

and heat flow are given in the Appendix.

It should be emphasized that a diffusion calculation
is meaningless if all the above equations are not satisfied
- in particular the charge conservation coandition Eq. (19)

- or if the equilibrium configuration is unstable. Then
the concept of diffusion is not applicable. In the next

section we investigate the stability criterion.

IV SIABILITY

In this section we consider the behaviour of small
amplitude linear perturbations about an equilibrium

state. We assume that



P=peq+5s

etc., where the equilibrium guantities (like ) are

Peq
given in the Appeadix. To carry out a normal mode analysis
we assume an exponeniial variation with time
P (r,0,t) ~ p(r,0)exp(-iwt). We are led to the ordering
w ~ € ; the modes grow or damp on the times scale associated
with propagation of acoustic waves the long way around the
system.

Again the calculation proceeds in an analogous fashion
to GREENE et al. (1971); conservation of mass, momentum and

energy in the system leads to a set of three coupled partial

differeantial equations for the zero-order perturbations

= (0), 5(0), ;b(O) and T0):

8
""(O) Ve(l) aN(O) (0) oy (0) )
- iwp + =z 5% = - 2p Vg sinb/R
(0) 3% () %_(0) 5 (1)
£ - s 0 21
- 2 5@h =2 3% (21)
from Eq. (4),
_ ~. (o) vg (1) a;b(o) i 82vy, (o)
1 Vb + ._r__ _a_é_ - -E —_Zhae
£ QE(O)_ fT(o) QE(O) )
= " T 35 p‘('a)r 00
(o) o3 Loy b 1= (o)
- I:ZVb sul@/R + -I—' -'—a'e—'— " fT COS@/R VS (2.2.)

from Eq. (13) and

m(o) , Yelt) atle) g geple)
ioT" + = 36 " 7302
(o) 3%, (o) (1) | .
= = (y-1) irz —5—}3 [Z(Y 1)T(O)sin6/R + % %—g JVS(O)
(23)



from Eq. (14). Charge conservation requires that

Ei- W + pTET(D)/RJ ;S(O) = 2<n’f‘(° )sin6>/R+ {ZT(O)+ vb(o) 2) (5(O)sin6>/p(o)R
n sz(O)Gb(O)si_newR - u*fT(O)(?rb(o)cose}/R : (24)

As in the cquilibrium calculation, the viscosity coefficient

~t ~Js
enters in terms associated with both v and v,

We proceed by introducing the Fourier decomposition

5V (r,0) - Z 500 (x) sinme + 32 (=) cos mo ] _

m

It is clear from Eq. (24) that oanly the m = 0 component
of VS(O) is non-vanishing, and that it couples only to
the m = 1 components of the other variables., As before,
(GREENE et al., 1971), the modes for m = 2 decouple,
giving a series of damped, doppler-shifted acoustic oscil-
lations. The terms of these equations associated with

m = 1 form a seventh-ordsr set; making the determinant
vanish provides a dispersion relation (see Appendix). The
equilibrium is stable if and only if there are no roots of

this dispersion equation in the upper half plane. This

can be determined most easily by numerical means (T.J.MARTIN).

V RESULTS

It is clear that the determination of equilibrium
configurations is the major part of any diffusion discus-
sion., As shown in Sec. III, the most essential feature
is the satisfaction of Eq. (19), the condition of charge
neutrality. Once such a solution is found one must check

to see that it is stable.



It follows from Eq. (19) and the Appendix that the

. 3 : 1) : #
static solution where ve( = vb(o) ” vb(O) = 0 (net
flow present only on a resistive time scale) is an equi-

librium. In this case the modes can be identified analy-

tically. The dispersion relation separates into

(@ + i Ar) [wlo+ ir a?p*) - a?]- (v =1)w a® = 0, (25)

and
(w+ i AMr) [w?(w+ir a®? ) - (w-iq)g?]-(y-1)w?g®= 0.
(26)
Here
b= p* o+ pte2yezp2
# = epleh 8 g? = a® (1 + 2r2/£2%R?)

q chzrzT(o)p(D)‘2/f4R2B02p(O)(1 + 2r2/i%R?),
Clearly the third-order equation deterimines two acoustic
waves and an entropy mode associated with thermal conduc-
tivity. It 1s independent of resistivity. The other
equation contains a second entropy mode associated with
thermal conductivity and one associated with plasma
rotation, and two geodesic waves (acoustic waves where

the electric fields associated with the toroidal wvariation

of the magnetic field modifies the frequency).

To proceed further it is useful to make a second
asymptotic expansion where the resistivity is made small
inside the inverse-aspect-ratio ordering. Then we must
order the thermal conductivity and the viscosity in terms
of this resistivity parameter. To investigate the situation
where these new collisional effects provide a small departure

from the previously studied model (GREENE et. al., 1971),

= 1T =



we assume that N!'~ u~ q 2 0, Then

wi o~ [Ta-ir a?(W*+ (y-1)/8)/2], og~w,~-id/r,
wg ~ iq and o, .~ *g-ilra®f+(r-1)r g?/% +q]/2.
The acoustic and the geodesic waves are both damped. The
thermal entropy modes are strongly damped. The one un-

stable mode, associated with rotation, is not affected

by viscosity or thermal conductivity in this orderingz.

As the viscosity is increased the frequencies of
both the acoustic waves and the geodesic waves decrease,
so that, when U¥ = 2/ra the acoustic modes coalesce at
W, = Wz ~-ir a® p¥/2 and when [ = 2g/r a?®  th

1 ’ L= 2g/r a e
geodesic modes become wg = Wy ~-ira®u/2.
For even larger values of U these modes separate along

the imaginary axis, In the limit where p-! ~ A°1 ~ q—~0

2 p*, wy~-i/rp* , wz~wy,~-ik/T,

#]

the modes approach w,~ -ira

wg ~=-ira® I and Wg o ~ = (ig?®/2r a? wlt i(1+4ra2ﬂ[iq/g2)

One mode is always unstable.

As the thermal conductivity is decreased (keeping the
viscosity small) the freguencies of both the acoustic and

the geodesic waves increase. When A~ L~ g >0 we find

1
/2 2 uF s (y - 1)K/ ],

W, 5~ Y% a- (i/2y)[yra
3 5 - - - 1
Wy ~=iNYT, 0 5~[ilq-Mr)/2y]f1£[1+4y qh/r(q-1/r)2] /2}
V2
and only one mode remains unstable.

(1)
0

Wg, 7 ~ =Y g =-(i/2y) [q+yra®?l+ (yv-1)A/r]. Again one

When v # 0 it is difficult to determine the
equilibrium solutions and their stability properties analy-

tically. We thereforz employed numerical techniques

(T.J. MARTIN). Solviag the equilibrium relation, Eq. (19),



for one parameter (which characterizes the equilibrium)

in terms of the rest, we calculated numerical values for
the equilibrium first-order plasma variables (see the
Appendix) and hence determined the elements of the disper-
sion relation. Unfortunately, from a purely physical
standpoint there is no good parameter to characterize the
equilibrium. In the past there has been a tendency to
equate the difference between the expression in Eq. (19)
and zero to a growth term p avelat and to plot this
fanction in terms of Ve As stressed in this work, this
can have meaning only in the vicinity of an equilibrium
solution and one can have little confidence in the form of
such a curve elsewhere. Therefore we chose to dstermine
the vb(O)’ which is necessary to satisfy the equilibrium
condition. Presentation in this manner has the attribute
that it clearly illustrates how the various models are
related.

In Figure 2 the value of vb(o)' which is necessary

to satisfy the eguilibrium condition on a surface with
prescribed zeroth-order density, density gradient, constant

temperature, and no local net tcroidal flow, is presented
(Y
0

as a function of the rotation velocity v for several

values of the thermal conductivity and no viscosity. The

values of ve(l) for which vb(o)' = 0 are the ambipolar

solutions of GALEEV (1959). In the infinite thermal

2
conductivity limit, M ® c , the minimum value of vb(o)

(1)

occurs when Vg approaches fvth - a region where the

expansion has broken down. As A 1is decreased this knee



(1)

occurs for smaller values of Vg @ For A below some
g 1 : ‘ .
critical number the value of ve( ) where it occurs begins
to increase again, so that as A * 0 the knee appears when
(1)
S)

1
v approaches ('\f)'/2 fv,, as one should expect.

Numerical evaluation of the dispersion relation shows
that the rotational modsz is unstable for values of ve(j)
corresponding to the dotted parts of the curves. The growth
rate becomes zero when avb(o)’;ave = 0, and for larger
Ve(l) it is damped. Thus the equilibria of GREENE et al.
(1971) are unstable while that found by GALEEV (1969) is

stable,

The effect of viscosity on eqiilibrium is shown in
Figure 3 for several systems with infinite thermal conduct-
ivity. Again we have calculated the value of vb(o)’
which is necessary to achieve equilibrium for a given value

of K. For very small values of [ it is necesary to have

Ve(l) very near f

Vih (where the model breaks down) for
s
solutions with vb(o) =0 to exist. Reasonable solutions
. s
with vb(o) = 0 can be achieved with modest values of

the viscosity, but not if | 1is too large. This limita-
tion on W is caused by viscous terms in the radial
component of the momentum equation associated with deriva-
tives of the unit vectors. The curves are lower if K > 1
(corresponding to the presence of an additional phenomeno-
logical viscous term associated with transfer of energy
from perpendicular to parallel pressure), so that for a
given value of U the value of ve(” (0)s_

for which Vi 0

is smaller. Again the eguilibrium is unstable with respect
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to rotation along the dotted parts of the curves and other-
wise stable.

If both '/A and | are finite the equilibrium

(o) # as a function of v6 are what would be

curves for Vb
obtained by adding the two figures. Similar results are
found when the other parameters are varied., It should

not be surprising that solutions cannot be found with
Vb{o)f = !N = u=0 by adjusting T(D)', since T enters

the problem only through the pressure.

The most striking thing about these results is that
if u > 0.6 the equilibrium curve of vp(®)* vis v (')
increases monotonically - the only equilibrium solution
with no large toroidal flow in the system (vb(o) = 0 on
all magnetic surfaces) 1is the static ve(l) =0 one that
is unstable, The collision time for a typical leboratory
plasma is larger than given by this value of U, Thus
the discussions of systems with weak discontinuities
(HAZELTINE et al., 1971; BOWERS and WINSOR; GREENE and

WINSOR) may be more pertineant than had been appreciated.

VI DISCUSSION

The major emphasis of this work has been to separate
the discussion of plasma diffusion into two unique parts -
equilibrium and stability. Obviously, calculation of
diffusion has significance only if the system is in a
stable equilibrium state. If one starts from an initial
plasma distribution which is not a stable equilibrium,

the condition that no net current flows from a magnetic
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surface requires that the poloidal flow must change on a
time scale associated with the propagation of acoustic
waves (~ € in our model)., The azimuthal distribution of
density, parallel flow and temperature are then adjusted
on the same time scale to satisfy the fluid equations.
In turn, the non-linear character of these equations

implies modifications to how Vg must change.

In the model treated here considerable care was
taken in choosing an expansion to describe the effects of
ion-ion collisions. Braginskii's stress tensor (1965)
with ﬂiTi » 1 provides a good representation provided

v Ti/R < 1 & In this limit the important viscous

th
term arises from parallel viscosity. This term also con-
tributes to the components of the wmomentum egquation perpen-
dicular to the field due to the curvature of the magnetic

field lines. This feature modifies both the equilibrium

condi tion and the stability criterion.

In order to keep things as simple as possible we have
left many interesting and important physical effects out
of the model. The major omission is the neglect of terms
associated with finite gyration radius (the nondiagonal
pressure tensor terms in the momentum equation and the
Hall terms and the electron pressure gradient in Ohm's
law). These terms provide significant modifications. The
main effect of the finite gyration radius terms in the
pressure tensor is to alter the inertial term in the com-
ponent of the momentum equation along the field (STRINGER,

1969)., The additional terms in Ohm's law can make the
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acoustic mode unstable (the familiar drift instability)
under some conditions. Since these effects have been well
explored (BOWERS and WINSOR), we chose to avoid incluading

them in the calculation.

One should investigate the consequences of an aniso-
tropic pressure, T, # Tj . In toroidal configurations
where the mean free path for collisions is shotvt enough
that trapped particle effects can be neglected, this effect
should not be very important, However, transfer from
perpendicular to parallel energy could significantly
enhance the bulk viscosity (DAWSON and UMAN, 1955). To
incorporate this into the model we phenomenologically
introduced a parameter K 2 1 into our viscosity term.

Its primary effect is to make it somewhat easier to satisfy

the equilibrium condition.

One should introduce two eguations to treat the effect
of thermal conductivity - one for the electrons and one
for the ions, As described in our discussion of the model,
a single equation suffices well in both regimes of large
ion-electron relaxation, where both components maintain
the same temperature and the large electron thermal con-
ductivity dominates, and small relaxation, where the
electron temperature is constant on a magnetic fi=ld line

and only the ion thermal conductivity affects the motion.

The most significant feature of these calculations
is the strong limitation on possible equilibrium configu-
rations imposed by the charge conservation constraint,

Eq. (19). 1In the earlier work (GREENE et al., 1971),
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which utilized the idealized model without viscosity or
thermal conductivity, it was necessary to have large
toroidal flows on some magnetic surfaces in the system
(Vb(O)' # 0) in order to construct an equilibrium. These
flows provided a mechanism which made the rotational mode
unstable and could also excite a Kelvin-Helmholz instability

in the acoustic mode,

The presence of either thermal conductivity or viscosity
modifies the equilibrium conditions as shown in Figures 2
and 3. In particular, they allow the possibility of equi-
libria with no net toroidal plasma flow - as had been found
earlier. The demonstration that these particular equilibria
are stable had not previously been given. The transition
from instability to stability indicated in these figures
occurs just where it would be predicted by a calculation
of forces. Thus, if vb(O)' is greater than this value
we see from the charge conservation condition that ave/at

exerts a restoring force if Vg is shifted from its equi-

librium value.

Plasma diffusion occurs on the resistive time scale
(e®), an order higher than one must go to determine the

(3)

equilibrium. Since the radial flow in this order, Vi ,

varies sinusoidally with ©6, the equilibrium calculation
provides an expression for plasma diffusion - the usual
classical formula first derived by PFIRSCH and SCHLYTER
(1962), enhanced by the fact that the density is larger
on the outside of the torus where plasma is moving away

from the magnetic axis than on the inside where plasma is



returning to the column. It is important to note that
convective flow occurs with YL(Z), ah order larger than
the net diffusion. This flow could be strongly affected

by a change in boundary conditions - such as inserting a
limiter or introducing a diverter so that the plasma is
well separated from a conducting wall, or even changing

the electrical potential on the limiter. Since the different

magnetic surfaces are decoupled in our analysis it is diffi-

cult to study this effect analytically.

It is important that stability calculations, such as
the ones reported here, be carried through before one
believes an expression for plasma diffusion. Since in the
vicinity of an equilibrium all the possible plasma motions
couple together, it is difficult to be sure that a rough
estimate is correct. The situation is siganificantly sim-
plified by the demonstration by ROSENBLUTH and TAYLOR
(1959) that non-axially symmetric periurbations or those
with m = 2 do not couple with the toroidal effects and
undergo only ordinary acoustic motion. It is also useful
to note, as they demonstrated, that if the straight con-
figuration analogous to the toroidal system of interest
is unstable with respect to an axisymmetric mode with a
cos © dependence (drift instabilities in their model ),
theun a meaningful equilibrium cannot even be found. This
situation is analogous to the one of fiading toroidal
stellarator equilibria (GREENE et al., 1966), where the
homogeneous part of the equation which determined the

equilibrium is the same as the Euler-Lagrange equation



for determining stability of the straight system,

If the nonideal effects discussed here are very small
(M7 and W > 0), then it is possible that the inverse-
aspect-ratio expansion may break down where the equilibrium
condi tion is satisfied (p“)/pfo) » £) . In this case one
should reorder Ve in the expansion and obtain a '"shock"
solution in the manner of GREENE and WINSOR. The new vis-
cosity terms associated with field line curvature are too
small to affect BOWERS and WINSOR'S calculation of equilibria

with shocks.

The use of numerical simulation to supplement these
calculations is valuable, primarily because it is impos-
sible to see how behaviour on neighbouring surfaces couple
and because the analytic formalism is applicable only for
a discussion of equilibrium states and cannot be extended
to treat the time development. We have modified a simula-
tion code (WINSOR et al., 1970) to include the effect of
thermal conductivity and used it to follow the behaviour
of a system near the calculated equilibrium. As one should
expect, we were able to observe some acoustic motion (present
in the initial conditions) damp on the proper time scale
and the plasma gradually diffuse. It should be sasy to
incorporate these changes into the more general code
(BOWERS and WINSOR, 1970) that contains finite gyration

radius effects.

We are presently modifying the numerical code (WINSOR
et al., 1970) so that it can be used to follow plasma motion

in a more realistic field geometry - a spherator or levitron.



Since the plasma flow is intimately connected with the

curvature of the magnetic field lines, it should be useful
to see the impor tance of these effects. It would be diffi-
cult to make much progress analytically because one cannot

utilize a small inverse-aspect-ratio expansion.
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APPENDI

Here we give explicit expressions for the first-order

equilibrium variables, the equilibrium condition Eq. (19),

(o) and T(O), and the seventh-

the rates of change of o
order dispersion relation for the coupled modes of Sec.IV,

For completeness we retain vb(o) and vb(O)'

From Egs. (15), (16) and (17) we find

(1) 1 . -
P = - T {1}[ve [ (y-1)£3T DY _Dh] pP° + IpDy vp

- £2y D pT’ - p*hi4Tvg [pT" - 26 -1)Tp"]

6 ¥
ety e 1p7]

+ g £2 pvg T [A(y-1)Ur + p* Vez Uy + p* T\ZUT

—;.L+D7\]}, (A1)
() e iy AT [DT/T - (y-1)d] - p*¥ £2 Tvg? 4
Pec = E Y 3] T
T LT ] - [ - ZuF Ry 1)14T2 v 2
_ ZH:::2f4T2Véz (V62+ Kz)
o u+f3vezT2 [X (v =1) + p*(vg® + A?)] WJ
(A.2)
() _ _ 1 2 , T 2 (3 .
gV 2 P[U[D?\'d/f-!-f\’e DYT + u*¥ N Vg 3T T ]

- efTv. 2 [R (y-1) Ur + p* vy2 U, + u* A% T
e Y

0
+ |J.+ D?t ] j 3 (A.3)

- 30 -



v (1) = & VB [ = g
be T T vL?&fT[DT'/T- (y-1)d] - u*fTvesz -p,*?\ngd]

: w2 N2 - % 3 -
e[;a Dy Uy/f + AD Up/f '+ 2p* N(y-1)£3T2vg2

#out [Rlr-1) + p*vgi+ ?'\zl]fstvéz:l } . (A.4)

(1} v, T -
Tg = _i@:_ {u,:Dy[ (y-1)d - DT"/T] + p*X\ (y-1)£2Td
- k24 2 m- _ Y _ . ke2m, 2
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(A.5)
and
T (1) T - |
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Here T is given by Eq. (18) and

v = T]czrz[p(vbz} 2T) ]’ /£%Bg2R ,
. 2 _ _ =2
D = £°T - vg° , DYZYf?‘T-vez, DK=7\D+v62DY,
Ur = 2v62 - 2fvgvy 4 fzv-b2 ,
y =20+ Ur, Up=2D+0Ur,
= 2 - . 4 2 ’

dp = £2T p'/p - fvg v, ' + £2T7,
d =dp - £27%, p* = 2p(1-Kp) /T,

t o= = 2

L= 20 (1-2¢/3)/r , A= M2/ pr
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To simplify notation we omitted the ordering label
from the plasima parameters (all of which are of lowest

order in €).

The equilibrium condition represented by Eq. (19) is

U 52 g . .
=z [7\ DL@Tvy + vg vp® - 2f Tvy)plp - Up vy "/£]

+ Vg DY[(UrT‘— Dy vbz)p’ﬁ)_ vy Uy vb'/f + Ur T’]

- WEREPTvg [2(r-1) €2 T (vi? + T)plpt 2(v-1)ETvg vy ”

’ 1 ,

- Up T* + 3 (DT’ - (y-1)dT) ]
E 22 i y
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- w2 A% £ T [£%Ce, %+ 2T)p7p - 3 d] ]
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S TR SVEE DE S G
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S 4 Rt (vp? R g8 vy } _ 0 . (A.7)

Expressions for the rate of change of angular momentum
and heat flow are quite complicated. They can be obtained

from:
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Unless explicitly labelled, the plasma parameters referred

to here, are those of lowest order in € .
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Finally,

the stability equations, Egs.

the dispersion relation,

-iw 4+ ep+TfR

(1)
2p _ Pe i
R = 1R
(1)/ /
Py vglT
2Vh/R vbc(l)/r 0
Vb(l) +
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0 = Vy /R
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= T fp/r
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from the determinant of the coefficientsof

(21) through (24), we obtain
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- W¥*T/R = 0

- fp/r 0 0

0 0 0
- vg/r 0 - f/r

-i w+ W/r f/r 0
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Since this determinant can be written in the form

|- iwd+ A= 0

is a real matrix,

2

where

w*

o}

is a root if

is the unit matrix and A

is. This result

simplifies the problem to that of finding the roots only

in the right half (including the imaginary axis) of the

complex w plane.
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