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ABSTRACT

Stability properties of large amplitude, relativistic
non-linear plasma waves are investigated by solving the
cauchy problem for the motion of a relativistic electron
fluid with uniform stationary ion background. The develop-
ment of a stationary large-amplitude relativistic wave is
studied under the influence of initial perturbations of
electric field and particle velocities. Stochastic initial
perturbations are slighﬁly damped with time; in the case
of parametric initial perturbations a perturbation growth
is followed by non-linear saturation and decay. Under
some conditions éarticle insterstreaming can develop but it
does not significantly influence the large potential wells

in the wave.
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l. INTRODUCTION

The recent development of techniques for producing
high power relativistic electron beams (see for example
LINK, 1967) has revived interest in the possible interac-
tion of such beams with plasma. O©One important point is
that the instability is of the hydrodynamic type for a wide
range of parameters so that all beam particles are rescnant
with the plasma wave. The phase velocity of this wave is
close to the velocity of light. If the plasma density ng

is larger than the beam density n; and if
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where ¢ 1is energy of the beam particles, m and v their

(1.1)
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mass and velocity respectively, one can expect the excita-
tion of a single mode which becomes non-linear with increas-
ing amplitude. Although this has not yet been definitely
proved, either experimentally or theoretically, this possi-
bility increases interest in the properties of large
amplitude, relativistic, non-linear waves. However, by
using the results of RUBIN and TSYTOVICH (1964), one can
prove that a relativistic electron ring can indeed excite
such a non-linear wave when it passes through plasma
(TSYTOVICH, 1970). These relativistic rings have now been
produced in several laboratories (see, for example, VEKSLER

et al (l967), LASSLETT et al (1969), CRISTOFILOS (1969)).



The problems associated with large amplitude non-
linear relativistic plasma waves, and related to the above
mentioned beam-plasma and ring-plasma interactions, can be

divided into two:
(1) excitation of the waves

(2) their stability properties.
We investigate the second point, which seems to be easier
to study but which also involves a large number of guestions
which must be answered. Let us first mention that the
stationary structure of such waves has been considered by
AKHIEZER et al (1951, 1955}, TSYTOVICH (1962), who found that
the maximum amplitude of the potential well Up,, in the

periodic structure of the wave can reach the value:
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1
e (1:3)
N Jl-—vf/cz
and v_ is phase velocity of the wave. If U>U_.., then

a region exists in which electrons overtake the wave and
the wave becomes unstable. The ions can be considered as
a uniform background and are not trapped in the well (1.2)

if:
‘fﬂ < mi/me . . s . (1.4)

Existence of the large well (1.2) in the case of
ultra-relativistic non-linear waves allows them to be used
for the collective acceleration of ions. In contrast to
the case of the acceleration of a collective electron ring
(VEKSLER et al, 1967), the well is not produced by the
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accelerated particles but by oscillating plasma particles.
The problem of stability of the subsequent bunches arising
from the non-linear wave is also of interest. The stabi-
lity of non-relativistic plasma waves has been investigated
by ROWLANDS (1969) but the relativistic case has not been
considered. It is probable that relativistic plasma waves
have different stability properties due to their large
amplitude. Indeed, the instability must develop to a high
energy level to be able to destroy such a wave, since the
energy of the particles in the wave motion is high. There-
fore, large perturbations and a non-linear treatment must
be used to study this problem.

We first give a solution of the Cauchy problem for an
arbitrary motion of a relativistic electron fluid with a
uniform, constant ion background which compensates the mean
charge density of the electrons (Section 2). We next pre-
sent the results of a numerical solution for the structure
of a stationary,-large amplitude, relativistic non-linear
wave (Section 4). These show how the potential wells pro-
duced by the electrons in such a wave depend on its ampli-
tude In the following, Sections 5,7, the results of the
time development of the wave in the presence of perturba-
tions is investigated. The perturbations are assumed to be
both of a stochastic and a regular nature. The cases of

perturbations, both short and long, compared to the wave-



length of the stationary wave are considered. The problems
associated with the possible appearance of interstreaming
of particles leading to instability are investigated in

section 5.

2. SOLUTION OF THE CAUCHY PROBLEM*

It is convenient to write the equation describing the
arbitrary one-dimensional motion of a relativistic electron
fluid in the co-ordinate system in which the ions move with

velocity v, close to c. We denote

¥, = =t cow {Bel)

From here on all guantities are normalized so that c=1.
The velocity v_ is the phase velocity of the stationary
non-linear wave. Thus, in this co-ordinate system the pro-
file of the wave does not change in time (in the absence of
perturbations). Instead of the velocity v of the relati-

vistic electrons we use the value :

_ 1
YA

... (2.2)

The equation for the one-dimensional motion of the relati-

vistic electron fluid has the form (see TSYTOVICH, 1961)

o/

Y LI ) AP (2.3)

~ -

T =
3¢ /¥® -

Il

~s
3T

*This calculation was partially done by S.B. Rubin
(J.J.P.R. Dubna) and one of the present authors

(V. Tsytovich).



where

W
o =}
( = z - (2.4)
(2
is the dimensionless co-ordinate, (z is the space co-
ordinate of the fluid motion) and
T=tuw ... (2.5)

pe
o . 0 . - . . .
where T 1s time in dimensionless units. Here wpe is

the plasma frequency

w? = —— s (296

where n_, is the number density of the uniformly distri-
buted ions. The left hand side of (2.3) can easily be

shown to be equal to 1/m(dp/dT +v dp/d() where p=mv//l - vZ.
The right hand side of (2.3) is the dimensionless longitu-

dinal electric field in the plasma

~ E
E = r H r = eg ‘ P (2.7)
e Wpe ° 0 mc

In this notation Poisson's eguation becomes:
g

-y ol g .. (2.8)

0]
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where Y, represents the uniform charge density of the ion
background and (n/no)y the charge density of the electrons
(n is the electron density). The Maxwell egquation

3E/3t+4 1mj/c = curlH = 0 gives

=—'-J"\=§—1+i\/:72—1. .. (2.9)

Q/

%

From equations (2.8) and (2.9) one can easily find the

density n and the equation for €
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2F Jyr-13T % Wy

From equations (2.3) and (2.10), two coupled equations for

(2.10)

the two variables Y and =« can be found as functions of
T and 6. Let us find the integrals along the charac-
teristics of these equations. These integrals must satisfy

the equation

3 3
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It is possible to find three such integrals. From (2.3)

we can derive the equation

j%UEV-JYg—J.VY2—1)+'ﬁ££rT — (Y, Y- JY -1 VYa—l)

ag JYE.-l 3T

JY € . ... (2.12)
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Adding equations (2.12) to (2.10) multiplied by ¢, one

finds the first integral

’ f
o= Sy vy, cWYEo1 Wve o1 L L. (2.13)

(2.14)
and thus from (2.10)

o, =& = Yol + vy, -1 1. vra (Pel5)



The third integral can be found if we use (2.13) to express

e through vy :

T= 2 /2N -YoY + 0y -1 0vE 1. L. (2.16)

Thus (2.3) can be written in the form:

Y
2 ay___ . Yy

3 [ T V;'
¢ rJZA ~ ¥ Y + \"Yi ~ 1 HE® - 1,

Lf dr I T S A
A 7550 o : ‘f —————— —_ = = = - —~ -
d sz_x—vov+\/yj—1 Vvy® -1 3¢ N YE -1 a7

or

Y
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These three integrals are sufficient to solve the Cauchy

=E}(§L) and

MY

problem. For example, suppose that

Y = Y(go) are the given initial values of ¢ and Yy at

time t=0. Then taking t = 0 in the three integrals

=% (C 00 ks =80,

Kl,Ke,ls we find the functions ),

A3==k3(30). These functions are constant along the

characteristics which start for each given E; , So that

~

each value of )\_ can be matched by a value of go . Thus,

a
for any given E and T one can find the corresponding

l
2

(T,7).

8]
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C as we move along the characteristic, i.e.

o] o]

~

The function gq(E,?) describes the characteristics. This
means that the actual solution of the Cauchy problem is

described by these three integrals in which:

~

(C.7)) » Ay =a (T (T.T)) . Ay =2, (T, (T,

A, = (€

1 o]



The functions M. , A

% and A, are known and thus

2

these three integrals form a set of three equations for

the unknown gquantities

2T . v . ¢ G5 .. (2.18)
which can be solved. This procedure requires numerical
computation; for this purpose we normalize the integrals

so that one half period of the non-linear stationary wave
is equal to unity.

Before doing this we must mention first that the above
integrals describe a solution of the general Cauchy problem
of relativistic motion of electrons whose average charge is
compensated by uniform ions (not just the specific problem
of the stability of the non-linear stationary wave consi-
dered below) and, secondly, that the generalization of the
results to the case when the charge is not fully compensated
(which can occur for a relativistic beam because of the

Budker-Bennett effect) is quite simple.

For a non-linear stationary wave, the profile in the
co-ordinate system considered does not depend on T and
therefore ka = const. Let us choose the origin of E
such that in the frame of the wave A, =0. 1Instead of &,

let us introduce

k® = c.. (2.19)



The value of k® characterises the amplitude of the non-

linear wave (see below). Instead of v, we introduce
| ZVYi—l
k® = -, ... (2.20)

Vo +V Y2 -1
(o]
where ki characterises the phase velocity of the wave.

Instead of Y we introduce 6§ :

1 - %2 sin®
Y=%<L+%>’ e 8 o -e. (222D
V1-%%) (1 -%3)
Because Y>1 (see (2.3)) we have Lmin:>l. Therr Lendp
corresponds to sin®p = 1 and therefore
k® < kf} ; .. (2.22)

This is the condition for the absence of overtaking or
multiple velocities in the stationary structure of a strong
non;linear wave. The maximum and minimum values of Yy in
the wave can be found as the roots of the expression under

the square root of the integral (2.17)

Ymax = A Yo t va'-l Jlf -1
(2, 25
Ymin = A Yo - VY. -1 WVAZ -1
and
Ymax = Ymin = Vv -1 VAZ -1 =2v2 if A - v, v, > 1.
(2.24)

This result corresponds to the above-mentioned maximum
potential well (1.2). The same result follows from (2.21).

Laax Corresponds to §=0 and

1
y s I = - =~ L - 242, ... (2.25)

3 L ‘
RHA MAX oy (L-k%)(1-k2) 2(1-k3)




The electric field € can easily be found from (2.13)

and (2.21)

2 .
% = Lol 58 - .. (2.26)

i
2(1-%k?)®* N1 -=%k%®sin®p

and the integral (2.17) can be expressed through eliptical

integral,

2k% E(k,0) kW1 -k sin2 @ y
- —+ ————————————— = ( . (2.27)
V2(1-k2)2 (1-%2)% /21 -% V1 -Xk?sin®p
where
8 R
E(k,6) = [ V1-ksin®s, do, . ... (2.28)
[0}

These results for the structure of the relativistic station-

ary wave were found by TSYTOVICH (1962). Let us denote gp
for the half-period of the wave
2 k2 E (k)

Cx = (2.29)

° i 1

¥ /J2(1-%2)*(1-%%)"
where n/2 |

E(k) = | V1-k®sin®, dp, (2.30)

o

is the complete eliptical integral. Let us also introduce
the space and time co-ordinates ( and T respectively, and

electric field ¢, all of them normalized to the half-

period value Cp
¢ T e

¢ ==, T=€—T—, e=f—. ce. (2.31)
P p p

Then the equation for the stationary wave has the form

E(k,8) k® (1l -%%)sin 2 ¢

- =

(2. 32)

™

E (k) 2%% E (k)W1 - k2sin?8

—lO-



(L-%%) k®*sin2 g
g = ... (2.33)
E(k) . k% .41 -k?sin®9

and vy 1is determined by equation (2.21). Equations
(2.32) , (2.33) and (2.21) are used in the next section
to find the profile of the non-linear, large amplitude
stationary wave. To solve the Cauchy problem of the
wave whose initial stage is represented by a structure

similar to that of the stationary non-linear wave, it is

necessary to take into account these integrals. Let
A 3 A 2
vV o= z— and =2 . .. (2.34)

Then these integrals have the form

E(k,,0) k3(1-%%)sin 2@

. = v+ ... (2.35)
E (k) 22 E(k, W1 -k3sin®p

(1 —kg)kisin2 B
5 = B ... (2.36)

B = 'l - T:u_ . e (2037)

where the subscript 1 indicates the new value of k from

that corresponding to the stationary wave. If the pertur-
bations are small, v €1. 1In these integrals k§==const.
but not k® . The initial perturbations can be given for =

and y which determine A  and A_, as well as for k® and

V. The later variant is more convenient for numerical

- 11 -



computations. Thus

kj=k2+5k2 ' ... (2.38)

where 6k® <k® is the perturbation. If v and 6k® are
given, yu must be calculated by using the equations (2.35) -

(2.37) for T1=0.

3. THE COMPUTATION PROCEDURE

We compute the characteristics of the integrals (2.35)-
(2.37) by an iterative method, i.e. we take instead of
C, some values (  and find the corresponding values of

the function 5
2Ky
QlLsed = &8 = 2 E+ 17 =-n, vws (3el])

Q

for the chosen values of the space and time co-ordinates
C and T respectively. By a suitable choice of the values
C,, We can achieve the result that Q(QOO)-*O and therefore

that Coo 76, + The actual procedure can be divided into

two stages:
(a) Determination of the integral u by solution
of the system of equations (2.35) - (2.37) for 1=0.
We take E= iy ond find by another iterative pro-
cess the solution © of the equation (2.35) (the
functions kf((o) » v(G ) chosen will be described

later), substitute 06 into (2.36) and calculate the

value ¢ . From (2.37) we can then easily determine

n, taking 7v=0C.



(b) Solution of the system of equations (2.35) - (2.37)
for given T . We repeat the previous procedure but
take for ( and 71 their true values. As a result we
get one value of the function Q(({ _J). By a suitable

iterative method we find its root go and the corres-

ponding values of ¢ ((,7) and Y({,T).

Our preliminary tests showed that if multiple roots
goi appear they are near to the first one, QO, and to find
them it is sufficient to explore the intervals (go-o.l,
g0—4x10"4>, (¢, +4x107%, ¢, +0.1). 100 iteration

steps in each interval proved in practice to be sufficient

either to find them or to exclude their existence.

In our experiments we chose three different types of

the functions ki(go) and v(go), i.e. of the initial

perturbations:
(a) k3(¢ )=%k®, v=0, i.e. no perturbations at all.
1 Q

In this case we get the basic profile of the station-
ary wave (Section 4) whose time development under the

influence of the fluctuations is later investigated.

(b) kzl((__fo)=k2[l+asl(go)], v=asz(go) where a

is the amplitude of the perturbation (0.001 -0.19),

and s (C ) and s,(C,) are functions which simulate
the stochastic fluctuations, |s, |, |s,| s 1. Their
values are generated in intervals Ag)= 1.107° by a



semi-random generator and their intermediate values

obtained by linear interpolation.

(c) kl(go)==k2[l-fa sin(mp ¢ )], v=a sin(mp (),
i.e. resonant parametric fluctuations; p is the
ratio of the frequencies of the perturbation and the

wave (in our computations p=0.1, 1, 4, 1l0).

To characterize the development of the wave we com-
pute the values of the perturbations from the stationary

state, i.e., Aeg =€ - g and Ay =Ty = Vyq for (N+1)

Il

values of the space co-ordinate (;=1i.4A(, i=0,1, ... N,

and the average values
N N
i e . — _ _1 -
be T N+ 1 é EC I N+ 1 L
o)

| A"{i]
which we plot as functions of time (Sections 5, 7).

4. THE STRUCTURE OF STATIONARY NON-
LINEAR RELATIVISTIC WAVES

It is obvious that the profiles of the stationary
waves do not change in time in the absence of perturbations
and it is sufficient to calculate them only for T=0. They
are shown in Fig.l for one half periods for different values
of k and k,. It is apparent that for very different
values of k and ]co the shape of ¢ 1s nearly sinusoidal
and that when the value of k approaches %, & the gradient
of the electric field increases in the vicinity of the

point at which vy is minimum. One can expect that the



instability should start to develop in_this region of the
wave. The maximum gradient of the electric field (see
Fig.2) also indicates how far the wave is from the over-
taking regime. Fig.3 shows the maximum amplitude of the
wave electric field and Fig.4 the maximum value of the
parameter Yy which characterises the electron velocity as

a function of k and k. The closer the phase velocity of
the wave to the velocity of light (k, — 1) the larger can

be vy for a given maximum gradient of the electric

max

field.

5. STOCHASTIC PERTURBATIONS OF THE WAVE

In this paragraph we investigate the stability proper-
ties of the waves described above, when we assume both
small (0.1%) and large (~ 20%) stochastic perturbations of
the parameters k® and v at time 7v=0, corresponding to
initial perturbations of the wave amplitude and electron
density. An example of the shape of ¢ and Yy at time
T=0 is shown in Fig.5. 1In order to follow the wave struc-
ture in more detail we shall present only the shape of the
perturbations from the stationary state, i.e. Ae=¢-¢g/

and Ay=yY - Y, + @s functions of the space co-ordinate (.

Fig.6 shows the shape of typical fluctuations As and
Ay at three different times. We have found no indication

of any strong instability for a wide range of parameters



k and kO (0.99:2kO 2 0.4, 0.98=2k=0.4, k*(ko) even

though certain time variations are evident.

The time variation of the average values Ae and Ay

normalized to the maximum values of ¢ and of

omax Yomax
the stationary wave is shown in Fig.7. The values AJe (7)
and E?T:j fluctuate (= 50%) but never exceed their res-
pective initial values. A similar investigation per formed
for various amplitudes of the initial perturbation shows
(Fig.8) that the general time behaviour of the perturbations
is independent of the amplitude of the initial perturbation
a, and also that the relative amplitude of the perturba-
tions EE?a decreases with a increasing, that after it

eXceeds some critical value (a = 0.02 in our example in

Fig.8) some form of saturation is observed.

We must emphasise that the small perturbations of the
amplitude lead to small perturbations of the electric
field in almost all regions of ( observed except close to
the place of maximum electric field gradient. The initial
large perturbations of € near to this point may make it
impossible to observe the development of instability in
this region. To avoid this effect we modulate the ampli-
tudes s, ((,) and s, ((_ ) of the random fluctuation of k?3

and v respectively, (i.e., decrease their amplitude near

to the points ( =+1, = 3, £5, ...) so that the initial



amplitude of the electric fluctuations at time T1=0 1is
approximately constant all along the Qave. Fig.9 illus-
trates the time development of the fluctuations in the
region of large electric field gradient. Although we have
avoided the large initial perturbation in the vicinity of
the high electric field gradient, large fluctuations quickly
appear there. They appear as the propagation of the ini-

tially small perturbation along the (-coordinate away from

the high field gradient region, and undamped perturbations
enter this region where they are amplified; the whole
effect repeats periodically. This seems to support the
argument that the development of a perturbation in the
region of high electric field is essentially independent

of the initial perturbation in this region.

6. MULTISTREAM INSTABILITY

The development of a small perturbation can lead to a
situation in which we can find two or more different values
for the particle velocity at the same position and time.
This indicates that there exist two plasmas penetrating one
through another. As we have described above, our programme
can find these two roots or preclude their existence. It
enables us to determine the regions of ( where the two
roots exist, as a function of time. Figs.lOa, b, ¢, show

such time development for different parameters k and k.



The two roots first appear exactly in the regions of high
electric field gradient but then spreéd into the wider
region. It is interesting to note that in the case of a
highly relativistic wave (Fig.1lOc) the region in which there
are two roots is considerably smaller than in the other

examples (Fig.l0O a ,b).

The time %y when these two roots start to appear is
plotted as a function of k and k| in Fig.ll. ©Note that

one can find such a combination for k and ]<O that the two

roots do not appear at all, (for example k_ = 0.99,
k ~ 0.7). The absence of two roots in such a condition was
checked for a very long time 1 (up to 40). It is also

interesting to note that the larger the phase velocity of

the wave (i.e. the nearer k, is to unity) the easier it is
to find the conditions when only one root exists. Thus the
larger is Y, (i.e. the more relativistic is the wave) the
less likely is interstreaming to occur. The appearance of
two roots does not necessarily mean that the overlapping is

in any way dangerous and actually destroys the wave.

As the results show, the difference

Yy +Y -
Ay=yl_ygé.—.]:.._.2_._2.=y

Therefore, in the frame of reference moving with the
: e b . ;
velocity u = Jl-—:g (in which the two streams have equal
¥ Y

and opposite velocities) the velocities of the beams are

not relativistic and their absolute values are equal to

- 18 -



lay]l

F - The characteristic length for development of this

instability is of the order:

'C'C=% %%e\f% : e (6.1)
If we divide it by QP we get the dimensionless character-
istic length
(o *A—Y\{(l—ki)% (1-%)% | . (6.2)

If gc < pM  where A is the characteristic width of the
region of two roots, the instability has sufficient time

to develop. Our results show that typically (.~ 0.005%0.1
and therefore this situation arises very quickly. It can
be imagined that a region exists in which the velocity is
continuoﬁsly distributed between Y, and Y, as result

of development of this instability. However this does not

necessarily disturb the shape of the wave since |Y1—Yzl<@v.

7. RESONANT PARAMETRIC PERTURBATIONS

It is known that a high frequency field applied to plasma
can lead to parametric instability (SILIN, 1967). Further,
the stabilization of drift waves by intense high frequency
fields has been described by FAINBERG and SHAPIRO (1966,
1967). In these papers an arbitrary sinusoidal non-self
consistent high frequency field was considered. Notice
that the plasma polarization can change the structure of

an intense wave and its parametric stability. The large



amplitude wave is an example of a self-consistent high fre-
quency electric field which takes into account the plasma
polarization. One interesting question is whether the
parametric resonance still occurs in this case. We can
analyze this problem for any (not merely linearly-small)
parametric perturbations and find the non-linear saturation

of the parametric instability if it does exist at all.

Fig.l2 shows the time variation of the normalized
average amplitude of fluctuations for the values of para-
metric constant p (defined in Section 3) equal 0.1, 1, 4,
10. For p =1, 3, 10 the amplitude of the electric field
fluctuations initially grows (7 = O-1); in this stage a
rather larger amplitude is observed for larger values of
p. In the following time development we can see the non-
linear saturation and subsequent decay of the fluctuations.
Note that these features are most pronounced for p=1
closest to parametric resonance. Similarly, as in the case
of the stochastic initial perturbations, the maximum fluc-
tuations appear near to the points with maximum electric
field gradients (Fig.1l3). A rather special situation was
found in the case p=0.1l. The growth and non-linear
saturation described above are here barely noticeable, but
an interesting phenomenon (shown in Fig.1l4) similar to that

of second sound can be observed: the perturbations form



another 'wave' (see dashed envelope) which propagates along

the initial wave.

We have investigated the existence of two roots for
the parametric instabilities and have found that they are
mostly absent, or sometimes appear in single, isolated
points (but not in large areas as for stochastic initial
perturbations) for large values of p (p=10) with the
values of Y,,Yy; very near one to another and it is not
excluded that their appearance is due only to computa-

tional rounding errors.

8. CONCLUSIONS

The amplitude of perturbations of the large amplitude
‘relativistic non-linear wave vary with time to a certain
extent, but none of them grows significantly. If the
initial perturbations are stochastic, they are slightly
damped; in the case of parametric initial perturbations
a perturbation gfowth was found followed by a non-linear

saturation and decay.

Under some conditions two different values of particle
velocities Y,,Y, can be found at the same position and
time, indicating the development of particle interstreaming

and instabilities in the wave.

o DL =



The difference between the solutions Y,,Y, 1is very
small and leads only to the formation of a 'layer' on the
wave in which velocities of the particles are distributed
between Y and vy, . As the 'thickness' of the layer is
small compared to the maximum velocity of wave particles,
it does not essentially influence the large potential wells
in the wave (i.e. does not destroy them). A more detailed
study of the interstreaming instabilities as well as the

influence of ions on the stability of the wave are beyond

the scope of this paper.
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Fig.1 Shape of the stationary relativistic wave for

different values of k and k .
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Fig.2 Maximum value of the electric field gradient of the stationary wave
as function of k and ko. The dashed line marks the onset of overtaking (Eq.2.22).
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Fig.3 Maximum value of the electric field of the stationary wave as function
of k and k . The dashed line marks the onset of overtaking (Eq.2.22).
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Fig.4 The maximum value of the parameter <% for the stationary wave
as function of k and k_ . The dashed line marks the onset of overtaking (Eq.2.22).
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Fig.5 Example of the initial wave shape perturbed
by stochastic fluctuations, N = 500.
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Example of the time development of
stochastic perturbations, N = 500.
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Fig.7 Time variation of the normalized average
perturbation value for different values of k and kg.
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Fig.8 Average values of fluctuations normalized to their initial
perturbation, Af/a, Av/a, as functions of a.
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Fig.9 Time development of stochastic fluctuations with initial perturbations
i = electric field gradient.
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Fig.10 Region of {

in which the particle inter-streaming appears, as a function of T,
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Fig.1ll Time Ty of the beginning of the appearance of
inter-streaming as a function of k and k
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Fig.12(a) Time variation of the normalized average fluctuation
value for different values of the parametric constant p.
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Fig.12(b} Time variation of the normalized average fluctuation
value for different values of the parametric constant p.
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Fig.13 Shape of the initial parametric perturbations for p =1, 3, 10.
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Fig.l4 Time development of fluctuations for p = 0.1,
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