





INTRODUCTION

The calculations presented below are based upon

(1)

the work of Pechacek and Trivelpiece and Theimer and

Sollid(z). We are interested here only in incoherent
scattering, therefdre we may determine the scattered
intensity for each electron independently. The
scattered spectrum for the plasma as a whole is then
found by adding the contributions from those electrons
within the scattering volume which scatter into a given
frequency interval. As is well known the incoherent
spectrum is observed when ¢ = :%D <<1, where k 1is the
scattering wavenumber (equation 19) and )p is the Debye

length.

SCATTERING BY A SINGLE ELECTRON

The electric field radiated by an accelerating electron

at a distance R >> A; from the electron, in the direction

s and within the laboratory frame is given by(B)
o a rral S
B (R,t) = - 2 [SxUED x B)° s e [}
R (1-§.6) “ret
where E = % and p(t!) 1is the velocity of the electron.

This quantity is evaluated at the retarded time, (see

Figure 1.)

R - r(tl)

t1=t_ | I N ...(2)
c

We now need to determine the acceleration of the electron,

at the retarded time, and in the laboratory frame, under

the influence of the electromagnetic wave, for which,
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The motion of the electron is determined by
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where y = (1 - %2)2

We take the scalar product with ¥ and
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In total therefore, with B included to all orders
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where we have substituted R for R* in the denominator since
we will be concerned only with observing distances (R)

very large compared to the dimension (L) of the scattering
volume.

We ignore the influence of the electromagnetic wave in
determining the orbit of the electron, i.e. we limit the
EEi2< /kTe\%

<

| ) and solve
oVWi ~Mg

incident power sO thatm

-

%% = 0, and find
L ... (7)
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£(tl)= (o) +

This we substitute into (2), and with R>>L obtain
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The argument of the cosine in (6) is now rewritten in
terms of t, ¥ and ;(o) by the substitution of f(tl)

and t* from (7) and (8).

Ki.r(tY) - wit’>kR - wgt - k.7 (0)

where Es = §kg = § wg 1is the wave vector of the scattered
o e
radiation
k=ks—kl -
oL " 2 aux 1.9

wi: — ki, _ —

and ws=( i AEV) wy + k.v
(1 -§.8)



In the expression for wg the numerator takes account

of the Doppler shift in frequency as a result of the

motion of the electron in the incident wave. The

denominator gives the frequency shift owing to the motion

of the electron in the direction of the observer. It is
necessary to use the full expression for wg(equation 9)because
finally, equations (25)and (28), it will lead to a

correction term of order

0

E4(R,t) = ezg(l_l;;)l/z éx[(é'—é)x(ﬁﬁﬁﬂfxﬁi) - B(B.E;N]}.

m.c R(1 —§.3)3

— =,

A = \
. Cos LRSR - wst - k.r(oL; ..(10)

This is not an approximation, there are no further
relativistic corrections, provided we have Ai,AS>>O.lﬁ

so that we may neglect the Compton effect.

RESTRICTION TO PLANE POLARISED RADIATION

(4)

Equation (10) may be conveniently rewritten as

L
2 _pEa s __ :
ES(R,t)=—m?gaEié%jggis[(l—ﬁi)(l—Bs)Ei—L(l-Bi)Cos i+ (Cos g~ Bg) g &+

+ Bg(1-pg) i+ (1-B;)Cos n -(1-Cos 8) 8y} B |.Cos (kgR-wgt-K.£(0))
& mea LA

A

(Note that it is a simple matter to show that s.ﬁ;= 0 as
is expected for a wave propagating in the direction §)

Bi. Bg and B are the components of J parallel
to the vectors {, & and ﬁi’ and Cos 7 = é-ﬁi-

To first order in g this becomes

2

e Ei[(l—ﬁi+233)ﬁi—{(l—3i+3Bs)Cos M+ BgCos 6} S +

2
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+ Bgi + Cos n.g].Cos(ksR—wst-f.;(o)). ...(12)
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We will treat here only the common application of incoherent
scattering that is the case where the incident light is
plane polarised, the scattering plane is perpendicular to

E:

; i.e. §.Ej = Cos 1= 0. In addition we will use a plane

polariser C in the output oriented to accept scattered light

polarised in the direction of E;, and since i.E;j= O we have
(see Figure 2).

ezE. - =
ESC(R,t)= - a§?§(1‘3i+235)005(ksR‘Wst - k.r(0)).(13)
(1-Bi)
However from (9 Wo= Wi ...(14
wé substitute and
e?E; w2 - -
Boo™ = EE?% ‘G§2(1+Bi)‘ Cos (kgR-wgt - k.r(0))....(15)
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SCATTERED POWER

The time averaged scattered intensity at R is given

7
¢ lim 1 2
Ise(R) = A T-o ?//ﬁ+ |Bge|® dt . --.(16)
~¥
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We are only interested here in incoherent scattering, we

by

will therefore eventually average over initial positions
and we may drop the phase factor (E.;(O)).
The scattered power within the solid angle dQ at the

frequency wg is given to first order in B8 by

_ Pi > wWg®
PSC(R)dQ“ A o dﬂ;{é (]_ + 261) ...(].7)
. cE?
where the incident power P; = §—l A
- m
e? I
and ro= — , =2.82X107'%® cm.
Mo C

40 is the element of solid angle over which the scattered
light is accepted, and A is the cross sectional area of

t+he incident beam of radiation.

T NCOHERENT SCATTERING FROM A PLASMA

Consider now a plasma with electron temperature Tg and



density ng = g. We scatter from a volume V, which
contains N electrons. The level of the scattered power
at a given frequency W is proportional to the number of
electrons which have the component of velocity Gk along K
such that wg = w; + Vik. We have retained terms

only to first order in B and we may therefore use

the non relativistic Maxwellian velocity distribution

and integrate over velocity from -« to to. "

We restrict the calculation to an isotropic velocity
distribution. In this situation it is then convenient

to use a co-ordinate system with three mutually perpendicular
directions; ﬁ,:the perpendicular to K within the plane

of s and {; and the perpendicular to the plane of § and i.

See Figure 3. We denote these velocities by Vg, vk¢ and
VkT' i

g, = VkCos ¥ + Vki Cos (3 - ) -
Thus PiT g = .

2 i . 2
k = (Wg®+ wi®- 2wgw; Cos 6) v
c
Cos y = Wits 5 8y (vgwy)
ek ...(20)

and dvk - (wi2+ Wlws) (]—‘COS e) dws ) |

k2@ k

The scattered power within the frequency range

wg~ Wgt dwg and solid angle dQ 1is then

Note V= Wg=W =/(ws—wi) \%.C
k \ (Wg-w;) *+ 2wgWi (1-Cos 8) ,

It is clear that wg and w; must have the same sign

otherwise we would have ]Vk|>C, therefore strictly we

should only integrate from -C to +C.
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where a* =
Me

We substitute from (18), (19) and (20) and find that

o (R, wg) dwgdFPir§dQ ngL ——¢fl 2 (wg-wj) (wy-wg Cos 0)™

i \ k22 /
2 % 2
rwiPwiwg)) 1-Cos B)™\ 7 cwgmwi dWs
(s Jexe A T8 iréaca - (22

where L is the length of the scattering volume (V=AL).
Now we want this result in terms of the wavelength
shift A\ where
Ag = AL TAL . o mil BB )

To be consistent with our restriction to first order

in'2 we must only keep terms to first order in

c Mo
. 1~ . ¢ L (1+A A \

We note that ” 272(1- cos 0) zwi 2\ S

4 2mc /1-2A0 l-AL
Eéé ;'1—4A¥L , Qg %o~ 2ni/ ST, +Wlws 2Wl 221/
= i .. (24)
and /Ws Wl) = il ; 2(wg-wi) (wi-wg CosB)= AA

- 4kiQSin2(g@)ae(l+1¥&f. k#c® M
A

Substituting,

P_ dxdg-i;EEQQLC 1-4AN+e AL \
2m%asin (Y2 A 4a®)y 25in? (%)

/ EAAB Y ...(25)
SR \.4a Yi gis® (9@)/ s -



A)° ;g 1 i oy
5 because it is multiplied

We keep the term with
2 Aq
by L
a<®,

FINTTE TRANSIT TIME EFFECTS

In evaluating the scattered intensity from one
electron, (16), we assumea that this electron would remain
within the scattering volume for the time T. In fact
the incident beam has a finite diameter (D) and we will
not be dealing over the whole time T with the same group

of N electrons. This problem was first discussed by

Pechacek and Trivelpiece(llwe now include this effect

; ; L
for the case of a long duration beam, i.e. T>>;.

Let v, be the velocity of the electron at right angles

to the beam. Then this electron will remain within the
. D ;
beam for the time Atl—v ’ Now the density of electrons
1

is constant, therefore on average for every electron which
leaves the beam another one will enter. We see that

rather than dealing with one electron we are dealing with

the number NQ(M‘)==‘%T, which cross in the time T and
which each stay within the beam for the time interval At
1 R A 1
Now t = (1l-Bg) t~ + e — Bas¥o. (8)
D
Therefore At=(1-8g) At = (1-B;) -

with this substitution (16) becomes D

(l—BS) 2?_;_
_ € 1lim Ngo 2
I, (R) = il gl |Egc |2dt ...(26)
D
_(l_.BS) 2§J_
and
P ag = 2i r 2aq ¥s® (142 ) (1
sc(R)AQ = —= ro KZWI? (1+28;) (1-8,)
] 3
= Ziroraq¥s_ (148,) . c .. (27)
A Wi



The electrons which are moving away from the observer,
(these gave a Doppler shift to the red) spend relatively
longer in the beam, from the observers point of view,
than the electrons of the opposite velocity which move
towards the observer and give a Doppler shift to the blue.
The factor (l—BS) which appears in equation (27) takes
account of this effect.

An additional effect was proposed by Williamson and
Clarke(4). This was associated with the finite length
of the laser beam. In fact the effect will only occur
if the laser beam is shorter in length than the scattering
volume, in which case electrons moving with the beam will
scatter for longer than those moving away from it. This
situation will not occur often in practice because for
a typical scattering volume L~1 cm, and we would require a
laser pulse of duration less than 30 picoseconds to observe

the effect. For this reason it is not included in this

analysis.
27
Wi

; =, D

Tt is assumed that (1-$.R) v, s
Note that this scattered wave packet has a frequency width
of order %L, and this is a small broadening compared to
that from the finite transit time effect, which is of

Vi v
order -—=<.

Xic

i.e. we assume L>>)\; %

fa]
with result (27) the scattered spectrum for the plasma becomes

P;r3dQnel ¢ 7 AX, c?AN®

P, (R, A\g)dXAQ = _
sc\®i s L : o P
© s 2w2asin(_e/2)ki 1 < 4 4a3Ai35in2(@f2)J
CE )\2
- 4a2>\izsin2(9/2)
e ddg - .5 s K28)

This finite transit time effect has been observed in

) , ; 5
an electron beam, see Ward, Pechacek and Trlvelplece( :
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THE EXTRA TERMS LEAD TO A SHIFT OF THE CENTRE OF THE
SCATTERED SPECTRUM

We differentiate (28) with respect to A)M and set

the result equal to zero, with the shift of the centre

of the spectrum denoted by AX. Now AA?“ <<1, and with
1
this approximation we find
7a2sin? (6
My = - ( (%) Ny iwe (29)
c2

That is a shift to the blue side of the spectrum.

2

Now =

- 4 X 107° Tg(ev) therefore

2

Alp = - 2.8 X 1075Te(ev)sin®(95) x; ...(30)

For 6 = 90° , T, = 1l0Oev and ); = 69434

A, ~ 10

This compares favourably with the measured value of

(6)

~

12 £ 34 , see Gondhalekhar, Kronast and Benesch

TEMPERATURE MEASUREMENT

The temperature is customarily obtained from a plot of
in (Pge) against AX?® on the blue side of the spectrum,

i.e. AA<O.
: ;T AA c?A) B
If the correction terms 2 % 4;_X-E§In (@,)/are

ignored and we take the gradient between the points AM;
and A)X,, then we find
/2E{Te> - AN ., (
e rane (@@)L\ Govea (31)

approx.

where Go = In [Pgo(AX1)] - In[Pgo(AX )]

If we include ' the correction terms

A

[ e

2KT ™ _ C2 ’— Alg ‘_ AA]_
. me correct 48in® (,2JL\ Xl K

l A 2 CzAkaz

1= + ;
- 2 : Zy. 3c: 20
i Go+1n M 42 llaSIH 2| Y.L (32)
¥ 1L AAr o CTAA ¢
2 N 4a2li35in3€§_



We now for brevity set

cfAXE - c®ANZ
4a2AiESine(q&) oo 4azkigsin2@§

= X, and then Go=X,;-X;..(33)

We use the result 1In(l + ¢) e for e<l and find on

~

the blue side of the spectrum that

: 5 . X 5 . X - .
Kp-Xy+ [, 7 (1578) X, *(1575) 12 Sin @2} (34)

(Xg"‘xl)

1
G

ol

where =2 X lo~°®

(ev) |

{Tecorr
The effect of the correction terms is indicated by the
following examples where we compare the approximate and
correct temperatures when the grad'ent is taken respectively

between the points e X =0.9-0.3 and e ¥ =0.9-0.5
Case (1) X, = 0.1, X, = 1.2,

1
T, = Te [1 + 5.8 x 10-2sin (%) (Ta(ev) ] .. (35)
app coxr

Case (2) X, = 0.1 Xz = 0.7

- —3a3 9/ T (EV) 15
Teapp Tecorr [1 + 8.4 X 10-%sin (72)!"e ) *] .. €36}

A comparison of some approximate and correct temperatures (for

90°scattering on the blue $ide of the spectrum) is made in

Table 1 below.

Mo o Teapp? 907030 | Tegpp0+20~ 0.50
eV eV eV
100 104 106
400 433 447
900 1011 1058
1600 1865 1980
2500 3000 3240




For measurements on the red side of the line the correction

term takes the opposite sign and we would underestimate the

temperature with the approximate formula (26).
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