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ABSTRACT

The stability of the collisional distribution of a
mirror machine against the Alfvén cyclotron resonance mode
is examined. This instability which is shown to have a
; eXP (-R%‘/Bl/‘-") for

RB < 1 may be dangerous for low beta mirror plasmas as

growth rate which scales as v ~ ®,

well as high beta plasmas.
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1. INTRODUCTION

The theory of electrostatic microinstabilities in mirror
machines is now virtually cOmplete(l) and a start has now
been made on the investigation of electromagnetic modes. In
this note we examine an electromagnetic instability - the

(2), (3)
¥

Alfvén cyclotron resonance instabilit and show that

this instability can be quite serious for mirror confinement
even at very low beta.

The Alfvén Cyclotron resonance instability was first

(2)

examined by Rosenbluth and independently by Sagdeev and
Shafranov(3) for a two temperature Maxwellian and it was

found that the growth rat led si~ex-(——'——)
oun a e grow rate scaled a @ _; P \B(TL/TH'I)Z ’

and so for plasmas which were close to isotropy the growth
rate was quite small. Since then there have been several
papers{4 - 5 concerned with instabilities caused by the
non-Maxwellian distribution of electrons, but as far as the
authors are aware only Scharer and Trivelpiece(s) have looked
at instabilities due to the non-Maxwellian nature of the ion
distribution. These authors found the threshold for insta-
bility of a two temperature Maxwellian plasma.

In this paper we examine the stability of the ion

(7)

collisional distribution of a mirror plasma and the growth
rate of the Alfvén cyclotron resonance instability is deter-

mined as a function of the plasma B and the mirror ratio R,
In section 2 an analytic theory is presented in the
limit of small Kk P, (pi = ion larmor radius). This

shows that for large mirror ratio R , the growth rate has



the asymptotic behaviour

Y o exp [_ (log BR)Z}
i B

while for smaller values of R such that BR < 1 the

growth rate has the form

3
Y " Y
wey TP G |
ci B 4
Growth rates are calculated for various B and R ,
using the small kp approximation to calculate the real
part of the dispersion equation., Finally in section 3 an
exact treatment of the dispersion equation for marginal
stability (y = 0) is given, This provides a check for

the results of section 2, which are found to be accurate

over most of the parameter range considered.

2. ANALYTIC TREATMENT OF THE DISPERSION RELATION

The relevant dispersion relation for electromagnetic

(8)

modes propagating along a uniform magnetic field is

1.2 2 ]
2 _ 2 .2 w + kV”)f s k vy f d3V
e = e j PJ /[ w *rw -+lw”) * ﬁfiwcj+ kﬁﬁz

(1)

4TMne .
where wp; = _E__l , k =k, and f has been normal-
j

ised so that

SEads%v = 1, (2)
The * signs refer to the polarization of the mode. In
the following we take a form of the collisional distribu-

(7) (9)

tion function appropriate in a mirror machine of



mirror ratio R.
v

- 5 2 2
a? | RVl vL'R
f =Ne [vz-1+(2R—3)1og VZ:I (3)

o

where the normalization factor is given by

3 ) =]
(% 2a3N) = {(23- 3)‘:10gR + 210g<1 + /&IZ—'UJ, % j%.’ (8_53)} ;
(4

)

2

In equation (1) we shall neglect compared to e

take W + kv, « ® in the electron term, and w Zw _.>» kv
il ce ci Il
in the calculation of the real part of the ion term., The

resulting (real) dispersion equation is

2
(2.
2 2 w 1 T
g =g®| 2AEE 3 2 + k*p%G(R) | 715 2 +—E_:l
P 2B w I | T.
—_— o - i
w c
c
(5)
—_— a e . = a" 3
where wP = wPi - wc = wci R = , the ion larmor
T

radius; f ::;Z(Ap_L + %jp“)/Bz, is the ion B; T% is the
‘ i

temperature ratio which we will take to be zero in the

following; and

_ 2 _ 2 £ 43
G(R) = /(VL 2V” ) e d°v
6 3/, 1 2
:g(N'JCQOLs)R(1 —E) (6)

is the anisotropy term which gives rise to the firehose
instability when sufficiently negative. It follows from

(6) that G(R) is always positive for distributions of

the form given by (3).

Assuming moderately small values of B (and the upper

polarization sign) ‘equation (5) has the solutions



W 3 . 2.2 2
wc"i\/Zka k% < 3p (7)

which are the two branches of the shear Alfiven wave,

separating into

W 3k2p2 2.2 2
— =4 2= F i k*p® > B (8)
W, 2P 3
the whistler mode, and
2,
2 3
Lo 285 2pck? < (28) (9)
& 3k2p2

a cyclotron mode.

For large values of @ Z , the Alfvén mode continues

up to kzp2 S 1 as

w 3 ' Te\ :
a;:ikp EE-I'G(R)(]-I-"T"T). (10)

1

These modes are shown in Figure 1.

Of these modes the whistler is right hand circularly
polarised and interacts strongly with the electrons at
4 6
the electron cyclotron frequency( ) (5) )n The ion

cyclotron mode is left hand circularly polarised and inter-

acts with the ions.

To determine the growth rate of these modes for fre-
quencies near the ion cyclotron frequency we require the
imaginary contribution to the dispersion equation from the
ion cycleotron resonance. The ion term can be simplified by

first integrating the final term by parts with respect to v

and using the relation _ 2
8f _ 2y _2f _ 5y nNe @°| R , (2R-3) (i1}
T 2 Vi 2 e | B
v oV, v v,

The resulting ion term reduces to the form



3, + o0

2
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where UC = \/RI} 1 (wwc & 1) /kp and
o
Aw?) o( 2 1) R - 1) [3 - u?e" E, (u?)]
& Ye ]
@ 2 _u? 2 % u?, u® , 5 )|
+(E)—C)I:(R-I)(1—u B, (w2) + (2R 3)[ 'E, @ )-<E (07 |
with & (13)
E, (u?) =/ e”t at .
2t

This contributes an imaginary term Di to equation (5)

2

3 = I

D. = w_.%2 (=® /QC(.SN) ME & alu? g (14)
i pPi k c

and consequently a growth (or damping) given by

g w \? 2.2
2 o -2 (__) 2k2p2G (R)
5 N . w w -
L - (TESECI.E‘N}-k—g-eUC A(Ucz)/{iﬂ(c) x c
c -

¢ = T—z’"ﬁ}
(=) (=) (a*
(15)
3 STABILITY
In the following we first 1look

at the right-hand

circularly polarized wave which is the whistler mode and then

the left-hand wave which is the ion cyclotron mode.

3 2,2
Whistler Mode ; = k5 kBP o

NE

For this mode A(Ug) >0

and ¥ < 0, 1i.e. this

mode is always damped.

2
2. Ion cyclotron mode ; éﬂ ~ o= 1 4 “-Erﬁg.



The denominator of the right hand side of

equation (15) is positive, and for large enough R
U‘2

such that ——E—' S 1, while U,C2 > 1, A(Ucz) is
given approximately by .
Ug T
u
A(Uz)oci-——eRE<cr<0 (16)
c 3k2p2 1 R

so ¥ < 0 and the wave is damped.

However for moderate wvalues of R such that

> 1, A(Ucz) is approximately given by

WLSL

1 ® W
A(UZ2) 2(-&%+ 1) +U—-C2 BE—-I- 1) + 2(R~-1) 5;:[ (17)

and Yy Dbecomes positive (growth) for

3 1
K2p2 <<E_B_ /s __..._.__.._R/41 (18)
3 (R._])fz

provided that the real part of w is still correctly

given by equation (9) in this range, i.e. provided

that )
2B (R-1)
sl /. (19)

If this last condition is violated the marginal

stability curve intersects the Alfvén section of the

dispersion curve rtather than the ion cyclotron section.

The magnitude of the growth rate is dominated by the
-U 2

factor e © which near marginal stability takes the

value

; 1 3/
Y o exp [u{iy“ (R-1) 7 } . (20)
\28 Rq4

‘For existing mirror machines of moderate mirror ratio



and very low B, this mode will be unstable unless
the finite length criterion associated with the

stability condition (18) is satisfied. This condition

yﬁ ' .Sk
B<3(R'1) (—xm) (21)
RY3 L

requires

for stability, where L is the length between mirrors.

4 ._(.*)__.-:- _.;.J'._.
3. Alfven waves ; m = ¥ kp } 2B

Of these modes the positive one which is the con-
tinuation of the Whistler mode discussed above is
always damped, while the other mode (which continues

into the ion cyclotron mode) is unstable if

Uf g 2"
2 W R = )> o0 . (22)
A(Uc)oc1-wc e E R)
2
e s .
For moderate values of R, such that J{ ~ 1, this
2
[4)

is always satisfied, and if Ef <1 it is satisfied

if

kp < \[2%i// log (E%E) " {2.3)

In this case the amplitude of the growth rate near
marginal stability is determined by

2
e [ (e ) ] =

C

The result of the foregoing analysis is that one
branch of the Alfvén wave, and its continuation as an
ion cyclotron wave, are unstable at long wavelengths
with growth rates depending on R and [ as outlined

above,



Using equation (15) we have calculated éﬁ for
: e

various choices of R and B, and in Figure 1 is shown

a plot of éﬁ against for R=10, B = 1, In general

c ci
éﬁ =0 exponentially as kp * 0 , and attains a maximum
c
value near kp = (kp)crit the marginal stability value of kp,.

In Table 1 we give values of this maximum of ét-, and of

c
the corresponding values of é& , kp and Uf . Since the
c

small parameter involved in the expansion of the ion term
38 UC-2 , this last figure gives one indication of the

reliability of the results. However in the next section
we also give an exact treatment of the dispersion equation

along the marginal stability curve, and compare the values

of UCE1 at marginal stability obtained by the two methods.

s EXACT TREATMENT AT MARGINAL STABILITY

Returning to equations (12), (13) and (14) we see that

the marginal stability curve is defined by the equation

A[Uca) = 0 v

W R
N taki U, = (~— %1 —/k and k as the
ow, ng & (wc ) \/R.—I_ P P
independent variables instead of ﬁa- and kp, the solu-
c

tion of this equation is simply

F(U2) 1
N (US2) U
where U2

Uc® = . w2 12
F(UZ) = (R-T)(I -TRe - B el )>+ (2R - 3)(e

UZ
GUZ) = R-1)(3-Ule ° E (U°)) + F(USF)



Using this result explicitly in expression (12) for

the ion contribution, this becomes

G(Uc?)
00 uz [G(uz)- F(U;E)F(uzﬂ

1
3 4 1 e 1-dy72 -
wg (x 2 o N){'“i ROT-g)  + Uc(—ll!;‘— / = (U + U.) du
7c -

(26)
where the singularity of the integrand in the second term
has now been removed, and for a given value of U, the
integral may be computed without difficulty,.

The full dispersion relation now takes the form

D(U.) = 0 (27)

where

T F2(U°) 1 G(U.?)
S A 1 R < + [ ==L -1
D={(3p T, G(RDR-1 G2 (U2 ) Og® (F(Ucz)

1

G (U2 )F (u?)/F(UB)] du }

+ oo
3 2( 4 Ue [ [G(u?)-
F (% 2a3N) (1 -%)Z[-g(R- 1)+ﬁ/[ (u”) TN
S o c

(28)

. . w i
and its solution gives U, and hence kp and 6; at marginal

stability. We have solved the equation for a variety of
choices of R and f, and since the growth rate near
marginal stability is dominated by the factor expi- UCBI:
we give in Table 2 the values of US at marginal stability.
For comparison we have included in the last column the value

of U e obtained (also for marginal stability) from the

C

approximate treatment discussed in section 1.

b CONCLUSION

The stability of the collisional distribution of a

mirror machine has been examined for modes with k; = 0,



The Alfvén cyclotron resonance instability is found to
have a large growth rate even for small values of §.

(y ~ w_; exp (-Ram/ﬁlk) for RB < 1) . The analytic
theory from which thié result is derived is found to be
in agreement with a numerical evaluation of the dispersion

equation at marginal stability.



Y C;g 2

. P (wc)max wc) (kp) Vg
12 1 3.2 x 1072 0.43 0.37 2.6
10 0.5 1.6 x 1072 0.46 0.32 3.2
10 0.1 1.3 x 10 3 0.55 0.20 5,5
1 1,0 x 10 ! 0.5 0.41 1.8

0.1 1.7 x 1072 0.61 0.23 3.6

5 0.01 2,7 x 104 | 0.75 | 0.11 7.6
1.5 1072 3.1 x 107! 0.85 | 0.17 2.28
1.5 1073 3.8 x 10 2 0.91 0.076 4.2
1.5 2 x 107 3,3 x 1073 | 0.94 | 0,042 | 6.5
1.5 1074 8.1 x 104 0.95 0.033 7.8
13 1078 5.1 x 10! 0.94 0.093 2.5
1.2 1074 5.2 x 102 0.96 0.041 4.7
1.2 1075 8.1 x 1074 0.98 | 0.017 | 8.5

TABLE 1

Growth rate, frequency and wavelength of the Alfvén-
cyclotron mode for various values of the mirror ratio
(R) and plasma B, evaluated for the mode and maximum

growth rate.



(2) | (s2)
p— WL exact approx.
R B o ¢ U 2 Pz
exact approxe. c c
10 1 0.45 0.47 1.19 1.75
10 0.1 0.58 0.57 4,25 4,58
1 0.52 0.56 0.63 1.12
5 0.1 0.62 0.64 2.36 2.65
5 0.01]0.73 0.74 6.27 6.49
1.5 1072 0.87 0.87 1.25 1.45
1.5 1073 0.91 0.92 3,16 3.30
1.5 104 0.95 0.95 6.81 6.90
1. 10 3 0.94 0.95 1.56 1.72
1. 10 4 0.97 0.97 3.66 3.78
1 2 0.98 0.98 7.60 7.70
20 1 0.39 0,41 1.99 3 .63
104 1 0.16 0.17 31.9 35.8
TABLE 2

Comparison of the approximate values of the frequency

and the exponential growth factor (Uca) with exact

results for these quantities at marginal stability

(¥ = D).
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Dispersion diagram for Alfvén and Whistler modes when P « 1

Fig.l.
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