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ABSTRACT

The energy principle is used to derive a new necessary
local criterion for MHD stability in axisymmetric confined
plasmas. Applying this criterion to simple equilibrium
models of a Tokamak leads to q > 2 as a necessary condi-
tion for stability, q ©being the inverse rotational trans- -
form in the vicinity of the magnetic axis.The theoretically
predicted limits to both q and {3 are found to be con-

sistent with experimental observations on T3 and ST

Tokamaks.
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1. INTRODUCTION

The encouraging experimental results obtained in

(1)

have led to a world-wide interest in machines

; : - 4
of this type. In recent theoretical work(2 )

Tokamak T3-A
based
on the MHD equations, the upper limit to the equilibrium-f3
at the magnetic axis has been evaluated for plasmas with
both circular and non-circular cross-sections. Most sta-
bility studies of Tokamak including toroidal effects have
been concerned with the localised interchange mode, and
these have also been carried through for shaped plasma

. (2 - 5)
cross-sections -

In one such calculation, Jﬁkes and Haas(z), working
directly from the energy principle, have derived a new
neéessary criterion for stability. Applying their condi-
tion to a circular cross-section plasma with either a quasi-
uniform or parabolic toroidal current distribution, they
show that for stability in the vicinity of the magnetic
axis it is necessary that q > 2, gq being the inverse
rotational transform. This result is, of course, more
stringent than that usually quofed (g > 1), and the corres-
ponding critical-p is considerably lower than that obtained
by other authors.

The purpose 6f the present paper 1is to give a more
detailed account of the derivation of these, and other
results, and to relate them to earlier theoretical and
experimental studies, In Section 2 we describe the co-

ordinate systems associated with a general axisymmetric

toroidal plasma. In Section 3, restricting attention to



localised perturbations, we derive a general necessary

criterion forrstability. Section 4 discusses the applica-
tion of this criterion to specific equilibrium models, the
latter being described in an Appendix. Sections 5 and 6

contain a discussion and summary of results respectively.

2. EQUILIBRIUM AND COORDINATE SYSTEMS

Since we shall be concerned with axisymmetrix toroidal
plasmas, it is convenient to choose a cylindrical coordinate
system (R, ¢, Z) in which all equilibrium quantities are
independent of ¢. It is assumed that the magnetic sur-
faces form nested toroids centred on a magnetic axis located
R = Ro’ Z = 0, encircling the Z-axis (see Figure 1). We
then define V as the magnetic flux threaded the short
waf around this magnetic axis per radian in ¢, within a
flux surface labelled by V. Following Mercier(6) we
choose a locally orthogonal set of coordinates (v, ¢, X)

on the flux surfaces (see Figure 1), such that the line

elements are defined by

dx; = %% , dxz = JBde , dxz = Rd¢ , (2:1)
X

the corresponding unit vectors satisfying EW x E¢= Sy

and where BX is given by

-V x (4 es) - (2.2)

The volume element is

dx;dxpdxz = J dxdid¢ , (2.3)

J being the Jacobian of the transformation.

The MHD equilibrium equations are



jX§=VP, (2.4)

3 =V xB , (245)
a'nd. v 'B:O ’ (206)
where the symbols have their usual meanings. Now for

equilibria having axial symmetry it is well~-known that

where 1 is the current stream function. It follows that

Equations (2.4) and (2.5) can be written as

R R &
P’ = R RZ * (2.8)
) R @ 2

and ig = - Ty (JB*) , (2.9)

respectively, the prime denoting d/dy . Working in

(R, ¢, Z) coordinates, Equations (2.4) and (2.5) can be
(7)

combined to give

2 (1 8¥) 2% _ _g;i - - Ry - 1I° 2.10
R 37 (R aR) S Ip = E o (2.10)

which for prescribed p(Vy) and I(w). determines the equi-
librium V-surfaces. In order to solve Equation (2,10),
and to carry through the subsequent stability analysis,
it has been found convenient to transform the local polar

coordinates (r, 0, ¢) based on the magnetic axis (see

Figure 2), that is, we take

R = RO + r cos@ and Z = r sin0O. (2,11}
Assuming the inverse aspect ratio of the torus, K, to be
small, the solution of Equation (2.10) can be developed as

an expansion for any suitably prescribed p(¥) and I(V).



Some special models for Tokamak are described in Appendix
B. It should be noted that since the sense of ¢ in the
sets of coordinates (U, ¢, X) and (r, ©, ¢) is different,
we shall change the sign of j¢ whenever we go into local

polar coordinates.

3. LOCALISED INTERCHANGE MODES

Taking perturbations to vary in the ¢ coordinate as
exp(in$) , where n is an integer, the potential energy

of a perturbed axisymmetric toroidal plasma can be written

(6)
S

a
2
6wn =%dede{3_5E}éTa—2 ’g—}; +in uX 24_;;_2 'x_}glx'l'“é@ﬁr(l;%)
2| Uy 8% JX %, rp|B 9z ?
+ B | + 57 + RB2| + 72 a\U(.'.TX)-iT .IU-l-aX +in W Z‘
- 2K|X|2}, (3. )

where X, U, Z are three independent variables expressible

in terms of the plasma displacement (g¢,5¢,ax) through
£ 2z 8§ (<
szng,U=—‘é--I-.—7-C,Z=——X. (3.2)
R R® B B
Note we have dropped the subscripts from j¢ and BX i€

B = BX and = j¢ . The local pitch p (¥, X) and

the quantity K are defined to.be

JI
u = EE (3:3)
6} 11° j 5]
_ 3 (s 11" _J 92 (¢n (JB)) . .
and K 37 (n R) 2 R v (én (JB)) (3.4)

Minimisation with respect to Z 1is simply accomplished
by setting the appropriate term to zero. It is now con-

venient to introduce a new variable V which is defined

- 4 -



;
¥ = oX
=
+ 37 - (3.5)

Since X and V are complex they can be expreésed as

X = X(¥, x) expliS m(¥,x)ax]
R (3.6)
and V = V(¥, x) expliS/ m(¥,x)ax] , }

where X and m are real functions and ¥ is complex.
In order to obtain a necessary condition for stability, we
shall assume m to depend on % alone, The potential

ener gy becomes

i /‘ { = "ai ° A oo
5 [ Jdxdy 12R2p2 (_x) + (m + n p)3X? - 2KkX?

+Bzv2+132<v T __r_t__mv“ax)

oW
n

I R~ pB? n2J2% \ayx I ayayx
2 oV - “ o 2
R 1 I oX g ([ JX }
o S —-— el = i + I T — .
(3.7)
where ?R and ﬁI denote the imaginary parts of A
respectively. In this paper we shall ohly be concerned

with modes for which n — o, although the ratio m/n will
be regarded as finite. In this limit &W can now be
further minimised by setting VI = 0. Minimisation with

Cal

respect to VR is achieved for

W o=1 .
- z . J?B%n? m 3% .o B ;r]
(v o2 ) [l oA ()

_J%2jn?X } ) (3.8)
R3

]

The potential energy now becomes



~ 2 1\2
S e, (. 0X 2 X )
W =3 / dedq{RZBz [ (Jax> + (m + np) Se 2 KX
0

) |
B2?S SBen? | _Jm_ _a ] a2
=z (m+ “‘n’z(aw) J'_m‘?zl“[mazn+ L < ) £

A
= B [ 2 0 jm 9 J
-éTj JSB mz (m + n[—L) (m‘l‘ I é‘ﬁ E— 5 (3a9}
where : 1

2_2m2n2Y\
s = 14+ R 2BR" , (3.10)
m2 12

and the terms linear in 3X/9V have been removed by a

|N>

-+

ol pd

y-integration by parts. Reverting to the wvariable Ew
(dropping the subscript) and performing further partial

integrations, Equation (3.9) can be expressed in the form

. ~ 2

_ 452 pn ) * ?—‘3) 2 4 i }’
oW = Z/dedlli{SBR (1+ £ (aw +SAE o (’35"3?'
(3.11)

where

2ye *[ gt _ pfRtR* JB
: E2R4(1+%) [S o » (% )

n? B2R2 dp @
R 2S—— 4n + B2R? S£.2 ¢n R?
( )[ SJ aw\ ( ) ay 3y
n2 iR B2R® )
92[_5_ 2 . 32 s
(3.12)
. . : . (6,8,9)
We now investigate the localised interchange modes s

which satisfy the conditions m, n ® o and |m + np| «m.
Thus any criterion so derived will be necessary, although
possibly not sufficient for stability. On a particular
surface V| = ws (the 'singular' surface), ndudy + m = 0,

where m 1s an integer. On a neighbouring surface

¥ = $S + A , m+ npxndA VY %% s With these substitutions

o b ow



Equation (3.11) gives

' ~\2 2
_ ) - ax
oW =3 de X dy {L(ﬂr, X) (Aw)z(aé)+ MY, %) E%+ Nw,x)(JaQ
(3,13
where ; 2 2
1 5 (—‘- o N= - (3.14)
D poov R2B?
and
_ B®R® dp|@ 2y _ JR _ B®R® @ ]
= g —— 4nR - -
M D W-[aqj (¢nR”) 12 T 712 oy 4n J s (3.15)
with D given by
& . B2R?
Bo 14 B s (3.16)
12
The components of the expression for 6Wm have a

straight forward physical interpretation. The first com-
ponent reﬁresents shear stabilization. The second component
after averaging over a surface through the X-integration,
represents in part the "average magnetic well''. However,
the first term in M (proportional to Bsz'gm(Zn Rz)) alter-
nates in sign over the flux surface, and when modulated by
the amplitude of %2, which also varies over ¥ , the
average of the product can give a ﬁegative contribution
proportional to (p°)%2. This is the so-called 'ballooning'
term(io’ 11) and is in addition to the average, unmodulated
part. The final term is the magnetic (positive) energy

of the modulation. The modulation in X of both equi-
librium and per turbed quantities is therefore an essential
featuré of the present calculation. An equivalent expres-
sion to Equation (3,13) has been obtained by Mercier(é),

but this leads to a less stringent stability condition

than that derived in the present paper. The difference

.

]



between the two calculations will be discussed later.

To further minimise 6Wx it is convenient to trans-
form to the local polar coordinates (r, 6, ¢). For a
line el ement ds along BX = B we have (see Appendix A),
ds r R d6 do
£ _Jdy = n— . XL _, 5
B J X ﬂ T = T - (3,17)
arl6

In the

vicinity of the magnetic axis the flux surfaces

are displaced circles, and since we are particularly

interested in this region we shall assume

JaxM (v, %) =

de

> (G(U) + 2G(V)cosB) , (3.18)

where 6(¢).~ K2 and E(w) ~ K , K being the inverse aspect

ratio which we shall treat as small. To obtain a neces-

sary criterion for stability we adopt the trial-function

B, %) = E(V) + E(¥)cosd , (3.19)
where E(V) ~ 1 and E(¥) ~ k . Similarly we write,

h =RB = h(¥) + h(¥)cosbd , (3.20)
where h(V) ~ 1 and h(V) ~ K- Ey Equations (3.19) and
(3.20) we have

¥ = RB%ILr = () + X(V)cosd (3.21)
where X(¥) ~ 1 and X(¥) ~ k. Lastly we define Q(¥, 6)
through

Ly, x)Iax = o, 0) 2 . (3.22)
Using the above forms 5Ww can now be written as



- £ 2 - — = ~ ~
oW =% fdw{o-(aw)z(j—-ﬁ) £ GO B2 + 2ENBNEW)
o (Rt —_ ‘a} |
+3 - T (BOEW + 280Em) |, (3.23)
where
2T
1. ﬁg@ Jax (3.24)
a 27 a?
o]

By completing the square Equation (3.23) can now be minimised

with respect to E(V). Thus we obtain

b . dE)\? =
éwm =5 /ﬁw [Q(AW)z (dw) + A E® ] , (3.25)
where
A=G0) - 28 8- 2 REW) . (3.26)
Tﬁe condi tion for min(éﬂw) =0 is therefore
4A + Q > 0 , (3.27)

which can be written in the form

ds (1 ap)? dp ds
-'E'(TLE'IIEI B4R2+4-ﬂ{?§FE--2EE Eﬂds

ds 1
B a2
8 é-l gm cosO ds
r dr|p s
- Slg—-E c036]> 0,
% 12y ds B
rerle (3,28)
where
" A By 283 2 2
E = B?R? 5—%(611 B#) -3323 -R 2B »  (3.29)
I 1% 3y
and where since D = 1 + O(Kz) for a Tokamak, we have

replaced D by unity. Equation (3.28) is a necessary

local condition for stability and should be applied to



every flux-surface within the plasma. It is a general-

(8)

ization of Suydam's criterion and reduces to it in the
limit.

4., STABILITY OF SPECIAL EQUILIBRIA

In this section we shall apply our necessary criterion
to some special models for equilibria in Tokamak. It is
shown in Appendix B that for an equilibrium in which the
toroidal current density is quasi-uniform or parabolic the
flux surfaces in the neighbourhood of the magnetic axis
are given by

vy = p? + p3Cy cosB, (4.1)
where y and p are the dimensionless flux and radial co-
ordinates réspectively, i.e. y = V/U and p = /KR,

The quantity ¥ is the total flux due to the poloidal

field., The constant C; can be expressed as

K
Ch =3 (1 + TBI) ; : (4.2)

; ; : ’ : . (20)

where BI is the 'poloidal-f and is defined by
BK(KRO)z y o
BI = Iz // pP(p: G)dpde;
o o

where I 1is the toroidal current. The parameter T

takes the values 4 or 3 according as the toroidal current
distribution is quasi-uniform or parabolic. We can also

write the pressure gradient for our models as

; o2
—§$—~W B, - (4.3)

We now evaluate the coefficients ﬂ, E, G, G etc.,



which arise in the stability condition (3.27). By (A.1)

and (A.2) of Appendix A,the quantity h is given by

2 2
2 19y oy
h? = R2B? - (r ae) + (ar) 5 (4.4)

which, using the above dimensionless forms can be written

as

2 _ n2pz _ _UR f103y)\? lﬂz. 4,5
h* = RK*B —KBROQ (ap) + 52 (30 (4.5)

Using Equation (4.1) this becomes

-2

2 _ 2V p?
h* = BEE (1 + 3pCy cos0), (4,6)
o
where higher-order terms have been neglected. Since all

O-integrations must be performed around a constant vy
surface, it is necessary to write any pP occurring in an
integrand as a function of vy and 6, In order to do

this we invert Equation (4.1), obtaining
7 1 Cy 1 '
p = Y/2(1..§_ cos® y‘k) . (4.7)

Equation (4.6) now becomes
= B
he - vy

K2R 2
o]

1
(1 + 2 C; cosb ylz). (4.8)

From Equation (3.20), using Equation (4.8), we find that

Y
- 2 2
Ro2Vvy” , (4.9)
KR
(e}
to order 1, and that
~ ¥C
ho= LY (4.10)
KR
(o]

to O(k). Similarly, using the definition of @ given in



Equation (3.17), Equation (3.24) gives

_ 27 , (4,11)

Q1=
=

n
s

[#3]

to O(K).
In order to evaluate the coefficients G(¥) and G(V)
defined in Equation (3.18) and which derive from the

quantity M given in Equation (3.15), we require to deter-

mine
oB
.- . _ 10 _ 1 b
j =g =737 (r Be) T (4.12)

As mentioned earlier since the direction of ¢ in the
(¥, ¢, x) and (r, B, ¢) sets of coordinates is different,
we shall reverse the sign of j¢ in M whenever we go
into local polar coordinates. Writing Equation (4.12) in

dimensionless form

b 13 29y ] + 0 ).413
¢ T kP 3\ P 3P ® 35 p"_% () ) -(8.13)

Using Equation (4.1) j925 becomes

4 :
o= 1 + 0(x)) . (4.14)
Ip = g 3 ( )
o
To evaluate the B?R? g% (¢nR?®) term we need to determine
B2R? gﬁ ¥ From Appendix A we have
B2R? PR = oy cosf =~ B 2int ’ (4.15)
v x or 6 28 ;T

which, casting into dimensionless form and using Equations

(4.1) and (4.7), can be written as
1
/2

2 o 1'1 1
perz SR _ Yy {5 oo 4 2 Ci1 cos?6 y'? + sin?0 C1Y/2 s
3V |, ~RR, ¥
(4.16)

- 12 -



where higher-order terms have been neglected. The last

term in M involves B?R? % %% s which, using Equation
(2.9), can be written as
B2z L 21 _ _ ;g . gz 2B° (4,17)
T2y ° " ¢ ay - .

Using Equations (A.1), (A.2),(4.1) and (4.7) we find that

B2R® %%—~ Kigh (4.18)
Noting that @ ~ K‘RORBe and I = B¢R , then M can be

written as

RS I . 2
M = KROR s {2 cosO y Ci vy cos29
8
K
P =LY 4 ow?) ], (4.19)
i
o %o
where we have taken cognisance of the fact that D =1+ 0(x2).

Using Equations (3.17), (3.18), (4.7) and (4.19) we find

that
é :m —(:lij b (4020)
KSR3 B 2 dy
Q o

where BO is the leading-~order part of B¢ (B = B¢o}’

(o]
and y
KR _ vy ' dp
G = —— — (4.21)
Ll dy

to leading-order.
Using Equation (4.3) and the above forms for the
various coefficients, the stability condition can be

written as

=, T8 q® 1 2
o]



where q 1is the so-called 'safety factor' and is defined

in Equation (B.10). Now

- 4n2
o< fooli )
N2
" (%1 g%) 55 o B'R? 2, (4.23)
which can be expressed as
- 2
3 - Eg%’? (g—-ﬁ—;—l—-g) : (4.24)

Thus finally Equation (4.22) can be written in the form

T d 4 ¢ 2 1
1+ kB =Y <.___“’ny><ﬂ—1-ZTBI q2>>0 . (4.25)
q d 4n q/\%

The first term, which is always stabilising, represents
the shear., For q > 2 the component containing (q®/4 - 1)
is also stabilising - the so-called '"average-magnetic well"
effect. The last term, which is proportional £o BIz and
always destabilising, is referred to as the ballooning
term. We now consider the three physical situations which
arise when each of the components, shear, well, and bal-
looning, is neglected in turn.

Sufficiently close to the magnetic axis(iz)
qly) = qO(I + 0(y)) and the well and ballooning terms,

which are of order 1/y, become dominant as y * 0. Thus

condition (4.25) can be simplified to give
2B
By < (1 - 4q )T7° (4.26)

as a necessary condition for stability. It is clear that

for (4.26) to be satisfied it is necessary that q > 2.

- 14 =



We also observe that as q 7 o the right-hand side of

(4.26) approaches the asymptotic limit of T-'. Thus the

upper limit for BI is 7 or 3 depending on whether the
toroidal current distribution is uniform or parabolic.

Using Equation (B.24) it is straightforward to show
that the maximum value of { (= 2p/B¢?) allowed by (4.26)
is

crit — 5 -T 32 -? [£:27)

B =28

the optimum value of q being 242. For K = ' and

taking the current to be quasi-uniform, § ~ 1.3 x 1073,

crit
The corresponding value for poloidal-f 1is BI ~1,3 x 1071,
Thus it is evident that in the vicinity of the magnetic
axis the critical stable pressure is very low.

Away from the magnetic axis (y € ) the ballooning
component may be stabilised through the shear (for example
d(ﬂnﬁﬂ/d(ﬂn)ﬂ ~ 1 for a parabolic current), the average
magnetic well effect being negligible. The critical value
of B is then given by

<
B - e dénq |, (4,28)

crit I d 2n - l

and which approaches the equilibrium limit obtained in

Appendix B. When the shear is weaker, as with a quasi-

uniform current for which E;EE_E ~k2 (see Equation (B.13)),

d tn vy
we obtain the criterion
2
d £n 2
__.___3) > 2801 = L)y (4.29)
d én vy 4

providing B is sufficiently small to make the ballooning

term negligible. Condition (4.29) is equivalent to Suydam's

- 15 -



(8)

criterion , and which can be recovered in the appropriate
limit. Thus for & = 0, and using Equations (4.1), (4.3)

and (B.24), we obtain
;2 2\ 2 d
Pl 4a . gry & 2D
q;(——) + (1 4’) 2 3p >0 . (4.30)

5s DISCUSSION

In the previous section we obtained a necessary con-
dition for stability and considered the three cases which
arise when each of the three.components, shear, well and
ballooning, are neglected in turn. In particular it was
shown that for a circular cross-section plasma with a
quasi-uniform or parabolic toroidal current distribution,
for stability in the neighbourhood of the magnetic axis,it

is necessary that q > 2. This condition is, of course, more
(12 - 16)

(6)

stringent than the generally accepted q > 1 result

The latter is usually obtained from Mercier's
general criterion for stability against localised modes in
an axisymmetric system. In going from Equation (25) to

(6)

Equation (26) in his paper, Mercier takes the average
of the shear over ¥ and pulls it through the X-integrals.
Application of the result obtained to the quasi-uniform
or parabolic current distributions leads to the g > 1
result. If this approximation were not made, however,
then the q > 2 result could be deduced from Mercier's
formulae. Considering the limit of zero-shear Ware and

(13)

Haas also obtain the q > 1 condition for localised
modes. However, in their work 1t was assumed that the

azimuthal mode number n ~ 1, whereas in the present work

- 16 -



we have taken n 7 oo, This suggests that the condition
obtained by Ware and Haas is less stringent because it does
not take account of the modes n, m = o (% finite). Thus
the earlier criteria, being only necessary for stability,
are not inconsistent with the present one; they are simply
less stringent. The more stringent q > 2 criterion can
in fact be deduced from an earlier paper by Ware(17).
Applying the guiding centre equations to the quasi-
uniform and parabolic current models, and taking the limit

(18)

of zero-shear and small poloidal-B, Jukes has again
derived the q > 2 condition,
Finally we note that the critical-B values estimated

on the basis of the present work, and which are corsider=

ably lower than those calculated by other authors [ see

(3”

(21)

for example Laval et al. ,are in quite good agreement

(19)

and ST results. Thus the present

with the T3-A
limit on BI found in experiments could be attributed to
instability to localised modes near the magnetic axis, or
elsewhere, if there is too little shear pfesent. The
theoretical limit on BI as a function of g 1is given

by Equation (4.26).

6. CONCLUSI ONS

Using the energy principle for an axisymmetric plasma
a new and more stringent necessary criterion for stability
has been derived. Applying this criterion to simple models
for Tokamak in which the toroidal current is taken quasi-
uniform or parabolic, gives q > 2 as necessary for stability

in the neighbourhood of the magnetic axis. The optimum



critical pressure on axis corresponding to q ~ 3 (at the
magnetic axis) is very low. Thus for the quasi-uniform

model f3 rig ™ 0.03k? and for the parabolic model

~ 0.01K?, whereas in the limit q = o, B, 1

» 3

Bl

Bcrit
respectively. Both f and gq limiting values agree

quite well with the T3-A and ST results,.
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APPENDIX A GEOMETRY OF THE FLUX SURFACES

Figure 3 shows the way in which the various geometrical

quantities associated with two neighbouring flux surfaces

are defined. It is clear that
I L) ;
B. = - %r 38 - BX sin(® + A) (A.1)
RN 1.3
and By = R 3% 3 = BX cos(6 + A) . (A, 2)
: 8R
We now require to evaluate 3V . We observe that
X
oR
SR = == {SIJI:MCOS?\.
av 5

and further that

oy = RB,, 6¢ ,

thus giving

) g )
X

It follows from (A,1) and (A.2) that

Br sin® + B6 cosO = BX cos A ,

and hence

aR‘ oy oy sine)
prtllomlicd - Cosa - — — 5 (A°4)
allI x Rsz ar ) 26 i r

From the figure, cos(6 + A) = r %g ’

and thus using (A.2) we obtain

ds _ xdd , (A.5)
B 1 oV >
R 30|~
5]
where the 2% has been introduced to ensure that a



complete period in % (or s) corresponds to © running from

0 to 2w.

APPENDIX B SPECI AL _EQUILIBRIA

In this appendix we solve Equation (2.10) for some
special models of Tokamak. Making use of the transforma-
tions in Equation (2.11) the equilibrium equation becomes

approximately
L Rj¢ = - (IT” +‘R02p' + 2R T cosb p”). (B.1)

It is convenient to introduce the dimensionless quantities

S - Y _
p:fCR ,Y:E,Z‘,:pcose,
.0
. K:ZROZ ZP 'K.'S RO4
and a(y) = - (II” + R?p”) , bly) = - —2,
v

(Be2)

so that Equation (B.1) becomes

18 (. 8y, 2% _ 23y _ )
p 9p (p ap )+ p2 302 K3z = aly) + b(y) pcost , (B.3)

and the toroidal current density can be expressed as

j¢ - KZROQ o % (a(y) + bly) p cos@) . (B.4)
With a suitable choice of the functions a and b we can
investigate two typical equilibria:

(i) quasi-uniform current, where a(y) = a and

b(y) = b are both constants, (but because of the

p, © dependence, when b is finite j¢ is neither

uniform nor constant on a flux surface), and

(ii) parabolic current, where af(y) = (1 - y)a and



b(y) = (1 = y)b and a, b are constants ('parabolic

refers to the approximate current distribution over p).

We now solve Equation (B.3) for these models and this
requires that the boundary conditions on y must be satis-
fied. The latter may be imposed experimentally by either
(a) a highly conducting closed wall of an arbitrary shape
coinciding with a flux surface vy = constant, or (b) an
external vacuum magnetic field established by a suitable

array of conductors.

(i) Quasi-Uniform Current

Expanding vy such that

Y=Y(0)+KY(1)+-.- » (B.5)

we may solve Equation (B.3) by a simple iterative

procedure, and obtain

(o)

sz(o) = a+ bp cosO and sztl) = %% ; (B.6)

A solution which possesses an elliptic magnetic axis

at the origin and symmetry about the plane Z = 0

can be expressed as

y = 0%p? + p® C; cosb , (B.7)
where
b k0?
2 _ _ )
40°=a , C =g+ =5 - (B.8)

It is assumed that the range of validity extends to

0 <pS1 and 0 <y <1, the upper limit represen-
ting the plasma boundary where p = 0. The constant
Cy is, of course, of order K.

Since the confined pressure is directly



proportional to b it is of interest to ascertain

the maximum possible value of the latter quantity,

It is determined by the condition that there be only
one (elliptic) magnetic axis within the plasma bound-
ary and that the maximum dimension of the plasma minor
cross-section be two units. The following inequali-

ties must then apply

27 27 27
g = = - Ll

We now relate b to the experimentally significant

parameters, In the present model p = po(l - y),
2Po

and at the magnetic axis f=f_ = —

’ where P,

and BO are the pressure and magnetic field respec-

tively at the magnetic axis. It follows that
b 12
B, = 2L (B, 9)
k°R _*B?2
o "o

and ﬁ, the total enclosed flux, can be expressed
in terms of the reciprocal rotational transform over

a flux surface ql(y), where

27
_ Jdy I do
=1 —_— - L —— (B.10)
4 ?gnz zxfﬁa_ll{’
D T Or 6
Therefore
2p 2
__K:ROB b ,
qO_ZlTJ-ﬂZ O 4ﬂ4q02

(B.11)
and

Ciy = i +
From the preceding results it follows that the

= Sl



maximum value of BO is 2;6K2 .
9o

If the conducting wall is circular it is possible
to find an approximate analytic solution for y and
qly). This shows that the magnetic axis is displaced
a distance A outwards from the centre given by
2

BD 9
4K

A

K R
(@]

i (B.12)

. K,
8

and q(y) is given by

‘ -1,
B0\
qly) = a, \ 1 - (2Q3)Y 5 (B.13)

where terms ~ «/C; are assumed small, When y is

small, on the other hand,

9 Ci2 2k Cy 2y ¥
qly) = D5 (1 +('4ﬂ4'* 02 * K 202/ (B.14)

The above formulae cease to be valid when 8Cy=~ b el

at which value A/kR_ = Y3 and ql(y) 2w on y =1,

(ii) Parabolic Current

This case is of more practical interest than
the previous one, since it is natural for the toroidal
current density to fall to zero along with the plasma
pressure at the plasma boundary. We shall again
assume that this boundary coincides with a rigid

circular conducting wall. We suppose Rj¢ and p°

are proportional to 1 - /¥, then p = P, {1 - y)?2
where
2 b U2
b
= and = —_—— (B.15)
Po = 4R 2 %o 2R} B2



axis,

with

where

The equation to be solved is more complicated than

previously. Omitting terms ~ 0(k) it is
sz = (1 - y)(a + bp cosB) ., (B.16)

With a change of variable to t =1 - y Equation
(B.16) can be put in a homogeneous form for which a
suitable variational principle exists for determining

a and b, Thus we have
/{a + bp cosB)t?dSs = /(Vt)zdS ;

where

é/(a + bp cosO)t2ds ~ 0(&6%) ,

and _/dS denotes the surface integral. With the use

of a simple one-parameter trial function it can be
0.4K

shown that the maximum value of [ is —E—g o
o

Summarising then, sufficiently close to the magnetic

both models have flux surfaces of the form
¥y = 02p2 4+ p3® Cycosd , (B.17)
Q'q 2B _(5 - 7)
K Q2 o "o
— .1
Cl = T2 + S ) (B 8)
T = 4 or 3 according as the current distribution

is quasi-uniform or parabolic. Similarly the pressure

gradient can be expressed as

dp _ _ 1 - 2 _
T = 5 (5 -~ T)g, B . (B.19)
If we consider the particular case fl = 1 then it

is just as convenient to express Equations (B. 17) to

(B.19) in terms of the 'poloidal-B', BI, which is defined

- 26 -



16k

27 qj

maximum value of B is

If the conducting wall is circular it is possible
to find an approximate analytic solution for vy and
qly). This shows that the magnetic axis is displaced

a distance A outwards from the centre given by

By Ao

A L Kk (o] (o]
=% ~ 38t Tix ’ (B.12)

o
and q(y) 1is given by
: 1y,
3C ¥

aly) = q {1 - 2ﬂ3>Y , (B.13)

where terms ~ kK/Cy are assumed small. When vy is

small, on the other hand,

9 Ci® 2k Cy 2\ ¥
qly) = q (l +('4ﬂ4'* RE ) Caz) (B.14)

The above formulae cease to be valid when 8C; =~ b~ %g,

at which value ' A/KR = Y3 and q(y) ® o on y = 1.

(ii) Parabolic Current

This case is of more practical interest than
the previous one, since it is natural for the toroidal
current density to fall to zero along with the plasma
pressure at the plasma boundary. We shall again
assume that this boundary coincides with a rigid
circular conducting wall. We suppose Rj¢ and p’

are proportional to 1 - U/{, then p = P, (1 - Y)2

where
-2 T2
= oBA L aad = _BV . (B.15)
P T 4 B 3p 4 2
0 4K RO‘ ° 2K RO BO



The equation to be solved is more complicated than

previously., Omitting terms ~ O0(k) it 1s
V2y = (1 - y)(a + bp cosB) . (B.16)

With a change of variable to t =1 - y Equation
(B.16) can be put in a homogeneous form for which a
suitable variational principle exists for determining

a and bo. Thus we have
/(a + bp cosB)t2ds = /}Vt)zds §

where

é/(a + bp cos®)t?ds ~ 0(6%) ,

and /&S denotes the surface integral. With the use
of a simple one-parameter trial function it can be

: . 0.4
shown that the maximum value of BO is ———§ o

%o
Summarising then, sufficiently close to the magnetic

axis, both models have flux surfaces of the form

y = ﬂzpz + p3 Cycos@ , (B.17)
with .
N*q “B_(5 - T)
K 2 o "o
Cy = 2 + o ’ (B.IB)
where T = 4 or 3 according as the current distribution

is quasi-uniform or parabolic. Similarly the pressure

gradient can be expressed as

dp _ _ 1 - 2 -
3y = > (5 T)B0 BT . (B.19)
If we consider the particular case 1 = 1 then it

is just as convenient to express Equations (B, 17) to

(B.19) in terms of the 'poloidal-B', BI’ which is defined

- 26 -



1_)Y(zo)
KR

_ 8x
By & '1"2'/
o

where I is the toroidal current. Thus we obtain

27

o)
®)

rp(r, 6)dr do6 , {B.20])

y = p? + p® Cy cos6, (Bo21)

with

Cy = gm + ), (B.22)

where T is defined as above. The pressure gradient can be

expressed in the form

@ _ TV g . (B.23)

dy' KZRO4

We further note that BI can be related to B through

the expression

2
BI=2—q2 (%-1){3. (B.24)

K
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Fig.l Geometry of toroidal flux surface in (R, ¢, Z) and @, ¢, X) coordinates.
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Fig.2 Geometry of toroidal flux surface in local polar coordinates (r, 0, ¢).

Fig,3 Geometry of two neighbouring flux-surfaces.
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