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ABSTRACT

The simple model of a Tokamak sfudied by Strauss(10)

is reinvestigated. Defining poloidal-B to be the ratio

of the integrated pressure to the square of the toroidal

current it is shown that this quantity is bounded.
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As a result of the encouraging studies made on T3 and
{4 {(2)
T =7

o

k]

ST Tokamaks it is of considerable interest to deter-

mine the theoretical upper limit (if any) to the pressure
which may be confined. More precisely, we require to evalu-
ate the limit on the poloidal-B, B;y. To be of practical

(3))

value, this is usually (see for example Greene et al.
defined to be

B, = 871 [pds , (1)
where I is the toroidal component of current and the inte-
gral is taken over the minor cross-sectional area of the

nlasma.,
Most studies of MHD equilibria in Tokamaks have been

made in terms of the inverse aspect ratio €, where € « 1.

For B, ~ the analysis can be taken through

for an arbitrary pressure distribution. In the work of

(4) (5)

Shafranov », and Ware and Haas , it is shown that to
0(e?) the flux-surfaces are non-concentric circles. Recently,

using the same ordering and considering a model in which a

(3)

sharp~boundary separates plasma and vacuumn, Greene et al.
have taken their calculation to 0(83) and shown the flux-
surfaces to be elliptically distorted as well as non-con-

centric.

To investigate systems with § ~ el it is necessary to

prescribe simple models for the pressure and toroidal cur-

(6),(7) (6)

reant distribution . Laval et al. have studied a

diffuse plasma contained in a torus with slightly elliptical
cross-section. Jukes and Haas(7} have described both diffuse
and sharp-boundary. models, the latter having a significantly

(8)

distorted interface. More recently Haas has demonstrated



the existence of a sharp-boundary model with parabolic
pressure distribution and of circular cross-section. The
common feature to all this work is that the confined pres-
sure is limited by the appearance of a second ﬁagnetic axis,
the upper limit to BI being

B, = A et (2)
where A is a number of order one and depends on the precise
forms of pressure and current distribution, as well as on

(9)

the shape of the plasma cross-section . Recently however,

o . i 2
-B t =
defining poloidal-f to be given by f, ZPma/BP (pma and
B. denote the pressure at the magnetic axis and maximum

P
poloidal field respectively), Strauss(10)

has shown B, to
be unlimited. Strauss' calculation contains no mention of
a second magnetic axis. His approach differs from that

of earlier workers, in that, instead of fully prescribing
the plasma boundary, he chooses a particular solution for
the poloidal-flux ¥ and allows the flux-surfaces to take
up their natural positions subject to a certain constraint.
The latter requires that the plasma cross-section always
lies within a square, the boundary surface touching each
side of the square once only (see figure 3). This effect-
ively excludes consideration of plasmas whose boundaries
are a long way from circular.

In the present note we reconsider the pressure and cur-
rent forms of Strauss and evaluate B; as defined by equa-
tion (1). We show that for a fully prescribed boundary
(circular or non-circular) the poloidal-B attains a limit
of the form in equation (2). For a free-boundary subject

to the constraint described above, the poloidal-B reaches



a similar limit, but this is set by the size of the square -
not by the appearance of a second magnetic axis.,

(11)

It is well=known that for an axisymmetric system

the equilibrium equation for the poloidal-flux is

8 (1 oay), 8?
R’o\?(R aa)*g‘z'

§=Riy = - FET(4) - R%P7(V), (3)
where (R, ¢, Z) are the usual cylindrical coordinates (see
figure 1), We assume that the plasma occupies a perfectly
conducting torus with circular cross section centre O, the
ma jor and minor radii being R; and T _ (e = rO/RO). For
F(U), p(¥) we take

(C+ 2d RZP(¥))? and p = —2— (42- y2), (4)

e 2R %€
o

the latter ensuring that the pressure vanish at the bound-
ary U= an Because of the form of F the parameter C does
not enter equation (3). Thus the dimeansionless quantities
@ and d are free parameters, since it will always be pos-
sible to choose C such that F, and hence the toroidal field

B¢, are real. Transforming equation (3) to local-polar co-

gy (8), (1)

ordinates (r, based on the point O (see figure 1),

we can obtain | as an expansion in €. Since the procedure
(8

follows that given in an earlier publication ) we shall

only give the results.
Taking @ ~ 1 and d + 1 ~ €, we find that

U= ¢o + % wo(d + 1 + er cosB) (1 - £2), (5)

where wo = V,, and r 1is now dimensionless (r = 1 defines
the minor radius of the torus). To leading-order the toroi-

dal current density is given by



. of
ig = o2 (d + 1 + 2er cosB)V_ , (6)

o o
and we note that the constant j95 contours are planes per-

pendicular to the R-axis and parallel to the axis of sym-

metry. Writing equation (1) in polar coordinates we have

2T 1 271 1 -2
B: = Bﬂr;zf /p(r,@)rdrde ’7./ / jé{r,e)rdrdej ,(7)
o ‘o =% “g
which using the above equations gives
-1
B, = (d+ 1) . (8)
The quantity o can be written as
P
c
. . : -1
where IC is a characteristic current, IC = WB Ro . Thus

through equations (8) and (9) we can replace the parameters
@ and d by the physical quantities B, and I. Equations

(5) and (6) can now be expressed as

U = wo [1 + 4ilc (1 + ef; r cosB) (1 - r?) ] (10)

and
(1 + 2eBr r cosO) . (11)

Ip = Rr 2
Q

! the

From equation t11) we observe that for PB; = 0.5 €
toroidal current deansity is zero at the innermost point of

the torus, A say (see figure 1). Increasing (; above this
value leads to a region of reversed current spreading across
the plasma, For B, < £ it can be shown that there is one

(outward) magnetic axis corresponding to a pressure meximum

displaced a distance
.
b= (3e B )T -1+ (14 362827, (12)

from the centre of the tube. Alternatively, equation (12)

-4 -



can be written as

B = 24(1 - 382) & !, (13)

=1

The upper limit (.. =€ , is achieved for A = 3

Taking B; above this value leads to the appearance of a

“ZkThe above analysis is inapplicable

second magnetic axis
to low pressures (BI ~ 1) since we have neglected higher-
order terms. |
We now consider the problem of a plasma with a non-
circular boundary. Taking the forms of equation (4) we

suppose the plasma to have an 'egg-shaped' boundary given

by the formula

v2 = (1 - x2) (1 + 6%2- 26x)"" , (14)

and illustrated in figure 2. The plasma lies inside a
square (- 1 < x <+ 1, - 1 <y <+ 1) - the boundary touch-
ing each side of the square once only. Solving equation (3)
numerically for a given & and different values of a and d,
we find as before, that a limit on B; is reached due to the
appearance of a second magnetic axis (see figure 2). Even
in the presence of a significant distortion of the boundary,
6 = 0.75 say, it is found that the B; limit occurs for a
and d such that a ~ 1 and d + 1 ~ €, Thus for a given €
the magnitude of the B; limit is close to that for a cir-
cular boundary. Details of these calculations will be
presented in a further paper.

We now turn to the principal point of this communication,
the evaluation of f; (as defined in equation (1)) for
Strauss' problem. The disposition of the boundary and its
constraint have been described earlier. Introducing the

dimensionless coordinates x, y (see figure 3) and making



the same approximations as Strauss, equation (3) can be

written as

2 2
%;g N %;% F BE(R b V¥ = O, (15)

where b and A are defined through

-1
b3 = 208 and A = (d+1)(28) . (16)

A particular solution of equation (15) is given by

¥ = U(p) cos ky , (17)
where U(p) = Ai(- p) (see figure 1 of Strauss), p being
defined by

o = blx + A) - k¥ 2, (18)
If ps and p; signify the boundary points corresponding

to x =+ 1 and x = - 1 respectively, then

Ulpz) U(py) = U cosk =70 . = g - (19)

min
If we specify wB then the equilibrium and shape of the
boundary are fully determined. For we can immediately
evaluate k, pz and p; from equation (19), and since
2b = p2 - P1s the quantity b 1is calculable. Finally, A
can be found from equation (18). Thus as we reduce ¢B
S from U (figure 1 of Strauss) the magnetic axis (see
figure 3) moves outward approaching x = + 1 as b 7 o, the
boundary takingz up the appropriate shape. With his defini-
tion, Strauss shows B; to increase indefinitely as this
limit is approached.

We now evaluate B; as dzfined in equation (1). The

toroidal current I is evaluated from

: [azw y B4 (20)
Jp = R _(er )? Lox*  oy® -

Using equations (17) and (18), we obtain

- 6 -



1 s d°0 5
= R b d—p—z - k*U) cos ky dy dp, (21)
0

which, using the Airy equation and noting that the equation

of the boundary is

U(p1) = Ulp) cos ky , (22)
becomes ) 05 ‘ 1
o 2 2 2 - 172 2
L= - /. (b2p + k )(U (p) -U (p;ﬁ do . (23)
P1
Integrating by parts this can be cast into the form
5 P2 )1 gg) d
I = - —— {k"‘/ ((Uz(p) - U2 (p1))2dp + b2U? (py) AJ
KBR_ _ Uz(p)(Uz(p)- Uz(m))z ’
P1 P1
(24)

showing that for any choice of ﬂ!B (i.e. setting of p;, p2),
I is always negative and hence never passes through zero.

After some straightforward algebra we obtain

= L(b)a (25)

where

Ul(p,) :
ﬂ%/ [( U3(p) - Uzwﬁ cos U(p; + %[HP1J(U2(P)- Uz(Pl))z:]dp
P1

P : 1 2
[ D - v
P1 (26)

In the limit b 7 =

g =) 2.34
L(b) = g %) U2 (p)dp = 3.86 . (27)
e
p_—_2-34 - 00

Numerical evaluation of L(b) shows this quantity to approach
3.86 asymptotically from below (see figure 4). As
before we expect the curve to be incorrect for sufficiently
small b since we have neglected higher-order terms. Finally
we note that b is related to the displacement of the mag-

netic axis through -1
f_\:1—(pg-po)b 3 (23)



P =P, corrgsponding to Umax' As b ?Pw, p2 ™ 2.34

and A 7 1., Thus the upper limit to f; is set by the

finite size of the square.

Acknowledgment

The authors are grateful to Mr R.T.P. Whipple for

several helpful discussions.



105

11,

12,

REFERENCES

N.J. Peacock, D.C. Robinson, M,J. Forrest, P.D. Wilcock
and V.V. Sannikov, Nature 224, 488 - (1969),

J.C. Hosea, C. Bobeldi jk and D.J. Grove, 4th. Int. Conf.
Plasma Physics and Controlled Nuclear Fusion Research,
(Proc. Conf. Madison, 1971) vol, II, 425 (IAEA, 1971),

J.M. Greene, J.L. Johnson and K.E. Weimer, Phys. Fluids
14, 671 (1970).

V.D. Shafranov, Voprosy Teorii Plazmy, edited by M.A.
Leontovich (Atomizdat, Moscow, 1963), Vol. 2, p. 92,

[Reviews of Plasma Physics, edited by M.A. Leontovich
(Consul tants Bureau, New York, 1966), Vol, 2, p. 103].

A.A. Ware and F.A. Haas, Phys. Fluids 9, 956 (1966).

G. Laval, E.K. Maschke, R. Pellat, M.N. Rosenbluth,
IC/70/35, (International Centre for Theoretical Physics,
Trieste) (1970).

J.D. Jukes and F,A. Haas, 4th. Int. Conf. Plasma Physics
and Controlled Nuclear Fusion Research, (Proc. Conf.

Madison, 1971) vol. II, 491 (IAEA, 1971).
F.A. Haas, Phys. Fluids 15, 141 (1972).

G. Laval, H., Luc, E.K. Maschke, C, Mercier and R. Pellat,
4th. Int. Conf., Plasma Physics and Controlled Nuclear
Fusion Research, (Proc. Conf. Madison, 1971) vol. II,

507 (IAEA, 1971),
H.R. Strauss, Phys. Rev. Letters 26, 616 (1971),

E.W. Laing, S.J. Roberts and R.T.P, Whipple, J. Nucl.
Energy, Part C: Plasma Physics 1, 49 (1959).

J.C., Adams and C. Mercier, 3rd. Int. Conf. Plasma
Physics and Controlled Nuclear Fusion Research, (Proc.
Conf. Novosibirsk, 1968) vol. I, 199 (IAEA, 1969),.



N\

N

\.._J/¢

Fig.l Coordinate systems.

R

Fig.2 Flux surfaces for plasma with an 'egg-shaped'
cross-section (@ = 7.75, @ = 5.0, d= - 0.95).
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Fig.3 Rectangular coordinate system (x, y) and plasma boundary
for b = 2.72. P denotes the position of the magnetic axis.
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Fig.4 Plot of L(b).
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