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ABSTRACT

Convection driven by horizontal temperature gradients in an
electrically conducting, viscous, Boussinesq fluid has been studied
on a computer. Results of numerical experiments with a Grashof
number of 104 are presented and compared with linear theory. Weak
magnetic fields are distorted and concentrated without significantly
affecting the motion, while strong fields virtually suppress con-
vection. For moderate fields there is a non-linear regime in which
the global magnetic and kinetic energies are comparable though the
peak magnetic energy density may be an order of magnitude greater
than the maximum kinetic energy density. The astrophysical rele-

vance of these results is discussed.
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1. Introduction

The motion of the gas in stellar atmospheres, and of the material
in the interior of the earth distorts the magnetic field which per-
meates it creating Lorentz forces which react back to modify the flow

pattern.

The equations concerned are, in the nctation of TABLE I
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If the right hand sides of the equations are ignored, the magnetic

field is carried round by the fluid motions. The magnetic field and

its associated current distribution result in a Lorentz force jAB
which modifies the fluid motions. . When the dissipative processes,
viscosity and electrical resistivity, are included, the flow will die
away unless some driving source of energy is present. In convection
this is provided by thermal buoyancy forces, and non-trivial steady
solutions result in certain regions of parametér space. The non-linear
nature of these coupled vector partial differential equations makes com-

puter simulation a necessary tool for the understanding of the processes.

2. Astrophysical Interest in Magnetic Convection

In a star, a strong magnetic field may reduce the efficiency of
convection and in some cases suppress it altogether. The original
treatment of convection in the presence of a magnetic field was by
W B Thompson [1] in 1951 who showed that there is a critical "magnetic"
Rayleigh number below which convection does not occur.

Chandrasekhar [2] describes fully the agreement which has been obtained



Table 1

NOTATION
B magnetic field t time
u velocity vector _ D density
i electric current P pressure
g gravity downwards . T temperature
v kinetic viscosity Yy ratio of specific heats
n electrical resistivity v d (log T)/d (log p)
K thermometric conductivity L distance between the plates
B coefficient of thermal expansion u constant of order unity
Bmax peak magnetic field strength
u maximum velocity
max
BO undisturbed magnetic field strength
u maximum velocity when BO =0
3,2

Gr Grashof number BgTTL /v

1
M Hartman number Q*
Pm Magnetic Prandtl number v/n
Pr Prandtl number v/k

Rm Magnetic Reynolds number u L/n

max
Q Chandrasekhar number BZLzlp v n
EKIN normalised kinetic energy
EMAG normalised magnetic energy
EgAG undisturbed magnetic field energy
FREE 0
E =
MAG  TMAG ~ Tmac



between experiment and linear theory for the influence of a magnetic
field on convection in a liquid. However, the compressibility of
stellar material and the complicated geometry of a star make the study
of convection in a real star much more difficult. Sunspots provide
the most obvious location in astrophysics where magnetic fields affect
convection. There much stronger magnetic fields are found than in the
surrounding material. Biermann [3] suggested that these fields
inhibited convection inside sunspots, and that the observed cooling
was a consequence of reduced heat flux. This view is given support

by the analysis for incompressible fluids and by work on the onset of
convection in a compressible gas. In practice convection is only
partially inhibited and not totally suppressed. Crudely, to suppress
convection the magnetic field pressure must exceed the buoyancy force.
However the direction of the magnetic field is important. Imn plane
parallel geometry in a compressible gas, a sufficient condition for

the suppression of convection can be shown to be (Gough & Tayler [4])

2
B
S—" A vad . (2)
sz + yP

where V & d(log T)/d(log P) and Vad is the adiabatic

value of V. B, is the vertical component of the magnetic field; the
horizontal component does not enter. If convection is suppressed
totally in the interior of a star, energy is carried by radiationm,
ie V = Veaqe Hence equation (2) indicates that very large magnetic
fields are required to suppress convection throughout the core of a
star. In the outer convective envelope Moss & Tayler [5] indicate

that it is probably not possible for convection to be completely

suppressed by a magnetic field: the inevitable regions where the field



is horizontal cannot be stabilized.

In a satisfactory theory of the large-scale stellar or solar mag-
netic field which is effectively frozen into the ionized gaseous fluid,
it is necessary to describe the motion in the convective zone.
Danielson [6] investigated the effect of a magnetic field on the solar
convection zone. He applied Chandrasekhar's analysis [2] for a con-
ducting fluid permeated by a magnetic field to photospheric conditions.
Chandrasekhar had previously shown that for magnetic fields greater
than a minimum value (Vv 10_2 gauss for the sun) that instability first
occurs as overstable oscillations when x > n, that is Pr < PmE7]Danielson
found that this inequality 1is sétisfied by nearly six orders of mag-
nitude in the solar photosphere when the radiative conductivity is
used for k. Overstable oscillations can be viewed in a Bénard cell
as occurring when the magnetic field is strong enough to stop and
reverse the motion. The cell then has oscillatory rather than
circulatory motion. Alternatively the configuration can be viewed as
being composed of standing Alfven waves, and in our calculations for

high Hartmann number we have found these, being damped away by

resistivity, as one would expect.

The scale of solar active regions (comparable with the solar
radius) can be taken to indicate that magnetic fields penetrate
deeply into the convective zone, which can be divided into three
layers each with its preferred scale of motion [8] . The
largest would be giant cells with diameters of about 300,000 km and
velocities around 0.1 km/sec as suggested by Bumba [9]. The inter-

mediate convective circulatory field in the sun, the supergranulationm,



was discovered by Leighton [10] in 1960 and has been shown to be
responsible for the structure of the chromospheric network. A feature
of that relationship is that the cellular circulatory motions concen-—
trate the weak, large-scale field of a magnetic region into narrow
lanes at the boundaries of the convection cells. There is little
evidence that the ordinary granulation congentrates the magnetic

field significantly at its cell boundaries.

At the solar photospheric level, the average magnetic energy
density is small compared with\the energy of motion, despite the
presence of strong local fields. Hence one may consider smoothed
magnetic fields and treat them kinematically. This provided the
motivation for early computer studies of the interaction of

convection and magnetic fields [12, 13, 14] .

Smoothed fields and some form of eddy diffusion form a basic
ingredient of most current solar models. The effect of a meridional
circulation on a poloidal field has been compﬁted by Maheswaran [15].
The main features of the solar dynamo (Babcock[16]) are now generally
acpepted, and have been reviewed elsewhere ([8],[17]). Many
details of these dynamos remain to be investigated. Further
we must now aim to comprehend more fully the effect of individual
convection cells in producing the flux ropes that emerge into the

photosphere.



3.  Convective Concentration of Magnetic Fields — Numerical Studies

An understanding of the interaction of convection and a magnetic
field requires answers to questions such as "In what circumstances
will convection wind up a ﬁagnetic field to such an extent that the
field is annihilated by the enhanced dissipation?"; "When will the
convection concentrate the field lines into localized regions
with no substantial reduction in flux?'" ; "When are fluid motions
and magnetic fields in rough equipartition energetically?" At the
present time such questions can only be answered using computer

simulations.

Now observationally magnetic flux is mainly concentrated around
the perimeter of solar convection cells and particularly at corners
where several cells meet. For weak fields the concentration is
purely kinematic and the field is limited by the magnetic Reynolds
number Rm. Weiss [14] investigated the effects of an inexorable,
non—-divergent velocity field simulating convective cells on a seed
magnetic field by following the time evolution of the system. He
obtained a steady state solution of the induction equation with a
balance between diffusion and advection, which is achieved after the

initial seed field B, has been amplified locally to a magnitude

B = Ry B, (3)
where o = | or 1 for two or three dimensions respectively
(Parker [18]; Clark [19]; Weiss [14]; Clark & Johmson [20]). Moss [21]
developed a kinematic numerical model of two-dimensional hydromagnetic

turbulence. He found o = 0.35, and further that some flux may always

remain in a region even though most of it has been turbulently



expelled. His method was one in which the magnetic field was
stochastically displaced under the influence of a pseudo-random
velocity field of quite a coarse scale. In a recent study

(Peckover [22]), a two—diﬁensional dynamic simulation has been
carried out. The important parameters are Q, the Chandrasekhar
number Gr, the Grashof number, and Pm.the magnetic Prandtl number.
The ordinary Prandtl number Pr was zero. At the kinematic end of
parameter space the law, B, . = Rm% Bo,was substantiated and the gradual
deviation from it as Q increased could be observed. At the mag-
netically dominated end of parameter space the simulation agreed well
with linear theory. In the non-linear range computations were able
to provide further data for the non-equipartition of magnetic and

kinetic energies under some circumstances.

The particular configuration considered in this simulgtion is as
follows:- the fluid is confined between two rigid horizontal plates.
In the absence of motion the magnetic field would be vertical. The
y-direction is vertical and 9/3z = 0 for all physical quantities.
The thermal conductivity is assumed to be so ﬁigh that the Prandtl
number is zero.. The temperature field is then Laplacian, and T 1is
taken proportional to cos kx sinh ky., Periodicity is assumed in the
x-direction, and the horizontal plates are assumed to be rigid and
impervious such that no tangential viscous or magnetic stress occurs

there.

The changing pattern of magnetic field lines as Q varies can be
seen for steady state conditions for Gr = 104, Pm = 1 infigures 1 & 2.
If the magnetic field is strong enough (Q -+ =) the field is undisturbed.

For Q = 1 the Lorentz force is weak compared with the temperature

driving field, and flux is concentrated into ropes, and is almost



completely expelled from the central region. The regime where
non-linear induction effects are important lies between Q = 25 and

Q = 2500. In these simulations, the stream line pattern remains little
changed as a "cell in a box'". (see figure 3). The Reynolds number is
less than 200 and the flow is laminar. Although the eddy structure

is maintained its strength falls as the graph of u(= 2y__._) as a

max

function of Q 1indicates (figure 4).

Figure 5 shows the global magnetic and kinetic energies as
functions of the Chandrasekhar number Q. The kinetic energy falls
with Q from the flat plateau through the non-linear régime to the

Q © asymptotic value. There is a region, around Q <~ 100, where

EKIN N EMAG’ but this is a factor of teg down from the value of EKIN

when ¢ v~ 0. Statements of the form

+ =
EKIN E G const
FREE _
or EKIN + E c - const

independent of field strength, are not found to hold.

Observations of the photosphere should be able to provide us not
only with mean values but also with peak values. 1In figure 6 the
peak value of the velocity U ax is plotted as a function of Bo' After
a flat start it tails off as Q—1 as Q + ». The peak magnetic field
goes as Rm% BO for weak magnetic field and simulation agrees with
kinematic theory (Weiss [14]). For strong fields, Bmax approaches
BD as Q_l, in agreement with linear theory. Crudely the field is con-
centrated until Bmax o s in the flux ropes. The magnetic field is

strong enough to balance the buoyancy force and B falls. Note

Bmax g (umax)o for all values of Q except for the magnetically



dominated limit.

For values of Pm other than unity, computations showed that

: ; ; ; 1 =2
B Qv : :
ax (Rm) B0 in the kinematic regime, and u o 4y P BO in the

magnetically dominated regime. The expected behaviour for Pm << 1

and Pm >> 1 is shown in figures 7 & 8.

For small Pm, where the fluid is highly resistive, the magnetic
field will differ little from its ambient configuration and

1
2
Bmax v (1 + Rm ) B0 for p v 1 and BO < 1. For BO > 1, then Bmax v Bo'
The peak velocity u will be unabated until B vy .

max max max

For B_ > 1; u V —L-B -2. As functions of B , u and B are
o max Pm o o max max

almost piecewise linear.

For large Pm, when the viscosity is the dominant dissipative

L ‘
process, B A~ (Rm)? B until B "~ ou, at P’. Thereafter there is
max 0 max

a range of B0 in which Bmax is constant " uo,the non-magnetic peak

velocity (note Bmax is measured in the units of Alfven velocity).

v B for B > 1.
o o

B falls as the convective velocity falls until B
max max

3 F 3 4
The peak velocity u is unabated until P when B “ou s
max max X
. . . . d Ymax
Thereafter, after a transitional knee | in which ———— > -= ], the peak

d B
velocity asymptotically has the form ©

m 1 -2
(w-—l)(v Pm) B0 as Bo v

4, Conclusion

Thus, for magnetic convection caused by a particular persistent
driving buoyancy force which is a continuous function of position,
equipartition of magnetic and kinetic energy only occurs in a small

region of (Q - Pm) parameter space. This is true whether one is



considering global or peak values. It indicates that Beckers'
suggestion [23] that theoretical equipartition can be used with the
observed peak velocities to provide a method for calculating the mag-

netic fields needs to be treated with caution.
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Fig.l The changing pattern of magnetic field lines as Q wvaries.
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Fig.2 The amplitude of the vertical component of magnetic field on
the horizontal boundary y = 1, for magnetic Prandtl number Pm = 1.
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Q=0

Fig.3 The streamline pattern of a convective eddy in
a box when Q = 0 for a Laplacian temperature field.
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Fig.4 The variation of eddy strength with Q for Pm = %, 1 and 4,
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Fig.5 The global energies as a function of Q when Pm =1 Eprn
is the kinetic energy; Eyag 1s the magnetic energy; EMXG is
the undistorted magnetic field energy; EgigE = Eyag - EMKG'
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Fig.6 The steady state peak velocity Uyax» @nd the peak mag-
netic field Byvax (measured as an Alfven velocity) plotted

as functions of the ambient field strength By when Pm = 1.
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Fig.7 The conjectured form for the steady state peak local values Uyax and

Byax 2s functions of the ambient field strength B, when Pm is small.
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Fig.8 The conjectured form for the steady state peak local values UMAX and
BMAX as functions of the ambient field strength By when Pm is large.
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