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ABSTRACT

The non-linear differential equétions describing the
interaction of waves in a two-dimensional guiding centre

plasma form the basis for computer simulation. The method

is often more efficient than the particle codes now in
use and it is readily modified to allow direct computa-
tion of ensemble averages. It is shown that the electric

field correlation and the particle velocity correlation
are not equivalent and so estimates of the diffusion co-
efficient based on the field correlation are pessimistic.

Polarization drifts seem to have little effect on the

results until wP exceeds wc.
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I. INTRODUCTION

Plasmas can be simulated in computer experiments by
moving charged particles about under the influence of the
fields they themselves generate. Often the statistical
properties of the fields are more interesting than the
details of the particle motion, so it would be nice to be
able to dispense with the particles altogether and to des-
cribe the plasma by its fields alone. We shall show that
this is particularly easy to do for a two-dimensional plasma

in which particle motion is described by

E x B
v = S (1)

with E -given by Poisson's equation. The non-linear
differential equations provide an alternative method of
simulating a plasma, which is superior in some important
respects to the usual particle codes,

The most important previous work on this system was

1

performed by Taylor and McNamara who showed on dimensional

grounds that the diffusion coefficient D, defined by

D-B" _/ Q(t) dt , (2)
’ (o]
where
Qt) = (%r}-u:(tolr. E(t + to)) 5 _ (3)

-1 — .
. In order to obtain numerical

must be proportional to B
values they assumed a Gaussian probability functional for
the electric field. However, we show here that a simpler
assumption can give a better approximation to Q(t).

Sections II to IV develop the basic theory and draw the

distinction between the field and particle correlations.



The merits of the computer code and its modification for
the direct calculation of ensemble averages are considered
in sections V and VI. The results are presented 1in the
next section and finaily, in section VIII, we discuss the

limit to the theory which occurs at high plasma density.

II THEORY
The two-dimensional plasma is represented by rods with
charge * e/f per unit length moving in the x, y plane. We
apply periodic boundary condi tions to a square of unit area
and so the number of particles in the experiment is equal
to n, the mean density, The charge density 1is

n
T

plx) = % sz(i l)j 6(x - 5j)
i1z 1

where the index j labels each particle, The spectrum is

e ' -ik . x.
i 7 2_;(i I)je R (4)

and its time derivative is

-ikax;
~ik.,v. (x1). e I,
, B J

J

then

e
R
|
&lo

The velocity ¥; is given by equation (1) and the electric

field is
Y -2 ik”, x
E(x) = 4n > =y Py e T (5)
LA k ~
K+ 0
Thus
o dme N ik 15'x B \ L - ik .Ej-+15'
P = g2, ) U’ (= 1), -
o 194 . k'?—'O ]:(’2 o '/—JJ J

v g (6)



The scalar product with B has been dropped here because
the vector k“x k is necessarily parallel to B. It is

convenient to rewrite this equation in a symmetric form

P~ Z, Wikt ko) O g - 10 Pry Pisa i
~ }51:,_]152
where
27 N 1)
Wi(k;, k) = = kix k ( . 8
(k1, k2 B S1% k27 T2 (8)

2 subsumes all the information about the

This equation
electric field inherent in the original guiding centre

equations of motion and so it can be used as the basis of

simulation.

ITT CONSERVATION LAWS AND EQUILIBRIA

Obviously the total number of particles must be conser-
ved under the operation of equation (7) and this is true
because po is zero. We must also check that there is no
tendency for particles to decompose while the plasma evolves.
A necessary but not sufficient diagnostic is P = /p®(x)dx
which would fall if particles were to split up into frag-
ments. By the convolution theorem pz(g) is the Fourier
transform of Jp(k)p(k - k") dk” and here we are interested

in the k = 0 transform of p?(x). Thus

- and

. 4ax N7 KXk
F = _]é_ Z/ k’z prls’ pk_k’ p-k
kK’ T
= 0

because each term Xk, k” is cancelled by the term k- k, k%,

The total energy in the electrostatic field is



1 N1
€ :8_7C Z |Eklz = 2 /__, 1:9 pk p-k . (10)

k © 3 -
The rate of change of € is
£ = 4 I
£ s k2 p}f M _k
4t 1 kK x k
= 47 =—= o~ o P P e P
B )_’k LE2 k2 8 Tk-kT Tk
= 0
because the term k, k” 1is cancelled by -k’, -k .

The quantities P and € are conserved in systems
with an infinite number of Fourier modes, M. When M 1is
limited, P 1is conserved only if we truncate the series
so that ph, pE, and pﬁ15 -k in equation (6) all contain
the same M terms. This choice, which has been adopted
in this paper, also ensures that & 1s conserved although
this would still be true if the restriction on Pk -k
were lifted. o

An alternative way of measuring the energy in the sys-
tem 1s to add up the potential energy of each particle.
This is

T

8]
E:@ = Jplx) Blx] dx= 4% LP‘E% = 28 . (11)

There is, however, no such thing as kinetic energy in the
system. We can also calculate the overall electric current

flowing in the plasma. This is proportional to

p

‘ _ _ N ik 2
I Bt ds =) Boo o= n ) o
(12)

=

and hence it is identically zc¢ro because of the cancellation



beteeen each term Xk and its complex conjugate.
The system will be in statistical equilibrium if the
probability distribution P(ipk(t)}) is independent of t.

The conservation of ‘P and € immediately shows that P

is zero if § is any function of the form
v ek l?
P =P — {1.3)
kSl 120
with a thermal spectrum, i.e.,
2
2 k
oc —_— . 14)

Of these functions, the most plausible is the Gaussian
distribution; this is the only one which can be factorised
into independent probability distributions for each of the

Py » We are thus using a canonical ensemble; a microcanon-
iZal ensemble, in which P and & have specified values
but the kal2 are correlated, would be much harder to set
up. The cogstant A in equation (14) can have any positive
value and even, when k is discrete as here, a small nega-
tive one.

In addition the system will support an infinity of
exact equilibria. Here the fields do not vary with time
aithough the particles continue to drift akout. However,
all these equilibria are unstable because almost any small

per turbation will grow indefinitely, so their effect on

the correlation function Q(t) is negligible,

IV PARTICULATZ DIFF USION
Although it was stated in the introduction that the

correlation properties of the electric field are more



interesting than the details of the particle motion, yet
in the final resort it is the particle diffusion that
matters. Luckily the wave code can be extended to cover
this in an efficient.manner. (Particle codes in practice
tend to compute the diffusion of only a subset of the par-

ticles and the periodic boundary conditions may cause

complications.) The particulate analogue of
2 Gy
Qit) = 8= Zk Py (t) @k(o) (15)
K = ~
is -
n
B2 \__‘1 ’
C(t) =3 Egj(O) .gj(t) ‘ (15
j=1

Substituting for v.(t) as in section II, we obtain

v ik . (t)
C(t) = 8xn? Z _“_'_._?‘(_'__._ pp el (17)
k ~

U

where

-ik ., x.
gk(t) Z%; }:: gj(o) xBe ~ T) | (18)

The evolution of gk is given by

, _am T Ex S
e = w2 Pr by ok (19)
k*# 0

with the initial conditions

...ir}U(
§5(0) = kz Dk . [ZO)

There is an alternative way of computing the diffusion
of the particles - in terms of the mean square displace-

ment., The equations are:

w 1 =



2
H(t) =§ Z fha (21)

J
dH . 5. x(t)
— 8‘}"[:
-ik . x.
%t ww ) Sy xBe ¢ R (@)
F] 'k
° 47 ' k' x k L:
% =B Z oz (k7 X ekt T P
k # 0 ~
~ (24)
(D) = 0 (25)

“E
The results given in section VII demonstrate that the dis-
tinction between Q(t) and C(t) is a real one: it had been
earlier assumed that Q(t) adequately described the diffusion

of particles.

V COMPARISON WITH PARTICLE CODES

As mentioned above we truncate the Fourier series so
that p, . and Pk - k- in equation (6) both contain the
same M~ terms. B I; particle codes, on the other hand,
only a finite number of Fourier modes are retained in the
electric field whereas the equations of motion use the
exact particle positions. This can be reproduced in equa-
tion (6) by limiting k” to its M smallest values ﬁhile
not restricting the coupling vector 5-—5'. In one sense
this is closer to reality, but on the other hand the terms
in k“, k-k” and k-k", k" always tend to cancel each
other and omitting one of them leads to an unnatural infla-

.
tion in Pr - In running the same simulation experiment
~

P



with the two different types of code, this possible source
of discrepancy should be borne in mind.

We now consider whether this alternative method of
plasma simulation is as efficient as the usual one. About
1.37 M®> + M additions are needed to advance equation (7)
by one time step when M Fourier modes are retained in
the simulation. A particle code computing the field from
the exact positions of the particles would be prohibitively
slow and so approximate positions are used although this

® (a dependence

introduces errors in the form of grid noise
of the force between two particles on their absolute, not
just relative, positions). Hockney4 has compared the vari-
ous forms of fast Fourier transformation techniques. The
gquickest of these with nearest grid ﬁoint weighting would
need 1.25 M log2 M + 8M + 3n operations per time step when
there are n particles in the experiment. The wave code
is therefore superior up to M = 155 for the case of n = 104,
However this comparison is unduly pessimistic because par-
ticle codes would never use such a small M throughout
the computation because of the severe grid noise. For
example in reference 1 the particles are assigned to a
64 x 64 mesh and then the electric field is smoothed by
truncating all except the lowest M modes; in this case
the wave code wins ou! up to M = 300.

The representation of the system by a finite number
of Fourier modes means that there is a limit to the number
of particles that can be usefully employed in an experiment,

In addition particle codes have an explicit restriction on



n but the wave code does not suffer in this way. Equa-
tion (7) describes plasmas equally well for any value of
n because all the Py which appear in it are O(n% e/d);
hence a change in nrewill merely alter the time scale.
The term P, 1is equal to /¢ but it is not present in
the equation and ﬁo is identically zero. The value of
n has an indirect effect on the behaviour of the simulated plasma
through its influence on the initial conditions. 1In a
plasma with small n, the several Pr will have statis-
tical correlations but ﬁe can simulateNa plasma with
infinite n merely by eschewing sﬁch correlations. Addi-
tional advantageé of the new method are: the coding is
much simpler as no Fourier transformations are required
aiiowing a much more flexible program than the usual mono-
1ithic particle codes; any desired initial spectrum can
be set up without troublels 5; there is no grid noise;
and Runge-Kutta or similar methods of integration are
readily included reducing AE/E to e.g. 10”7 per time
step compared with 2 x 10~% using crude integration with
the same number of subroutine calls.

The lack of worry about whether n 1is large enough
or whether grid noise or an excessive At 1is disturbing
the system allows the user to concentrate on the one limi-
tation the wave code has - a small M. If M hag to be
large, then a particle code is essential, However, much
useful physical insight can be gained from the study of
. systems with very small M, systems that would be swamped

by grid noise if a particle code were used.



VI THE CORRELATION FUNCTION AS A POWER SERIES
A useful supplementary technique is to compute the

correlation function as a power series in t,

t) = 8% 3 tP . 6
Qt) ) pqP (26)

The coefficients can be found by iterating equation (7),

e.g.

I

-2 o
gy = o & Zk P (o) p_, (o))
k ~ ~a

Zk'z Wik, &) W(k+£,-2)Clpy 12X, 120
~(27) ~

Here we have used the fact that, in equilibrium,the ensemble

average is zero unless all the p occur as complex conju-

gate pairs. There were only two (equal) terms instead of

the six which might have been expected because the property

Wik, k) = W(k, 0) =0 (28)

eliminates many possible contenders.

A computer program based on graph theory-6 was written
to compute and print the coefficients in FORTRAN in a
form like equation (27). The resulting program was then
used to evaluate the coefficients numerically for the
chosen spectrum (ka|2>. The procedure was checked by
summing the series :o compare with direct simulation runs.
In addition a simulation experiment was set up to evaluate
dppk/dtP and hence a instead of p (t) and hence Q(t).
The results, in Table I, demonstrate the advantage of being
able to compute the ensemble average directly instead of

having to rely on simulation experiments with their large

- 10 -



statistical fluctuations.

The number of terms to be evaluated increases some-

_ 1

what faster than M2Pt 1, so it is necessary to resort to
Monte Carlo evaluation of the summations when p is large.
However, this immediately removes the restriction that M
must be finite and so for instance we can allow a contin-
uous spectrum of k wvalues. In this form the wave code
provides an intrinsically noiseless though inefficient
simulation of a plasma containing a infinite number of

particles whose law of force has an infinite number of

Fourier modes.

VII MODELS AND RESULTS

Figure 1 shows the ensemble average Q(t) for a series
of 13 runs of the code based on equation (7). The system
contains 121 Fourier modes and the spectrum was appropriate
for randomly placed particles (A = 0 in equation (14)).
The correlation function decays monotonically but the statis-
tical accuracy is rather poor, It would therefore be use-
ful to find a model giving Q(t) directly.

Taylor and McNamara! did this by assuming that the
probability functional of E(t) is Gaussian. They obtained

the result that Q(t) 1is given by

. 1.2 ‘
B2R - Q(t) = Z% <IE1<|2> SkPR(t) (29)
k ~ 3

but, as figure 1 shows, this Q falls off too quickly. In
part this is to be expected as the authors implicitly adopt

the unsymmetric truncation of Fourier modes described in

Section V. However putting that truncation into equation (6)

- 11 -



accounts for only 42% of the discrepancy in q,.
Another way of getting a model for Q(t) 1is based on
the cumulant discard approximation discussed by Betchov'.

By iterating equation (7) we obtain

: L W(k,8) Wk+ 4, &) o, (£)]2 S (t), (30)

5 (t)
k ¢

~

where

Sk(t)

~

pb(t) p_E(o) (31)

and we have neglected all terms with four distinct p on
the right hand side. This is valid at t = 0 and, if we
are lucky, the fourth-order cumulants will grow slowly
enough for it to remain a reasonable approximation, If
ng(t)l2 fluctuates rapidly compared with Sk(t), it can be

~

replaced by its time average assumed here to be ([p6|2>.

Then the correlation function isa

Q(t) = 8x? 25 k™2 <|p§|2> cos ﬂb_t, | (32)
where
RE =3, Wi, g) Wik g, ) Cle, |7 (33)
The next model assumes conversely that lpg(t)l2 varies

much more slowly than Sk(t} in which case we can substitute
its initial value ]p_é(o)]2 giving eventually
1
= F 2
Q(t) = 8x? Zgﬁk 2<]p§|2> cos(ﬂgh-oga)zt exp(—%cbzt ),
(34)
where

G

= 2 (W02 W+ £, 21, 120 1% (35)

~

A further model can be constructed by exploiting the

- 12 =



fact that Q(t) is a stationary function. Thus é;(t)
can be written as - ék(t) b_k(O) and, again neglecting

terms with four distinct p, we obtain

SE(t) = - sz(g,f) Sé(t) Sh-ff,(t) . (36)
6 -

This equation has been solved numerically using a modifica-
tion of the wave code. Figure 1 shows that these three
models give the correctinitial curvature but they all dis-
play oscillations which are not seen in the simulation runs.
A more detailed study of the correlations between
individual modes showed no coherent behaviour among the

oscillations which followed the decay of the initial corre-

lation. This suggested the model
\ -2
Q(t) = 8x2 Lk Clo 12D exp(- 30,2 t2) (37)
which fits the data in figure 1 almost too well (X® per
degree of freedom = 0;147).

Another way of judging the modeis is to compare their
power series expansions with the exact result and the simu-
lation experiments in table I. The first experiment consisted
of 185 runs with the conventional definition for the co-
efficients, e.g. (@Z E) and the second was made up of 100
runs using the symmetrical form e.g. (- E =E>, The model
based on equation (37) is clearly consisfent with the exact
result and the experiments, but the other models are way out.
A respectable pedigree for equation (37) could be dreamed up
if desired; its Gaussian autocorrelation function for each

pk(t) is at least as plausible as the Gaussian functional

- 13 =



for E adopted in reference 1,

Having established then that equation (37) describes
Q(t) very well, we can integrate it to obtain the diffusion
coefficient D, We 'do this for a thermal spectrum with

continuous k,

: 2
P KT k
<Ip(5)| > = 4ATe 11 kz ?\‘2 (38)

where the Debye length is given by A? = kT4/47"ne?, In
evaluating QB{k), it turns out that modes with wave number

greater than k give no contribution to the integral. The

result is

' 242 2
Q% (k) = —= {(1 t I XT)  Endt & TR o 1 - TpaBNR }
~ 8¢B2 14 k222 .
(39)
The diffusion coefficient is
b :
D = 'S_lic-T-z / —-—--—————dk e q-1
2
LB 472 /L2 1+ k*\
3
KT 3-8
= 1 £n (L/2%\N), (40)
eBN, 2 %
where N_ = nA?® and L is the size of the system, put in

D

explicitly here for clarity. Because this was based on
equation (37), which appears to fit the observed correlation
more accurately than the expression derived by Taylor and
McNamara, this is presumably a more accurate estimate of D

than their result,

1

kT [ ]a
1| 5= én(L/27N) . (41)

eBND

Before jumping to the conclusion that equation (40)

- 14 -



is the end of the story we must study the particulate diffu-
sion. Figures 2 and 3 compare the correlation function etc.
for the field and particles. They are plotted for a single
run to emphasise that Q(t) and C(t) are not the same thing.
The difference is not an artifact caused by a finite number
of particles; C follows the trajectory of each particle
whereas Q does not distinguish one particle from another
nor indeed a particle from an empty space. The conclusion
from an ensemble of runs like this showed that C initially
falls off more rapidly'than d to reach an average value of
zero, so the particles diffuse more slowly than predicted
by equation (40). However, a suitable model for C(t) has
not yet been found because now the modes above k contri-
bute to 0?(k) and give an infinite result. This leaves

open the possibility that D should be finite when L ™ w0,

VIII POLARISATION DRIFTS
The drift velocity is only given by equation (1) when
the electric field is static but the whole point of this
study is to investigate the effect of time varying fields.
A better approximation to the motion of the guiding centre
is obtained by including the polarisation drift®
ExB K

v = +
~ B2 Bw
C

(42)

In order to use the wave code here, we have to neglect the

advective part of E , leading to an implicit equation for

P>

pn]:S - B kfz pr]:s' - k'—zw pnls') pnlf‘,IS' L (43)
c



which can be solved by iteration. (Particle codes need
not approximate é in this way and are in general to be
preferred when polarisation drifts are present). We find
that q, is unchanged to O(e) where the dimensionless

expansion parameter is

€ = n w w (44)

(n is the number of particles in the experiment). To
obtain q, to the next order we must add yet another term
to the E x B drift, viz. - E x B wéﬁa B_z- With this cor-
rection a series of 50 runs of the system in Table I have

given the result

g, = = 0,876 - (105 & 12) e?. (45)

Thus we are justified in ignoring the polarisation drift
until mp approaches 0,30 n%(oc.

For a thermal spectrum the appropriate limit is of
the order ND% W s and above this the effect of the polar-
isation drift is to reduce D. This provides an alternative
explanation to the one adduced by Dawson et al.'© to explain
the relatively constant value of D for 4 w_. which

P
they found in their simulation experiment.

IX CONCLUSION
This study of the two-dimensional guiding centre plasma
has demonstrated the merits of simulation using a wave code.,
The motion of the plasma is constrained by two important
invariants and any thermal spectrum constitutes an equilib-
rium state of the system. The correlation function of the

electric field is described accurately by a simple model,

- 16 =



but the particles do not diffuse as rapidly as this would
suggest. Some doubt is therefore cast on the previously
held view that D depends weakly on the size of the sys-
tem, The results of Dawson et al. can be qualitatively

explained by the onset of polarisétion drifts when wP

approaches W,
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Fig.l The correlation function Q(t) for the spectrum <|Eklz> o k_z, normalised so that
q, is unity, in a system with M = 121 modes. The vertical bars denote the standard
deviations of the simulation runs and the curves represent various models for Q(t).

Fig.2 The velocity correlation functions, Q(t) for the electric field and c(t) for the
particles, in a single run with M = 25.
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Fig.3 The running diffusion coefficient for the run in Fig.2. The integrals of Q and C
are compared with H(t) which is the derivative of the mean square displacement of the
particles.

CLM-P 305









