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ABSTRACT

We have made computational experiments to study the stability
and long-time evolution of two-dimensional wakes. We have used the
VORTEX code, a finite-difference realization of two-dimensional
incompressible inviscid fluids. 1In the first experiment an initial
shear-unstable triangular velocity profile evolves into a non-
homogeneous finite-area, asymmetric vortex array and like-signed
regions attract and EEEE (or coalesce). Enhanced transport across
the profile is due to 'capture" and convection of small-scale vortex
regions by larger oppositely signed vortex regions. In the following
experiments we study the stability of an asymmetric four-vortex
finite-area system corresponding to a von Karmian street of point vor-
tices. Here the critical parameter is b/a, the initial transverse-
to-longitudinal separation of vortex centers. At b/a = 0.281 the
four-vortex system is stable and we observe large-—area vortex regions
develop elliptical (m=2), triangular (m=3), etc. surface modes due to
self-consistent interactions. At (b/a) = O the measured growth rate
is smaller than the corresponding von Karman system and at (b/a) = 0.6
the measured growth rate is larger. At (b/a) = O one vortex undergoes
fission in the high-shear field produced by two nearest-neighbour
oppositely signed vortex regions. Heuristic comparisons are made with
the two-dimensional tunnel experiments of Taneda and others.
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1. INTRODUCTION

In recent years there have been renewed efforts to understand the
non-linear dynamics of interacting vortex structures in high Reynolds
number (high-R) two-dimensional jets and wakes. Carefully controlled
éxperiments (Taneda, 1959 and 1965 and Durgin and Carlson 1970) that
minimize three-dimensional effects in low noise wind tunnels have
shown that asymmetric vortex structures have a finite life time,
i.e.they become unstable . At variable distances downstream (many
wavelengths of the fundamental vortex structure), the observed pattern
abruptly loses its coherence and degenerates or "breaks down into a
less ordered pattern'. From this visually chao£ic state evolves a
secondary asymmetric vortex structure, more diffuse than the primary
structure and of longer wavelength. This hierarchy of two-dimensional
vortex structures is sufficiently uncomplicated that a deterministic,

non-statistical approach should elucidate the basic mechanisms involved.

As exemplified below, numerical simulations with a two-dimensional

zero—viscosity model can provide such insights.

In flat-plate wake experiments, Sato and‘Kuriki (1961) also
measured the properties of high-R wakes at moderate distances behind
flat plates. Their high—-quality hot-wire data was interpreted by
Zabusky and Deem (1971) in a computational/experimental study as con-—
sistent with the motion of an asymmetric wake of elliptical nutating
vortices. Zdravkovich (1968 and 1969) and Durgin and Karlson (1970)
also found elliptical and other distorted vortex structures to be a
common occurrence in wakes of cylinders. The elliptical shape of the
vortex is a non-viscous effect due to the mutual interaction of

nearby vortex regions.

To clarify the qualitative features of ideal high-R laminar

flows downstream of flat plates, it is convenient to describe



phenomena in contiguous spatial regions:

(1) At very short distances one finds nearly laminar flows with a
Gaussian type velocity profile. For R > lO4 the inviscid Rayleigh
equation provides eigenfunctions and unstable eigenvalues. R is
based on the length of the plate. The Reynolds number based on the

boundary layer thickness (or radius of a cylinder) is > 500.

(2) At short distances, induced perturbations (via acoustically
driven loudspeakers, vibrating ribbons etc.) grow in accordance with
linear stability theory. For R > 104 Sato and Kuriki (1961) and
Zabusky and Deem (1971) showed that the Rayleigh equation provides

unstable eigenvalues that agree with observations.

(3) At moderate distances the fastest growing modes have the most
energy and saturate when a regular asymmetric street of elliptical
vortices form. The finite-sized elliptical vortices undergo a slow
pitching or nutating motion in the laboratory frame of reference.
This phenomenon was also observed in the wake of cylinders and in

two-dimensional jets by Beavers and Wilson (1970).

(4) At large distances, the vortex structure may break down,
(collapse or undergo a transition) to another asymmetric street, where
the longitudinal distance between nearby vortices in the same row

can increase by a factor of 2 to 10 depending on the Reynolds number
(Taneda, 1959).
(5) At very large distances the break down and reformation of the

vortex structure may be repeated several times. However, at very

high-R the turbulent or chaotic structure may persist.



In wakes beyond cylinders and other bluff bodies, regions (1) and
(2) are inseparable and pockets of vorticity aggregate alternatively
on either side. When the vortex concentrations are sufficiently large
they are convected away to form an asymmetric street. The rate of

convection of vortex aggregations determines the Strouhal number.

For real rather than ideal, high-R flows the above regions may
not be clearly separated. The flow configuration at moderate to large
distances (particularly at very high-R) is very sensitive to the
precise operating conditions and excitation mechanisms, .that is the
predictability of the flow decreases at large distances or long times.
The suppressioﬁ of 3-dimensional disturbances; the rigidity of the
mounting; the smoothness of the construction and excitation mechanisms;

the quietness of the wind tunnel; and a finite viscosity all contri-

bute to a more predictable result.

Computer simulation studies of the stability of wake-like
configurations were undertaken because the literature of analytical
non-linear treatments is an empty set. We have linear stability
theories for symmetric and asymmetric configurations of point vor-
tices begun by von Karman and elaborated by Kochin, Kibel and Roze
(1964). For two oppositely signed streets of point vortex filaments
the symmetric configuration is unconditionally unstable. The
asymmetric configuration on the other hand is only stable if the
transverse to longitudinal separation (5) is 0.281. However, és
emphasized by Kochin, Kibel and Roze (p.226-234) this is a necessary
condition: "A first order perturbation theory shows that the positions
of vortices in a street with (%) = 0.28] will separate by a finite

amount". Rosenhead (1930) examined the linear stability of the



b .
(2) = 0.281 asymmetric street for small-but-finite area circular vor-

tex regions. However this calculation is not applicable to strictly

2-dimensional finite area vortex streets, as described below.

Most past anélytical and computational work has concentrated on
studying point vortex configurations, that is vortex deformations are
excluded from the dynamics. The reasons for excluding deformations of
finite area vortices can be summarized by quoting Bassett
(p. 42 vol. II 1888): "If more than one vortex exists in a fluid, the
effect of any one of the vortices upon the others will be to produce
a motion of translation combined with a deformation of their cross
sections. The mathematical difficulties of solving this problem when
the initial distribution of the vortices and the initial forms of their
cross sections are given, are very great; and it seems impossible in
the present state of analysis to do more than obtain approximate

solutions in certain cases'.

Our study generalizes and considers finite-area constant density

vortices (Rankine vortices) confined by a contour

2 2 imo
r- (9) = Ro + % o e + cc ,

; : . 2.
where r 1is measured from the vortex centre. (The variable r is used

: ; 2
to simplify the verification of area conservation). For a/Ro <1 a

translation with no distortion corresponds to an m=1 disturbance and
an m= 2 disturbance results in an elliptic shape. Generally high-m
disturbances can arise through close non-linear interactions as shown
by Christiansen and Roberts (1969) and by Christiansen, Taylor and
Roberts (1972)for two vortices.

There has also been work on wake-like configurations. Using

the VORTEX code, Christiansen (1970) studied the instability of a
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trapezoidal longitudinal velocity distribution with widely separated
flanks and subject to random perturbations. The final state was four
staggered elliptically shaped vortices. Solving a finite-difference’
representation of the Navier-Stokes equation, Deem, Hardin and
Zabusky (1971) initially perturbed a laminar Gaussian profile with a
second-harmonic plus small-random perturbation and observed the growth
rof four elliptically shaped vortices of unequal strength. There
follows a period of quasi-stationary evolution of the vortex configura-
tion and finally a rapid coalescence of pairs of like-signed vortex
regions. Similar phenomena are described below in the simulations of
a triangular velocity profile and the evolution of two pairs of

oppositely signed asymmetrically placed vortex regions.

2. TWO-DIMENSIONAL IDEAL FLUIDS AND THE VORTEX CODE

The incompressible, inviscid fluid can be described by the

coupled continuity and Euler equations

Vea=0, (1)

Ju 1
- ‘Yu=~-="9p . 2
e ¢ 8 e =5 2

These equations describe experiments where local fluid speeds are
smaller than the sound speed and dissipation plays a negligible role
in the dynamics. For a two-dimensional ideal fluid the vorticity has

one component orthogonal to the planme of motion and one can introduce

a stream functiom ¢ .

E=VX(EZ¢), (3)
2
=e,.Vxu=-Vy, (4)
where V=g, BX + Ey By 5



Substituting (3) and (4) into (2) yields the familiar Liouville
equation (analogous to the one-dimensional Vlasov equation of plasma

physics)
(S N S wx t, =0, (5)
that describes a Hamiltonian system with characteristic velocities

= = =y - (6)

Any state of the system is described by the vorticity distribution
z(x,y) and can evolve into all other states subject to the con-

straints imposed by the conservation laws:

Linear momentum: P = pfJ u dxdy 5 (7)

Angular momentum: L=pf/Txudxdy , (8)
; ; 2

Kinetic energy E = ipSS |y dxdy = 3p//zY dxdy , (9)

Vorticity areas: A () dr , (10)
where A () dgz is the area between two vorticity contours £ and 7 + dg.
Helmholtz's theorem tells us that these areas are convected with the
fluid and hence it is convenient to study systems where the vorticity
density, £, 1s constant and takes on the values + 7, , O and - go.

The area conservation law is simply the conservation of area within

the contours surrounding these regions.

The numerical experiments have been carried out with the -
particle/ field (vortex filament - stream function or vorticity)
VORTEX code (Christiansen 1970). This algorithm is based‘on the fact
that the motion of vortex filaments is described by the ordinary

differential equations (6). The stream function is determined from



the distribution of point vortices by numerically inverting the
Poisson equation (4). The advantages and deficiencies of this method

were studied by Christiansen (1971) for the simple case of a single

r

$o (Rankine vortex). The

circular vortex of constant vorticity
numerical experiments presented below have been carried out using
3200 positive or negative point vortices that are moved on a
‘cartesian mesh of dimensions 64x64. In general 9 different types of

boundary conditions are available. Appendix 1 describes pertinent

details of the code's operation.

Errors are inevitable in solutions produced by finite difference
methods. In the VORTEX code no attempt is made to enforce conserva-
tion or "semi-conservation" (continuous temporal variables) of mass
(local incompressibility of the flow), momentum, energy, enstrophy or
area. These quantities are monitored to allow one to assess the
quality of the run (see Appendix 1). The local violation of incom-
pressibility is manifest in the figures below as a fine wave-like
structure, particularly on the surface of the vortex region. One
easily resolves this structure on the large-area vortices, e.g.
Figure 6 (t = 8.75), Figure 7 (t = 7.5), Figure 11 (t = 7.0). Note
that the fine structure becomes sharper and penetrates deeper into
the vortex regions at later times, Figure 5 (t = 8.75). Also long
"arms" of vorticity are dispersed, indicating that small-scale pheno-
mena are not adequately represented. These short-wavelength
truncation errors do not cause instability and apparently do not con-
tribute greatly to the large-scale motions for the duration of our

runs.



3 EPITOME OF NUMERICAL EXPERIMENTS

The numerical experiments summarized in this section and out-
lined in Table 1 are all related to our abstractions of high-R wakes
of flat plates or bluff bodies. These are initial-value problems and
in discussing laboratory experiments we assume that the time elapsed
in a calculation corresponds to distance downstream. Zabusky and
Deem (1971) validated this assumption by comparing numerical solutions
of the Navier-Stokes equation with the flat-plate wake experiﬁents of
Sato and Kuriki. The calculations start from uniform vorticity dis-
tributions located in a box with periodic boundary conditions in x
and either fixed or periodic boundary conditions in y. Equations &

(N number

==

and 5 are normalized such that a vorticity density QO =
of point vortices confined to the area A) will produce a rotational
; 4mr ; ; : . ; ;
period of TO = 7 units of time. The time step in an integration
%0

initially satisfies the Courant-Friedrichs-Lewy condition by a wide

margin and is taken as

pe=c = ooyt (11)
<]
1 N
= = V. ; 12
where <IEJ> ¥ jzl I—j (12)

In section 5 we discuss the laminar triangular longitudinal
velocity profile with random perturbations (experiment I) and show thet
the linearly unstable profile transforms into an asymmetric (staggered)

array of unequal strength vortex regions which coalesce or fuse.



In section 6 we begin the study of the stability of four finite
area vortex regions, with periodic boundary conditions in the longi-

tudinal (x) direc;ion. The parameters of the study are:

(i) The area of the vortex regions
(ii) The initial shape of the regions
‘(iii) The transverse boundary conditions (fixed or periodic)

(iv) The nature of the perturbation to one or more vortex
regions (lateral or longitudinal displacement of the
centroid of a vortex region, shape or size change, etc).

(v) The transverse - to-longitudinal separation E—of the vortex

centers.

. . b ‘ ;
Section 6 studies = 0.281 (experiments IItoV ) known to be "marginally"
stable for point vortices. For runs of duration 19 circulation periods,

we find stability.

In section 7 we treat the case 2—= 0.6 known to be unstable for
point vortices and we find instability followed by fusion of like-

signed vortices. See experiments VI to IX.

= 0 is treated and we find

[T

In section 8 the standing wave case
instability and a peculiar strong dynamical interaction that finally
leads to a rapid fission of one vortex followed by fusion of vortex

regions in a longer time scale. See experiment X,

The results are visualized by displaying the location of vortex
filaments (particles) at separated times. Dark grey areas represent
regions of negative vorticity (clockwise rotation) and light grey

areas represent regions of positive vorticity (counterclockwise

rotation (see figures 3, 5, 6, 7, 8, 9 and 11). A computer-generated
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film has been made that vividly demonstrates many of the phenomena.

K V Roberts showed and discussed this film at the Eurcpean conference

on Computational Physics (Geneva, April 1972) as part of his talk on

a review of numerical methods in fluid dynamics (Roberts and -

Christiansen (1972).

Expt.| b |Eccentricity n L (Area) y-boun- |Elapsed| No. of .
No. a of vortices |of typical | daries |time Ty, timesteps| @ |'E'"0
vortex
T Laminar wake - F 10.5 1344 6.25
II |0.281 0.0 9 F 9.0 576 27.0(19.4
IIT |0.281 0.0 35 P 9.0 576 7.0] 5.0
IV |0.281 0.85 26 F 3.0 192 9.41 2.24
v |(0.281 0.85 26 F 3.0 192 9.4 2.24
VI |0.6 0.7 35 F 24.0 768 7.013.3
VII |0.6 0.7 35 P 6.0 192 7.0 3.3
VIII (0.6 0.0 35 P 6.0 192 7.0 3.3
IX 0.6 0.0 9 P 9.0 1152 27.0(19.4
X |[06.0 0.0 35 P 17.0 576 7.0| 9.45
TABLE 1. Experiments presented in this paper.

Column 5: F & P mean fixed or periodic

y-boundaries.

rotation period of the vortex.

= 10 =

In column 9, T, = 4u/L, is the




4, COMMENTS ON PREVIOUS ANALYTICAL WORK

The original calculation by von Karman for an asymmetric point
vortex system has been repeated by Lamb (Section 15b, p.228) and
somewhat generalized by Kochin, Kibel and Roze (Section 5.21). If

nearest neighbour vortex filaments on the same line (separated by a)
g : _ . imeo im® .
.are given the same displacement, xm-—ae . ym==Be s, the solution

of the linearized perturbation equations yields the dispersion

relation
A= (I-ol2naz)(:lziD + A2-c2) , (13)
where
A =‘%CP(2W—¢) - m%/cosh®(mb/a) p (14)
P Psinh (1T-9)b/a n?sinh wb/a 1
B =iD = if cosh(mb/a) COShZ(ﬂb/a)} ’ (1R
2
o= cosh;¢b/a) _ TP cosh(m-9)b/a . : (16)
cosh“ (mb/a) cosh(mb/a)

The condition ¢ = 7 1is most unstable as it makes C = 0 and

A= %TT2 (1-2 cosh™2(mb/a)] . (17)
B = iD = iﬂ2[sinh(nb/a)cosh-z(ﬂb/a)] . (18)

The condition A = O is necessary for stability and this yields the

‘well-known condition

cosh(mb/a) =1 or b/a=0.281 . (19)

The oscillation frequency is

B ko= %n rO/a2 = + 0.5895 (20)

where the numerical value corresponds to our case, a = 32 and
r, = ﬂRi Co = 766 (the number of filaments in each vortex region).

The growth rates at two values of b/a are



b/a = 0.6 ;

>
]

0.481 (21)

b/a

[]
o
>

1]

1 2
4TTro/a = 0.590 . (22)

Three additional analytical calculations bear on the results
below. Kochin, Kibel and Roze (1964, pp.226-234) applied a higher-
order perturbation calculation to the asymmetric point vortex street
with b/a = 0.281. They have shown that the street is always
.unstable, i.e. arbitrary small displacements will cause vortices to
", ... separate by a finite amount". This is not surprising as the
Karman street is unstable for b/a z 0.281. 1If odd vortices on the
upper street are displaced upward by € a configuration results
identical to that obtained by increasing the separatiom to
0.281 + €/2 and then displacing positive vortices upwards by €/2
and negative vortices downward by €/2. Since the latter system is

linearly unstable, it would be reasonable to assume that the former

system is unstable to finite amplitude disturbances.

Rosenhead (1929, 1930) has extended the von Karmdn linear
analysis by examining the effects of transverse free-slip boundaries
(1929) and the effects of 3-dimensional/small-area regions (1930).
In the first study Rosenhead assumed point vortices that if fixed
y-boundaries are introduced at a distance h/2 from the centre of
the street, the b/a ratio for "stability" decreases from 0.281 to
0.256 as a/h increases from O to 0.815. As 2/h 1is increased
further, the b/a line becomes a region or area of stability.
Rosenhead gives a formula for the modified stability line as

b/a = 0.281 - 0.090(&/1‘1)6 = ,280 ,

where we have used our ratio a/h = 0.5. (See Rosenhead,Equation (5),

p.32l. N.B, Rosenhead uses: 2b for the longitudinal distance

between vortices; 2a for the transverse distance between vortices

_12.-.



and 2c¢ for the distance between fixed walls). In comparison with

finite area the transverse boundaries play a negligible role.

In the second study (1930), Rosenhead purports to treat finite-
area effects but in fact mixes 3-dimensional considerations with
small-area 2-dimensional considerations. He states, "The problem in

"its initial stages can no longer be treated as one in two dimensions
for the "self-induction" [effect of a vortex on itself] of a vortex
only enters when we deal with a 3-dimensional disturbance, and it is
the self-induction that produces the difference between this and the

original treatment [i.e. von Karman's treatment ] of the subject".

Rosenhead begins his study with a consideration of the behaviour

of small circular vortices of radius € that have m = 1 self-

interactions resulting from 3-dimensional perturbations of wavelength
-1, . . :
2m 4 ~in the z-direction. Rosenhead defines a parameter

M = -% a2 2% log (Le), (he)< 1

which is claimed to be a measure of the self-induction. This para-
meter is introduced inconsistently into thé von Kérman equations.

The result remains a set of four first-order ordinary differential
equations for the (x,y) velocities of the upper and lower streets.

His paper goes on to discuss the dispersion relation which is now a
function of 1), and concludes (p.608) that there is "a distinct domain
of instability in the neighbourhood of ¢ = 1T/2”, where © determines
the initial perturbation.

We find Rosenhead's statement about the "self-induction" mis-
leading, especialiy since T is a function of a and also applicable
only when either £ >0 or e—o . Rosenhead's claim (p.599) that for
T—=0 the stability investigations reduce to those of von Kdrman is

misdirected since our 2D calculations clearly show self- and mutual-

- 13 -



induction effects.

5. LAMINAR WAKE WITH A TRIANGULAR VELOCITY PROFILE

To simulate a laminar triangular velocity profile with a random
perturbation, we distribute uniformly 1600 positive (light) and

1600 negative (dark)rpoint vortex filaments over an area of 8 x 64

as shown in Figure 1.

—— . — e ——

\
64 ‘o"l' 6-25

Figure 1. Initial distribution of vorticity
in experiment I (x-periodic box).

This results in two strips of vorticity density {, = + 6.25 . The
laminar state is perturbed by displacing each filament less than one

lattice interval in a random and incompressible velocity field.

Figure 2 shows the longitudinal velocity profile obtained by

Velocity profile at x=32

Theoretical
——===t-0-125
—_———t=4-0
SR Y011

Figure 2. 1Initial velocity profiles for experiment I.



integrating the resultant { and choosing the constant of integration
to result in zero x-momentum. The initial departure from the trian-
gular profile is caused by the random perturbation as well as by the

area-weighting method mentioned in Appendix 1.

The evolution of the perturbed triangular profile is shown in
Figure 3. We will not discuss the linear phase of evolution as it

has been well treated elsewhere (for example Zabusky and Deem,1971).

Ao

time = 3.75 time = 4.75

time = 5.75 time = G-75 time = 7.75 time = 8.75

Fig.3 Experiment I. Instability of a laminar wake subject to a small random perturbation. Fixed y-boundaries.
After approximately t = 4.2 the perturbation has grown and saturated
because of non-linear effects. At t = 4.75 we see that 4 negative and
4 positive elongated vortex regions of varying area have formed into
an asymmetric pattern. Note that at this stage small areas of posi-
tive or negative vorticity become "trapped" within or behind the
larger vortex of opposite polarity. Between t = 5.0 and 6.75 two
negative vortex regions (Nos.2 and 3) fuse into an elongated struc-
ture. At t = 6.75 we see positive vortex regions (Nos.5 and 6) begin

to fuse. At t = 7.75 vortex region 1 is beginning to fuse with



region 2-3, but the process is inhibited by region5-6. Note that at
t=7.75 the approximate transverse-to-longitudinal separation ratio is
b/a=0.42,that is s the wake width has increased by a ﬁacto_r of three due to
the fusion, elongation, rotation and jetting of vortex "streams"

or "arms", that is by convective processes. After t = 8.0 we have an
irregular structure of 3 negative and 3 positive vortices per period
with some mixing of positive and negative vortex filaments between
the larger vortex regions. The situation corresponds roughly to an
array of vortices staggered with respect to each other and moving in
a weakly turbulent flow caused by "dispersion" of vortex filaments.
This situation still prevails at t = 10.5 (not shown in Figure 3)
with more filaments dispersed away from the main regions. Numerical
finite-difference effects contribute to this dispersion and mixing of
filaments and can be observed at t = 7.0. However for a short time the
intermixing of the small-scale chaotic motion does not affect the

mean behaviour of the large-scale vortex structures.

In figure 3 at t = 4.75 we see that negative vortex No.4 is
elongated and its major axis rotates clockwise at a nonuniform rate
whose average period is 4.7 (measured over the range 4.75<t<10.25).

A noninteracting ellipse (Kirchoff vortex, Lamb p.230) has a period

2
. (k+1) where W = Lel , € being the eccentricity of the

2
8 W1 - €2

ellipse. A rough estimate of vortex No.4 gives 52 = 0.75 so that

T

T, = 4.52, close to that of the deformed strongly interacting elon-
gated vortex region. Note that all vortex regions are drifting slow-
ly to the left, whereas the distant irrotational fluid is streaming

uniformly to the right.

In Figure 3 we observe that small trapped regions are converted

around at the rotational frequency of the oppositely signed host

vortex. This phenomenon was also observed and noted by Zabusky and



Deem (1971) and they designated these small regions as "secondary"
vortices (see their Figure 8, p.368). Due to vortex rotation (in an
appropriate frame) or "nutation" in the laboratory frame of reference,
tracer particles, smoke or single vortex filaments will be trans-
ported to the opposite side of the vortex street, a phenomenon

. observed by Zdravkovich (1969, Section 3 and Figure 3). Thus, we
have an enhanced transport of material across a flow due to con-

vection by vortex states formed as a result of a linear instability

of the system.

To summarize, in the early stages the linear instability driven
by a particular random perturbation yields eight large vortices
staggered with respect to each other. At t = 5.75 all vortices are
elongated and nearly elliptical in shape but with different phases.
The magnitude of the phases as well as the transverse separation
between the vortices is a result of the initial conditions. This
structure is unstable and like vortices are attracted and fuse in an
attempt to find a more stable configuration. This transition from
one vortex state to a more enduring state provides a heuristic
explanation for the observations of Taneda (1959, Sec. 3 p. 847). At
intermediate (100 < Re < 150) and high (Re > 150) Reynolds numbers
the vortex streets in the wakes of cylinders (and flat plates) break
down and reform such that the ratio of the effective wavelength of the
secondary street to the primary street is two for intermediate-R
and " ... of order 10". for high-R. The intermediate-R result could
be explained as me¥e1y the fusion of nearest neighbour like signed
vortex regions as observed above or as more clearly observed in

Section 5 below. That is, viscous dissipation plays a small role in

_17..



comparison to the convective dynamical rearrangement of vortex fila-
ments. Taneda observes this rearrangement or breakdown to occur again
further downstream, a phenomenon consistent with our calculations.
Taneda's high-R result is phenomenologically different for

".... after the primary Karman vortex street breaks down the wake
becomes turbulent, .... [a result already noted by Roshko in 1953]... .

The turbulent wake continues to exist for a considerable distance.

then there appears again a new Karmdn vortex street". In the labora-
tory, the wake may develop small three-dimensional destabilizing
fluctuations that enhance the fusion of larger vortex regions over a
moderate distance. The enhancement process will cease when the three-
dimensional fluctuations undergo viscous decay and we are left with a

new two-dimensional quasi-equilibrium state.
6. STABLE CONFIGURATIONS

We now study the stability and dynamics of two pairs of Rankine
vortices-of radius R, and density £[, . As shown in Figure 4, they
are placed in a staggered fashion in a box with periodic boundary con-
ditions in x, simulating states encountered in laboratory and

computational experiments as described above.

j— a(=32) ——

| Periodic boundary conditions |

Figure 4. Arrangement of vortices.



Qur realistic model considers finite sized vortices. If
initially circular, their radius R0 is less than
b2

RM = %- l1+4— = 9,17 for a
a®

1]

32, = 0.281,

w o

if they are to be non-overlapping. The radius function of a vortex

during subsequent dynamics can be written

" (23)

where r 1s measured from the initial center of the vortex
27
b T2 L T(8) de .

For incompressible fluids there is no m = 0 mode and expression (23)
2m
conserves area ( = | fo r2(8) do = n Roz). It is natural to ask:

how does the finite area of vortex regions affect the von Karmén

stability conditions? The instability that leads to a rearrangement

of the street results from a growth of the m = 1 mode for one .or more

vortices (see equation 23).

We have performed 4 different numerical experiments all using
% = 0.281 in order to examine the stability properties of the
arrangement sketched in Figure 4. Experiments II and III have

initially 4 circular vortices of radius 3.0 and radius /35,

respectively. In experiment II we introduce fixed y-boundaries,

whilst III employs a doubly periodic geometry. The perturbation is
in both cases a displacement of 1.0 in the y-direction of vortex 4,

that is an m = 1 disturbance. Both experiments last for a time
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interval of 9.0 corresponding to 576 discrete timesteps (see Table 1).
In experiments IV and V we introduce very strong nonsymmetric
perturbations: in experiment IV the major axes of positive vortices
are inclined at 0.2 radian, whereas the major axes of negative vor-
tices 3 and 4 are inclined at - 0.2 and O radian. Experiment V has
vortex 1 with the major axis reduced from 7 to 4 so that the result-
ing density becomes 4 times that of the other 3 vortices. In both

A

experiments vortex 4 is given a longitudinal displacement (also an

m = 1 disturbance) of -6.0 . Experiments IV and V last only for a

time interval of 3.0

From Figures 5 and 6 displaying the time evolution of experiments

time = 0.0 time = 2.75 time = 5.75 time = 8.75

Fig.5 Experiment II. Small vortices., b/a=0.281. Fixed y-boundaries.
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times = 0, 0.5, 1.0 times = 2.5, 3.0, 3.5 times = 5-0, 5.5, 6.0 time = 8:75

Fig.6 Experiment III. Large vortices. b/a=0.281, Periodic y-boundaries.
(The first three frames show only the vortex boundaries. The leftmost contour is the smallest time indicated)
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IT and III it can be seen that both flow fields are apparently stable
with respect to a small transverse perturbation. For all four vor-
tices in both experiments the amplitude of the perturbation (say the
position of the lowest point on the boundary) is found to be 1.0 (the
same as the initial amplitude) and the period is 11.0 . This is in

good agreement with the result given in (20), T = 2n/Im(A) = 10.7

In both experiments the vortices rotate, deform and drift to the
right with velocities nearly independent of their areas. Surface
modes m = 2, 3 and higher develop from the mutual interactions of
vortices. This is illustrated in Figure 6, where the first three
frames each show only the boundaries of the vortex regions at three
close times (left-most contour is the smallest time indicated). The
amplitudes of the surface modes oscillate with time, such that after
one period of rotation T the circular form is reached again. The

period To is 1.9. TFor a non-interacting vortex in an infinite medium

the period is 1.8 (Table 1). The difference is due to non-linear
effects as well as coupling between modes of different m (see also
section 8).

The fine scale structure and surface corrugations that develop
(as exhibited at t = 8.75) are due to numerical area-weighting

effects and do not disturb the large-scale dynamics.

Experiments IV and V (figures not shown) with different initial
conditions and strong perturbations show similar effects, namely
rotation, deformation and translation. In these short runs we
observe an oscillation period of 8.0 (insteand of 11.0) and no sign
of a growing pertﬁrbation. This may be a finite amplitude effect,
however, the run duration is too small to make a definitive statement.

The difference in periods could also be a measurement error since we



have less than 1/4 period of informationm.

The effect of the finite-difference algorithm on the small
growth rates of a marginally stable system must be assessed. The
variety of results presented here and the fact that parts of the vor-
tex reglons obviously extend into regions that are unstable for the

. point vortex system leads us to conclude that the observed stability

is a property of the continuum, namely equation (2). The existence

of negative energy modes resulting from area-conserving surface

deformations contributes to this stability if the initial finite
amplitude disturbance is not too large. We conclude that high-R

finite area vortex streets have a small domain of stability around

b/a = 0.281.

7. LARGE b/a ASYMMETRIC VORTEX STREET

We have performed 4 experiments with b/a = 0.6 as summarized

in Table 2:
TABLE 2
Experi- Figure Area Boundary Perturb- Measured  Approx.
ment Condition ation Growth Fusion
Rate Ap Time
VI 7 large fixed large 0.62 5.5
VII 8 large periodic small - 5.8
VIIT 8 large  periodic small 0.67 5.8
IX 9 small periodic small 0.67 6.9

In Figure 7 we display the time evolution of experiment VI,

whilst Figure 8 shows both experiments VII and VIII. Experiment IX

employing small vortices is shown in Figure 9.
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time = 0.0 time = 4.0 time = 6.0 time = 7-5

time = 15.0 time = 19.0 time = 20.5

Fig.7 Experiment VI. Large vortices, b/a=0,6. Fixed y-boundaries.
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time = 0-0 time = 5.5 time = 0-0 time = 5.5

Experiment VII Experiment VIII

Fig.8 Two initially different unstable configurations. b/a=0.6. Periodic y-boundaries.
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time = 0-0 time = 2.0 time = 4.0

time = 5-0
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time = 6.0 time = 6.5 time = 7-0

Fig.9 Experiment IX. Small vortices. b/a=0.6. Periodic y-boundaries.

Experiments VI, VII and VIII for the large-area vortices all
show fusion of positive regions at about t = 5.5 (fixed boundary
condition) and t = 5.75 (periodic boundary condition). Experiment
IX for the small-area vortices shows fusion at about t = 6.87
(15 vortex rotations). The initial positive vertical perturbation
of the center of vortex 4 is rapidly communicated to vortex 2 which
while being ejected from the flow, attracts vortex 1. In experi-

ment VI, although vortices 3 and 4 are close together at t = 6.0,

the dynamics does not allow fusion until t = 19.5 ,

In Figure 10 we show the Ay, of vortex 1 (moving downwards) for
experiments VI, VIII and IX. Ayc is the difference of the ordinates
of the centre of the vortices

Ayc = yc(t) - yc(o)
as measured from enlarged figures similar to those given in this

paper and have an accuracy of = 0.3 units. The motion of lower

vortices 3 and 4 is initially oscillatory. The measured growth rate

_ 2 -

time = 7.5
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Figure 10. Growth of vortex center deviations,
Ay., and measured growth rates for
systems with (b/a) = 0.6

given in Table 2 shows a larger value for the larger area vortex and
both are about 30% larger than the 0.481 for the point vortex system.
This increase is undoubtedly due to the facts that: the vortex
extends into "more unstable" regions, that is where the "effective"
growth rate experienced by a point vortex is larger than that
experienced by a point vortex at the centre of the finite area region;
and finite-amplitude effects are important early in the dynamics.

(Note that at t = 2, Ay = 2.5 units).

At later times when the dynamics are non-linear and there are
large distortions to the vortex surface (m = 2, 3, ...), the rate of
approach of like-signed large vortices is enhanced leading to a

smaller fusion time. We find no significant change in the growth

rate when the area is changed by a factor of %? .

Beyond fusion, in the interval t = 7 - 19 (see Figure 7) the
centroid of the fusion vortex is nearly stationary at the upper
right and the two remaining vortices undergo precession. When they
approach after t = 7.5, the vortex nearest to the fusion vortex is

perturbed by the latter, i.e. a large m = 2 mode develops. At
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t = 18,5 the two negative vortices have completed a full precession
around their mutual centre and have also moved % of the period in the
+ x=-direction, fhe upper vortex and the fusion vortex now form a
binary system which travels downward. The lower vortex cannot move
further downward (fixed boundary condition), hence the two negative
vortices fuse. The elongated shape of the resulting vortex at

t = 20.5 is a result of the lower y-boundary being fixed, since a
circular or slightly elliptic shape would give rise to a net motion
towards the lower boundary. At t = 23.5 we note that the elongated
vortex has contracted and thrown off spiral arms. The final result
is then a "secondary" vortex street, with larger regions of positive
and negative vorticity in asymmetric or staggered positions.

The dispersion and mixing of small-scale positive and negative
vortex filaments between the larger vortex regions are strongly
affected by numerical truncation errors, but play an insignificant
role. This is analogous to real finite but high-R systems where small
scales are dissipated. Two-dimensional fluid dynamic systems are known
to seek states with larger scales (energy flowing to longer modes).

This represents a new kind of condensation phenomenon.

8. COLLINEAR ASYMMETRIC VORTEX STREET - A STANDING WAVE

The collinear (b/a = 0) asymmetric vortex street (see Figure 11)
is initially a standing wave with zero velocity

V = (1r/2a) tanh (mb/a) = 0 .
o o

Koopman (1967, p.508) has shown that such a configuration can be
generated in the 1aboratory by oscillating the cylinder transverse
to the direction of flow. (In essence pockets of vorticity are

detached from the cylinder at times that correspond to the trans-

verse motion of the pocket across the axis of the flow). The results
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obtained in our experiment X show linear instability regions followed

by a strikingly new phenomenon -- the fission of one vortex.

A transverse perturbation is given to vortex 4 (the fourth om
the line) and it grows during O < t < 6.0 , while the centre of
vortex 3 is slightly displaced downwards. The measured initial
growth rate is

hm = 0.41 5
smaller than the point-vortex wvalue of 0.59.

Qualitatively, one may explain this reduction by noting that the
outer areas of the collinear vortices are in spatial regions where
the growth rate of a point vortex is smaller. That is, a first
approximation to the growth rate of a finite-area system may be
obtained by weighting the vorticity distribution with the growth rate

due to that vorticity treated as a point-vortex system.

time = 0.0 time = 1.0

i,

z

-
¥
per AT T

K | Y | 'IL:-",_

time = 8-5 time = 10-5 time = 12.5

Fig.11 BExperiment X. Large vortices. b/a=0.0. Periodic y-boundaries.
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Strong m = 2 perturbations develop immediately because of the
mutual interaction between vortices. Their period (measured during -
0 <t < 4.0) is about 4.0 - 4.5. The increase over the period of
small amplitude m ; 2 modes on a non-interacting vortex

(T = 3.6= 2 TO) arises because of the close interaction with

m=2
" nearby vortices, i.e. a non-linear effect. At 5.0 < t < 7.0 we see
that oscillations of the high m-modes (mainly m = 2) are no longer
in phase because the applied disturbance has become large. At

t = 7.0 there is an explosive growth of the m = 2 mode on vortex 2
causing it to undergo a fission process. The upper fission product
is left nearly free while the lower fission product is trapped below
vortex 3. At t = 12.5 the upper fission product fuses with vortex 1
and much later at t = 16.5 the lower fission product fuses with

vortex 1. At this time we still have a fission product from vortex 3

in the centre of the frame.

The fission of large-area regions may be a common feature for
collinear asymmetric streets and is the result of strong self-con-
sistent vortex interactions. For smaller values of the interaction

2R ; ; ; b
parameter n = = ve will get only the predicted m = 1 instability,
followed by fusion as in experiments VI to IX. The initial amplitude

; ; : m imd
of the standing wave is a function of n, e.g. Y v (n) e , where
Tm is the stream.function associated with mode m (Christiansen,
Taylor and Roberts 1972). This means that the standing wave repre-

sents a physical system whose stability properties strongly depend on

the amplitude of the wave; indeed a truly non-linear situationm.
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An obvious question can be posed: How does the slightly per-
turbed system evolve if 0 < b/a < .281? 1If the perturbation to both
upper vortices is small then both upper vortex regions will rise at
a rate which decreases in time as they approach a -"stable band"
around 0.281. The assumption of a decreasing rate is consistént with
the observed lower growth rate of the collinear finite-area street
described above and also with the Zabusky-Deem (1971) calculations
‘as illustrated in their Figure 11b, where the transverse coordinate
of the vortex is plotted versus time*. It also accounts for the
experimental observation shown by Wille (1960) in his Figure 3. Here
he presents a graph of the growth of a "corrected" ratio, (b/a)c,
versus distance behind a circular cylinder in water. The separation
ratio begins at (b/a)C v 0.1 and slowly grows to an asymptote

(b/a)C = 0.37. The (b/a)C ratio then seems to oscillate around the
asymptote (we see a slight decrease followed by an increase). Accord-
ing to Section 6 above, we conclude that the vortex regions are
oscillating in a quasistable region. We are not sure if (b/a)C = 0.37
is an estimate of the upper boundary of the "stable band" or whether
there is a systematic error in reducing the data to (b/a)c. Further-
more, if the perturbation is sufficiently non uniform and/or stfong,
the rising vortex regions may ''pass through'" the stable band and
undergo fusion as described in Section 7.

9. DISCUSSION AND CONCLUSION

In this paper we have shown that the measured growth rates of
finite-area vortex streets differ from those of corresponding point
vortex systems (von Kgfmén systems). For small and moderate areas
the difference is weakly dependent upon area and shape, but strongly

dependent upon (b/a)c as illustrated in Figure 12. 1In this figure

* The b/a ratio obtained in their Runs 35 and 36 was erroneously
stated as 0.24 (Equation 3.3). It should be 0.466, as one obtains
by measurement in Figure 8 or from the simple ratio (4/8.38),
where 4 is evident in Figure 11b.
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Figure 12. Perturbation theory growth rates:
von Karman dispersion relation for asymmetric
point vortex system compared with a correspond-
ing moderate area system.

we conjecture that there exists a region (al 5 az) on the (b/a)

axis

@, <0.281 <o, ,

where the growth rate is negative, that is, the presence of negative-
energy modes on the surface of finite-area vortex systems is
stabilizing. Furthermore, because the vorticity is distributed the
growth rate is reduced in regions I and II and increased in region III.
In the initial phases of evolution of an unstable laminar shear
profile we have also observed an enhanced transport of vorticity
across the dominant flow direction. This results from large-scale
convection produced by vortex rotation (or "nutation"). As the vor-
tex street is forming, small oppositely-signed ("secondary") vortices
appear across the flow, as illustrated in Figure 3. Smoke or other
contaminant particles will also undergo convective transport. These

results are also consistent with experiment.
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At long times, systems with b/a > 0.281 are unstable. Like-
signed regions of vorticity attract and finally fuse (coalesce or
"condense"). For a collinear asymmetric vortex street, we observed
a linear growth phase followed by a rapid fission of one vortex,
undoubtedly due to the high-shear field produced by the nearest-
neighbour oppositely-signed vortex regions. This symmetry break-
down permits a rapid fusion of like-signed vortex regions at later
time. These are strictly inviscid phenomena for they are in good
agreement with those obtained previously by Zabusky, Deem et al,
who solved the primitive Navier-Stokes equation with a high Reynolds
number.

For comparison with laboratory experiments, these late time
two-dimensional computational results should be considered quali-
tative and heuristic as three-dimensional motions are probably
generated during the breakdown and rapid rearrangement stages.
Vortex structures in the enviromment of a two-dimensional wind tun-
nel can have a longer lifetime than induced three-dimensional
fluctuations. Thus our results qualitatively account for the vortex
"breakdown" and subsequent wavelength increase of vortex streets
observed in "two-dimensional" laboratory experiments by Taneda and

others.
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APPENDIX 1

Suppose we are_given N sets of coordinates (Xi’yi)‘ From these
coordinates the vorticity { is evaluated on the mesh using an area-
weighting technique (Harlow 1964, Amsden 1966). The stream function

'V in equation (4) is solved for by the Hockney technique
(Christiansen and Hockney 1971). The fluid velocity, equation (3),
is evaluated at mesh points by centred difference operations. To
move the point vortices in their own velocity field a leapfrog time
integration method is used so that a point vortex at time t - At can

be moved according to

r (6 + At} = r (t - Ae) + u (x(t)) 2 Ac , (A.1)
; ; dr ;
which approximates a=== u . It is necessary to employ two sets of
t

coordinates, one at even times t + 2nlAt, one at odd times

t + (2n + 1)At. To evaluate the velocity u at the even position r(t)
in order to move from the odd position, r (t -~ At), the area-
weighting technique is used again to interpolate from the velocity
values known at the mesh points. In our experiments the VORTEX code
computes a value of At that does not violate the Courant-Friedrichs-

Lewy stability condition

gt 36 i , (A.2)

Iumax|

where iumaxl is the largest particle velocity and Ax is the constant

mesh spacing (Ax = Ay = 1.0).

During each numerical experiment we monitor the conservation of

linear momentum, kinetic energy, as well as the mean square vorticity,



or "enstrophy" by calculating

Px = é?ﬁ UX(I,J) " Py = é%ﬁ Uy(laj)
. E = 2; u 2+ u 2
1,] X y
<2 = izj c2(i, ) .
3

The incompressibility condition is identically satisfied for ux,uy at
the mesh points at all times, such that a variation in Px and Py is

due to computer rounding off errors which are of the order 10_5
corresponding to 18 bits in a computer word. The variations in

energy and enstrophy are due to the discretizations in time and space

and reflect some of the inaccuracies of the model.

In the table below we list the temporal variations in E and

2

(£° ) . As a reference to Figures 3, 5, 6, 7, 8, 9 and 11 we
2
form the rations .4 and éLiJL.) , where Eo’ (thaare the values

E 2
0 {5,
at time t = 0 and AE, A(Qz ) are the deviations from these values

at the time tO indicated in the last frame.

The leapfrog scheme (equation A.1l) will exhibit odd-even
temporal numerical instabilities when applied to certain types of
flows. The two alternating levels at times (2n + 1)At and 2n At
will increasingly diverge from their average. To suppress this
"false" effect a smoothing procedure is applied at a certain

frequency during the motion (Christiansen 1970).



2

No. o CE Yo

s 1.49 x 1072 62 x 10 8.75
-2 -2

1T 1.47 x 10 .10 x 10 8.75
=3 -2

TII 1.49 x 10 .20 x 10 8.75

v 1.33 x 1072 .80 x 1073 3.0

v 2.17 x 10°° 37 x 107> 3.0
=5 =T

VI 6.20 x 10 .95 x 10 23.5
-3 -2

VII 1.77 x 10 .63 x 10 5.5
B -2

VIII 1.46 x 10 .26 x 10 5.5

IX 6.11 x 1074 11 10‘3 7.5
-3 =1

X 8.93 x 10 .14 x 10 16.5
TABLE A.1

Temporal variations in energy and
" enstrophy for experiments I - X










