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ABSTRACT

The magnetic field modulation due to the discrete nature of
the field coils in a Tokamak leads to additional particle trapping.
The resulting diffusion is evaluated and compared with neoclassical.
The two diffusion rates are found to be comparable in existing
Tokamaks. The limit on the field ripple below which ripple
diffusion should be negligible in next generation machines is

evaluated.
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1. INTRODUCTION

The axisymmetry of the magnetic field has been considered one
of the main advantages of Tokamaks. Besides greatly simplifying the
analysis, the radial excursions of trapped particles at low collision
frequencies is less than in asymmetric fields. 1In practice the
discrete nature of the magnetic field coils leads to a ripple in the
field strength, with period equal to the distance between coil centres,
This spoiling of the symmetry has generally been assumed to be negli-
gible. Whether or not this is true in existing Tokamaks, its effect
is likely to be more important in the next generation of machines for
two reasons. It is hoped that these will achieve higher temperature,
and the effect of aéymﬁetry increases as the collision frequency
decreases. Further, because of the more advanced coil construction
used, or because of access required for neutral injection, it may be
impractical to reduce the ripple simply by decreasing the gaps between
coils.

Several papers(l’z) have pointed out that the effect of field
ripple is qualitatively similar to that of the helical field variation
in a stellarator. This has been confirmed by a formal derivation of
the diffusion in a ripple magnetic field using the variational
principle(B). Practical techniques for minimising the asymmetric
field variation over a magnetic surface by coil design have been
proposed in Ref.4. The preéent paper evaluates the particle diffusion
and thermal diffusivity, and estimates the effect on the overall
containment times in practical Tokamak devices.

The depth of the magnetic wells in a rippled toroidal field is

derived as a function of poloidal angle in Sec.2. The heuristic



arguments developed to illuminate the physical origin of stellarator
diffusion are applied to the rippled field in Sec.3. This leads to

a number of collisional regimes, each characterised by a simple
analytic expression for the diffusion. It is apparent that the most
relevant regime for next generation Tokamaks is that in which the
ripple diffusion varies inversely as the collision frequency. The
corresponding analytic expressions derived for a stellarator are used
in Sec.% to evaluate the local coefficients of diffusion and thermal
diffusivity. The ripple diffusion is compared with that resulting
solely from the toroidal variation in Sec.5, leading to estimates of

the maximum acceptable field ripple.

2. MAGNETIC WELL DEPTH

Superimposing a ripple on the simple magnetic field model
commonly used in Tokamak analysis gives a field strength which varies

as

B = B(P = BO [1-g cos 6-8(r) cos No] (1)
where 6 is the poloidal angle around the magnetic axis, ¢ measures
angular distance around the axis of symmetry; r is the radial distance.
from the magnetic axis, R is the radius of the magnetic axis, & = r/R

is the inverse aspect ratio, 26(r)B0 is the magnitude of the field

ripple over the magnetic surface r = constant, and N is the number

of coils in the B@ winding. In practice the ripple modulation & will
depend on 6. Such a dependence can readily be included in the later
analysis, but should not be strong for a coil designed to reduce

ripple. The corrugation of the magnetic surfaces, Ar= - cos N¢ojyﬁ(r)dr,

has negligible effect on the magnetic well depth.

The variation in field strength along a field line is
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since dB/d@ = BG/EB¢ = 1/q. The usual Tokamak ordering is assumed,

i.e., e« 1, q=0(1), N> 1. Thus the variation in B along a field
line appears as a short wavelength ripple superimposed on the slower
toroidal variation. Since the variation in © over one ripple period
is small, the condition for a ripple well to occur, given by

dB/ds = 0, is(8) 5 (¢/qN) |sin 6. When this condition is satisfied
a minimum occurs at Ny = 2mr - sin—1 (a sin 6), with adjacent maxima
at Np = (2m + 1)m + sin—1 (a sin 0), where a = e/qNB and m 1is any
integer less than N. The magnetic well depth is determined by the

difference between the minimum field strength and the lower of the

two adjacent maxima. This difference is AB0 where
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and © is the poloidal angle of the field line as it intersects the

plane N¢ =7mmn.

5. HEURISTIC DISCUSSION OF THE. DIFFUSION

The variation in magnetic field strength along a field line is
qualitatively the same as in a stellarator. The following discussion
makes extensive use of the physical arguments used by Gibson & Mason(5)
to estimate the diffusion in a stellarator and extended by
Kadomtsev and Pogutse(l) in.their recent review.

The magnitude of ripple of experimental interest is not more than
a few per cent at the plasma boundary r = a, and decreases towards the
magnelic axis. The inverse aspect ratio is typically € = 0.2 r/a.

Hence & < & except near the magnetic axis. We will first consider

the case of zero radial electric field and o « 1. The ripple well



depth is then approximately 26, independent of 6.

The condition for particles to be trapped within the ripple
well is R/NA < 6%, where A\ is the mean free path. This follows from
the usual argument(l) that the scattering time out the trapped
velocity band %v”/yLﬂ< 6%, which is 7 = 8/v, must be longer than

the transit time across the well B/Nv . Over the collisional range
I

W -

defined by & g pj/a < R/n < N&62, where pj is the Larmor radius

and j denotes the species, the ripple diffusion may be deduced
from the following random-walk argument. The dominant radial drift,
resulting from the toroidal variation in magnetic field strength, is
Uy = YL sin 6, where YL R TL/eBR. For a passing particle, the periodic
variation in sign of this drift produces a net horizontal shift of
its orbit relative to a magnetic surface. Each time a particle enters
the ripple trapping band, however, it remains localised at a constant
© value for a time of order T, during which it suffers a radial
displacement of Ar = (YLB/u)sin 8. The number of particles passing
through the ripple trapping band is nv/B%'per second. Regarded as

a random walk process, these large radial displacements give rise tlo

a diffusion coefficient

¥
V 5\? 872 V¥
Di/\.l— <—L>=__—l-_ (4)
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When R/h < 6pj/a, then Ar>a, i.e., the ripple trapped particles
drift to the walls without ‘being scattered out of the trapped velocity
band. A loss cone develops and the containment time is then compar-
able to the 90° scattering time. This corresponds to a diffusion
coefficient D~ va®. I[f & > & had been assumed, the poloidal rotation
of a ripple banana, due to the ripple field gradients, would cause

sin 6 to change sign before the banana had time to reach the wall.
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This would produce a superbanana orbit, analogous to those in a
stellarator whose helical modulation in field strength exceeds its
inverse aspect ratio.

In the intervening range 5pj/a < R/A < <‘5%E pj/a, the ripple
trapped particles escape by a random walk process since Ar < a.
However, the escape rate of these particles is so rapid that colli-
sions are unable to maintain the density of trapped particles at the
Maxwellian value, and a dip occurs in the velocity distribution.
Over this narrow range, the diffusion coefficient should be approxi-
mately independent of collision frequency.

The above variation of diffusion with collision frequency is
illustrated in Fig.1. The same figure shows the diffusion in a
comparable axisymmetric Tokamak. When & « e, the total trapped
particle diffusion in the rippled toroidal field approximately equals
the sum of the two rates. The justifiéation for this is'as follows.
When qR/R < E%, those particles whose velocities lie in the band
fv“/vi] < e? are trapped in the toroidal field and on average spend
a time v/e before being scattered out. During this time they may go
round their banana orbit several times. ﬁn one or more occasions
their velocity enters the ripple trapping band. When this happens,
the motion round the banana is halted for a time of order &/v,
During this time the partic;e suffers a radial displacement of order
YLS/v. This is additional to the mean displacement of one banana

width each time the particle passes through the toroidal trapping band.

Hence the overall displacement of a typical particle per unit time is

>—‘ AL T\
- 2 _ L 7.
br = q_Jveff(Ar) _-g% ” > + ;% (e PJB)

where pje is the Larmor radius in the By field.



As the collision frequency decreases, ripple trapping sets in before
toroidal trapping if Nq > (8/6)%. Taking as typical values, N = 16,
q=73, €=0.2, this is satisfied if & > 0.015. An order of
magnitude comparison shoﬁs that when ripple and toroidal trapping
both occur, ripple diffusion dominates over pure toroidal diffusion
if R/A < (Be) 7“*/q.

We will now briefly consider the effect of radial electric
field. The foregoing arguments would predict quite different
diffusion rates for ions and electrons. From the more complete
analysis one knows that to obtain the diffusion in the presence
of a radial electric field one must multiply the above diffusion

coefficients by

ne. dT .
dr Tj r ] Tj dr

where Yj is a numerical factor of order unity. Thus an ambipolar

electric field is set up which reduces the escape rate of the faster

diffusing species to that of the slower. One thus expects a radial

potential |@[ ~ O(T/e). We now consider whether the presence of

this electric field will seriously affect the slower diffusing species.
The loss cone, which in the absence of electric field occurs at

very low collision frequencies, should be eliminated by a potential

¢ > O(ET/e). The radial excursion of a ripple banana is then

limited to Ar ~ YL/m , where = Er/rB is the poloidal rotation

“E
frequency. The qualitative expressions deduced by Kadomtsev and

Pogutse(l) for a stellarator field can equally be applied to a

rippled field, giving the following predictions. When v > BwE the

radial excursion of a ripple banana is limited by collisions and

Eqn.(%) is still valid. When wE(aT/e ) < v < dw_, the ripple

E’

= B =



diffusion is(6) ;

3
] 2 =
~e2 (2} (L Ty
D~ ® <r> eEr> eB) ’ (5)

When the collision frequency lies below the lower limit of the above

[

range, a loss cone develops and the confinement time is then limited
to a 900 scattering time.

We will now consider which parameter ranges are relevant to
existing and next generation Tokamaks. The following simple form
will be assumed for the radial profiles; n(r) = no(l - % Y5
T, = T, (1~ ®), T, =T (1 -x), 8(r) = 6ax2, where x = r/a.
The above radial variation of &(r) is unrealistic at small x,
since the field ripple does not vanish on the magnetic axis.
However, as will be seen later, the ripple diffusion near axis is
negligible compared to the toroidal component. Typical parameters
for existing Tokamaks, i.e, T-3 and ST, are n = 3 x 10*® /em® |
Too=1 keV, T, = 500 eV, B@ = 30 kG, a = 12 c¢cm, R = 100 cm. The
following values are typical of the parameters expected in next
generation Tokamaks; n = 1014/cnP, Teo = Ti0 = 3 keV, B@ = 35 kG,

a =65 cm, R=195 cm. These two sets of paiameters will be referred
to as conditions (a) and (D) respectively; The number of field coils
is assumed to be 16 in both cases. We first evaluate the condition
that the ion banana excursions are limited by collisions, rather

than electric drift. This condition is B 3 & which can be

W s
: - -14 5/

expressed in the more convenient form & < 10 nBrrn/Ti 2  where

Ti is in eV, B in gauss, r is the density scale length, and

|Erl = Ti/ern is assumed. This condition is well satisfied with

field ripples of interest in existing and next generation devices.

The range of validity of Eqn.(4) for the ions can be expressed in



practical units as 145 634Ti%/aB < 10~12nB/Ti < N632. Taking

6a7= .03 as typical of existing Tokamaks, and other parameters as
for condition (a), this requires 0.5 < r/a. Thus Eqn.(4) should
apply over the outer regions which largely determine the containment
time. Substituting the next generation parameters into the above
condition gives .004 < &(r) < 1. Even with the minimum field ripple

achievable, this will be satisfied over much of the cross-section.

4, EVALUATION OF THE DIFFUSION

From the previous section it appears that existing and next
generation Tokamaks will operate mostly in the regime where ripple
trapping occurs and whgre the ripple diffusion is described
qualitatively by Eqn.(4). The aim of this section is to evaluate
the numerical coefficient multiplying this expression, relaxing
the assumption o « 1 made in the earlier heuristic derivations.

The most comprehensive expressions for the ambipolar diffusion

(7).

and ion heat transport in this regime have been derived by Connor

.16% T\ 1 T_l n 72 8 (5 4p,) (6)
L™ eBR *T ) I T2T dr Ve i
ei e e
g JI, 3 dT
g = 40.6 52 ( i ) (7)
i Vi eBR dr
where
4
V.. =-% QE nea £n A
Ji m.2 T.2
J J

Ta is the mean particle flux per unit area of either species across a
magnetic surface and Qi the mean ion heat flux. Eqn.(6) generalises
earlier results(z’g), derived for a stellarator but equally applicable
to a rippled toroidal field, in that the temperature gradient is

ineluded and the derivation does not assume & > €. In deriving



Eqn.(6) and (7), the depth of the ripple wells (Bmax - Bmin)/B0 was
taken to be 26, independent of poloidal angle. We shall now extend
these results to include the variation in well depth with poloidal
angle found in Sec.2.

Ripple diffusion is a localised process in the sense that,
during the time a particle is contributing, it is localised within
one ripple period. Thus its motion is determined by the depth of
the local well, and it is unaware of the variation of well depth
over the magnetic surface. It is therefore a reasonable approximation
to replace the constant well depth in earlier evaluations of the
velocity distribution over a magnetic surface by A(e). This ignores
the change in shape and width of the magnetic well., After integra-

tion over a magnetic surface, the resulting particle and heat fluxes

differ from Egn.(6) and (7) by a factor
1 A YR
J=7?/<§6_7 sin® 6 df

V“TTTSE-y-<§-— .s'.]'_n-1 ¥y

dy (8)

5 - ff ¥ : [ ) 17z

mff)m

where y = a sin 6. The upper limit of integration is ¢ = a when
@< 1, and ¢ = 1 when a > 1, The computed value of J is plotted
in Fig.2. The integral may be evaluated analytically when a « 1 by

1
expanding in powers of y, except in (a?— yz)z_ This gives
J=1-2a+1.26 +0(c?)- (9)

When a » 1 the computed value is approximately J ~ 0335/ .  Even
when a < 1, the diffusion is reduced by up to an order of magni tude
compared to previous estimates. This results from the reduction in

the ripple well depth by the superposition of the toroidal variation.

The change in well depth is small near ©® = 0 and ®, but here the

-9 -



radial component of the drift velocity is also small. The effect is
greatest near 6 = ﬂ/Q and 3ﬂ/2, where the drift velocuty is pre-
dominantly radial. As a increases beyond unity, ripple trapping
hecomes restricted to a ﬁrogressively narrower range of poloidal

angles around 6 = 0 and 7.

5. NUMERICAL EVALUATION OF THE TRANSPORT COEFFICIENT

The variation of the ambipolar diffusion coefficient and ion
thermal diffusivity with radius is shown in Fig.3-6 for the two sets
of typical parameters given in Sec.3. In both cases the inverse
rotational transform, q(r), is taken equal to 3/(3 - 2x). This
corresponds to a current profile of the form j¢(r) = jo(l - %),
and of magnitude such that q(r) = 1 everywhere. Fig.3 and 4 are
calculated for condition (a), with 6a =+03%. The ripple magnitude
is more commonly expressed as the total percentage variation over
the outer surface, i.e. 6% in this example. Fig.5 and 6 are
evaluated for the parameters typical of next generation Tokamaks,
and 6a = +01, <02, or -0k,

The ripple diffusion coefficient, plotted in Fig.3 and 5, is
obtained by multiplying the right hand side of Eqn.(6) by J(a)/(dn/dr).
In condition (a), a = -0835(3 - 2x)/x. This is small, except near
the axis, and so the factor J(a) is close to unity,i.e., the reduction
in ripple well depth due to superposition of the toroidal variation
in field strength is small. To illustrate how important this effect
is in condition (b), where a can be quite large, the predicted
diffusion when the factor J(a) is omitted is shown in Fig.5 by
dashed lines for 6a = <01 and <04. The neo-classical banana

diffusion coefficient(g’lo) is also plotted in Fig.3 and 5, using the

- 10 -



numerical coefficients derived in Ref.(10) for an axisymmetric system.

The ripple thermal diffusivity plotted in Fig.4 and 6 is obtained
by multiplying the right hand side of qn.(7) by J(a)/n(dT,/dr).
Since the reduction in diffusivity resulting from the effect of
toroidal variation on the ripple well depth is the same as for the
diffusion coefficient, the corresponding curves without the J(a)
factor are not shown in Fig.6. The neo-classical (banana) thermal
diffusivity(g’lo) is again shown for comparison.

In the existing Tokamak condition, the predicted ripple
diffusion exceeds the toroidal contribution over much of the cross-
section, while the ripple ion thermal diffusivity is everywhere
less than the toroidal. In next generation Tokamaks, however, the
ripple contribution dominates the ion thermal diffusivity over a
wider range than it dominates the diffusion. This difference results

from the differing values of Ti/Te' For the ripple contributions
1

72 -
X;p/Dp ~ 2(m,/m )* (T,/T )2 (1+Ti/Te) ‘while for the toroidal banana
1 1
i hiiik e £ Ef -
contributions Xib/Db 0.5(mi/me) (Te/Ti) (1+Ti/Te) . Hence %,
is relatively less important in the existing Tokamak condition, where

T./Te ~ 0.5, than in the next generation'condition which assumes

6. CONCLUSIONS
The effect of field ripple on the trapped particle diffusion
in a Tokamak resembles the'effect of the helical field variation in
a stellarator. A straightforward translation of the stellarator
analysis to a rippled toroidal field suggests that it would be
difficult to prevent an appreciable reduction in containment time
in these experiments below the neo-classical value, while maintaining

the required access for neutral injection. For a weak ripple,

= 19 =



however, the depth of the ripple wells is reduced by the superpositionl
of the toroidal variation in field strength. This greatly reduces

the ripple diffusion for small &. There is no analogous effect in a
stellarator since here the toroidal variation along a field line,
which is proportional to rotational transform, decreases more rapidly
than the depth of the helical modulation.

For a particular set of parameters, typical of next generation
Tokamaks, the calculated ripple diffusion is less than neo-classical
banana diffusion at all radii provided the field modulation at the
plasma boundary is less than about 3.5%. The condition that the ion
thermal diffusivity be everywhere less than the neo-classical banana
diffusivity is somewhat more stringent, requiring the field modula-
tion at the boundary to be less than about 2.5%.

With parameters typical of existing Tokamaks and a field ripple
of 6%, the calculated ripple diffusion is comparable with the neo-
classical toroidal diffusion, while the ripple contribution to ion
thermal conductivity is less important. Resistivity measurements on
T-3 suggest that the cffective scattering frequency may be greater that
the Coulomb collision frequency, perhaps due to turbulent fluctuations
or impurities. Such an effect would decrease the ripple diffusion

while increasing the toroidal contribution.
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Fig.1 Variation in the approximate ripple diffusion rate with
collision frequency, compared with neoclassical diffusion in
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Fig.3 Ripple and neoclassical diffusion coefficients vs.
radius for parameters typical of existing Tokamaks.
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Fig.4 lon thermal diffusivity due to ripple and toroidal
effects for parameters typical of existing Tokamaks.

CLM-P 308



0%
Neoclassical
“e I0f
[=]
6u"04
o
0l 1 / /1 L 1
0 2 -4 6 ‘8 -0
X =Tlq

Fig.5 Ripple and neoclassical diffusion coefficients for
parameters typical of next generation Tokamaks. The
field ripple at the plasma boundary is +85B,. Dashed
lines show prediction when reduction in ripple well depth

by toroidal variation is neglected.
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Fig.6 lon thermal diffusivity due to ripple and toroidal
effects for parameters typical of next generation Tokamaks.
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