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ABSTRACT
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recent self-consistent numerical solutions of the
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It has been shown theoretically, by a number of authorsl_l4,

that the propagation of an electron plasma wave in collisionless
plasma depends on the initial amplitude of the wave. This
behaviour occurs because elgctrons which have velocities close
to the wave phase velocity (resonant electrons) become trapped
in, and oscillate in, the potential wells of the wave: the
-number of trapped electrons and their frequency of oscillation
are determined by the depths of the wells. This can lead to a
decrease, or even change of sign, in the instantaneous damping
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ratel_14 and to a change in the phase velocity14 with increasing
initial amplitude, or to the growth of other waves in the systeml5,
the so-called side-band instability.

The theoretical approaches used to investigate the time
development of a finite initial amplitude electron wave may be
broadly divided into two groups. The first method, used'by
Knorrl, Armstrong2 and Nﬂhrenberg3 , 1s to solve simultaneously
Vlasov's and Poisson's equations using numerical techniques.
Their results show that the damping is exponential and that the
rate Yy is that predicted by the linear Landau theoryl6 if the
initial amplitude ¢o is very small (e@o/kBT 2 1) or if-the
observation time t 1is very short (wBt <« 1); that the damping
rate decreases (and may change sign, indicating wave re-growth)
when ¢O and t are increased, but that at very large amplitudes
(e@o/kBT ~1) even the initial damping rate is not exponential,
the instantaneous rate exceeding YL. [kB is Boltzmann's
constant, T 1is the electron temperatufe, wB = ko(e¢o/m)% is
the frequency of oscillation of the trapped electrons, e and
m are the electronic charge and mass respectively, ko is the
wave number of the wave with angular frequency wO].

The second approach separates the electron distribution
function into a resoﬁant part and a non-resonant part, and
solves exactly the equations of motion for the trapped electrons.
This method was used by O'Neil4 who assumed the trapped electrons

to move in the potential wells of a constant amplitude wave

(i.e. YL - 0). His results show that after some initial Landau



damping the wave amplitude oscillates and reaches a constant
amplitude after a long observation time due to phase mixing.

Th;s is in contrast to the behaviour implicit in the work of
Al'tshul and Karpman5 where the amplitude oscillations persist

for all times. Bailey and Denavit6 extended the work of 0O'Neil

to allow for a slow variation in the wave amplitude (YL # 0) for
small values of the parameter q = YL/wB (g < 1), and obtained
results qualitatively similar to O'Neil's. Gary7, using a per-
turbation method to solve the non-linear Vlasav equation, obtained
results qualitatively similar to those of Knorr and Armstrong.

All of this work, as was pointed out by Dawson and Shannys, is
restricted by the assumption that the slope of the initial dis-
tribution function is constant over the resonant region, and the
recovery of linear Landau damping at short observation times is

a consequence of this restriction. Further, none of it is
completely self-consistent insofar as it does not include the full
effect of the varying wave amplitude on the electron distribution
function and vice versa.

A third approach, which avoids these limitations, is
computer simulation, in which the self-consistent motions of a
large number of electrons (but much smaller than the number in
a laboratory experiment) are followed. Dawson apd Shanny8 find,
in agreement with earlier workl_3, that when egﬁo/kﬁT ~1 the l
initial damping of the wave is not exponential, and is more
rapid than that predicted by Landaul6. Denavit and Kruerg,

using this method, show that for this condition the side-band



instability occurs.
. : 10 .
Recently Sugihara and Kamimura™ ~, extending the work of
11 ; e .
co-workers =, computed self-consistent equilibrium solutions to
the initial value problem which effectively cover the range
0 < g < » and which recover the result of O'Neil as q > O and
linear Landau damping as g 2 « (it is, however, still assumed
that the slope of the initial electron distribution function in
the resonant region is constant). Their solutions extend over
much longer times than in earlier treatments and show that only
for g 2 3 does the wave damp at a constant rate YL ; for
g > 0.77 the damping rate decreases monotonically with time from
its initial value Y1, , while for g < 0.77 the amplitude, after
several oscillations, becomes constant with time, its actual
. : ' . 12
value depending on the precise value of g. Oel and Swanson
have also very recently obtained self-consistent equilibrium
solutions which appear to be similar to those of Sugihara and
Kamimura. However, their results are presented in a way which
makes direct, precise comparison with our experimental results
difficult.
The only published experimental data relevant to all this
. : 17
theoretical work is that by Malmberg and Wharton™ ' : they
observed spatial amplitude oscillations when ¢, Wwas increased,
in qualitative agreement with O'Neil's theory modified to the
; . ; iy D
spatial situation, as by Lee and Schmidt .

In this letter we report measurements of the spatial

damping of an electron plasma wave which show, in detail, the



transition from 1inea£ Landau damping to oscillatory behaviour,
and which are well described by the results of Sugihara and
Kamimura10 for the range of amplitudes below that at which side-
bands appear and begin to extract significant energy from the
original wave.

Our experiments were performed in a quiescent, sodium
plasma column, radially confined by a strong (2kG), uniform,
axial magnetic field. The electrons were produced by thermionic
emission and the Na' ions by contact ionization at a single
tungsten surface, diameter 2.5 cm, uniformly heated (+ 30°K) to
a temperature ~2,500°K. The column was terminated 80 cm from
the hot plate by a cold, plane, tantalum disk which, because
it was at floating potential, reflected all but the fastest
electrons; thus the unperturbed electron distribution can be
regarded as a full one-dimensional Maxwellian with the same
temperature as the hot plate. At the low densities used,
n~ (1L -3)x 107cm ° (wpe/21'r ~ 30-50 MHz) the axial density
was uniform to better than 1% and the mean free path for an
electron was several times the column length. The neutral
background gas pressure was < 5 x 1077 torr. The propagation
of small amplitude waves in this plasma is well understood and,
as has been shown alreadyla, is well described by linear Landau
theory modified for finite radial effects. |

Waves, propagating in their lowest radial eigenmode, were
launched at x = O from ashort, fine wire probe antenna con-

nected to the end of a coaxial transmission line matched, close



to its end, to a signal generator. Resulting plasma fluctuations
were detected at positions x Dbstween the transmitter and the
cold-end-plate by a similar probe which was matched to the plasma
with a high-input-impedance amplifier. Because of uncertainty
in the probe-plasma impedance absolute values of @O could be
estimated to an accuracy + 20% although its relative values were
known more accurately (+ 2%). The spatial variation in the
amplitude ¢(x) of the plasma fluctuations was recorded log-
arithmically using a very narrow band (A®w = 300 Hz) r.f. receiver
and an x-y recorder. Phase velocities, determined from the
interferogram obtained by comparing the phase of the plasma
signal with that of a reference signal from the signal generator
in a balanced mixer, were chosen so that there were between
three and five Landau damping lengths ihcluded in the length of
plasma used (50 cm). This allowed the non-linear behaviour to
develop sufficiently, in the distance available, for it to be
clearly distinguishable from the linear. Changes in the phase
velocity due to non-linear effects14 were undetectable (< 1% for
our conditions) .

fig.l shows experimental points, taken from traces similar
to .those shown in Fig.3, for the relative amplitudes of waves
of the same frequency but different initial amplitudes 6,
analysed and plotted in terms of the dimensionless guantities
used in reference 10, i.e. log(¢/¢o) versus YLt = kix (for weakly

damped waves = kiaw/ak where ki is the inverse damping

L

1ength13) with parameter g. The experimental uncertainty in



ki was £2% and that in 3w/3k , determined from the_measured
dispersion, was £5%, so that with the previously mentioned
ungertainty in ¢, » 94 was known absolutely to within +17%.
However, for a fixed frequency, the relative values of g were
known to ~1%. The results show very good agreement with the
theoretically predicted curveslo for g » 0.45; in particular
they demonstrate the monotonic but non-exponential decrease in
amplitude for gq > 0.8 and a transition to periodic behaviou;
for g < 0.6. (The theory predicts an asymptotic stationary
amplitude ¢* = 0.04 ¢o for g = 0.77). For g < 0.4 side—bandsl5
could be detected above the background noise level: this
presumably explains the greater damping suffered by the larger
amplitude waves than that predicted by the theory (which does
not consider the stability of the system).

These effects can also be seen clearly in Fig. 2, which
shows, for the same data as Fig:.l, the attenuation suffered by a
wave in traversing a distance x = 44 cm, (kix = 4) as a function
of ¢o compared with the theory. Only for very small initial
amplitudes (¢O < 0.1 mV) would the measurements agree with the
linear theory, while for 0y > 2 mV the attenuation exceeds that
of the non-linear theory. The amplitude at which side-bands were
observed is indicated with an arrow.

To demonstrate that the observed departure from linear
Landau damping is caused by electrons trapped in the potential
wells of the wave (wo, k ), the damping of the wave was measured

o

in the presence of a second perturbing wave (w, ,k, ) whose



frequency was well removed from that of the first. When the
amplitudes of the two waves were comparable, the only time in-
variant potential well in which the electrons could be trapped
travelled with the phase velocity of the beat wavel9 (wo-wl)/(Eo—El),
i.e. well removed from v¢ = wo/ko. For such conditions the
amplitude variations due to trapped electrons are expectéd to
disappear. Experimental data illustrating this are given in

Fig. 3: it shows (i) a very small amplitude wave (e¢0/kBT =~ 2x107%)
which exhibits linear Landau damping; (ii) a larger amplitude
wave (e¢o/kBT >~ 107°) whose damping departs, at a distance

x 2 15 cm, from a pure exponential, and (iii) the same wave

as shown in (ii) but propagating in the presence of a second
perturbing wave, demonstrating that the damping is the same as

that of (i) (i.e. essentially the lineaf value) .

For a one-dimensional Maxwellian, the condition that the
slope of the initial electron distribution function over the
resonant region can be regarded as constant can be expressed
as 2e¢o/kBT < EV¢VT/(2VZ - v?r)]2 where Y =(2]«:BI‘/m);i is the
electron thermal velocitys. For the conditions of Figs. 1 and
2 this‘inequality, which is satisfied for ¢O < 4 mV(g=0.33),
was never seriously violated: thus the observed initial Landau
damping is to be expected. Rapid, non-exponential, initial

1-3,8

damping predicted by some of the theoretical work was not

observed and it would appear from our experiments that under
most laboratory conditions increased damping of this sort would

be obscured by other non-linear effects, for example the side-band



instabilitylS. Further, at sufficiently large amplitudes the
decay of an electron wave into either a second electron wave and
an ion wave2o or into two other electron wave modes21 would

also lead to a damping exceeding the linear Landau rate. The
spectrum was carefully checked during these measurements to
ensure that nohe of these processes occurred.

We feel that a comment is in order on the plasma conditions
needed for such measurements. It is essential that the plasma
column have a very uniform axial density. A variation in density
of only 1% along the column would cause the average linear
damping rate to change by 20% for the conditions of Fig. 1; this

linear effect of inhomogeneity would obscure any change in the

damping caused by the non-linear electron trapping process. The

method used to measure damping is reliable only for linear values
of ki in the range 5 x 1072 < ki € 0.5cm™); it must therefore
be ensured that the effective collision frequency for the
electrons v 1is sufficiently small for Landau damping, and not
collisional damping to be the dominant damping mechanism some-
where-within this range. 1In our experiment v/wo ~ 2 x 107%, and
thus measured values of ki/ko # 107° may be unambiguously
attributed to collisionless Landau dampingls. Further, it is
important that v/wB << 1l; in our case this ratio was always

< 0.2 even at the smallest amplitudes used (¢o = 0.5 mvV). At
higher plasma densities both v/wo and V/wB would have in-
creased sufficiently that the plasma could no longer have been

considered collisionless in the required sense.
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