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ABSTRACT

Recent observations with the Phoenix high energy neutral injec-
tion experiment are described. At densities where the electron
plasma frequency is greater than the ion cyclotron frequency, strong
emission at the ion cyclotron frequency and 1/2 the ion cyclotron
frequency is observed. This is interpreted on tne basis of the
theory of electrostatic instability developed by Harris and others.
Experimentally, the instability results in strong scattering of ions

out of the transverse direction but so far as can be observed, there

. 8
1s no actual loss of plasma. Above a density of 3x10 particles/c.c.

accumulation of particles is limited by the development of strong
low frequency (~ 100 kc/s) oscillations which appear to be an m = 1
displacement of ions and electrons rotating at some fractions of the
ion precession frequency. This mode is approximately independent of
density. During periods of strong emission at the ion cyclotron
frequency, however, another mode is observed, the frequency of which
is approximately proportional to density. These observations suggest
an m = 1 oscillation driven by a precessional drift instability.

The existing theories concerning this low frequency instability are
fully discussed. It is found that the effect of finite Larmor
radius in the infinite plane plasma calculation is generally negli-
gible at densities below 108 particles/c.c. The stability boundary
prediction of this calculation when applied to a plasma of cylindri-
cal shape is too low by two orders of magnitude. We present a new
calculation in which the mirror field configuration, the cylindrical
plasma shape and the associated boundary conditions are fully taken
into account. The predicted stability boundary and frequency varia-
tion with density are in reasonable agreement with the experiment.
The electric field inside the plasma is found to be non-uniform even
for the m = 1 mode, so that finite Larmor radius effects are to be
exvected for this mode, contrary to common belief. The full equation
for the electric potential valid for all densities and including

the first order finite Larmor radius effect is presented. However,
the finite Larmor radius effect is found to be small at densities

8 ; .
around 10 particles/c.c., and at magnetic fields above 10 kG,
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I. INTRODUCTION

Over the‘past few years steady improvements in technology have
enabled mirror machines using high energy injection to reach higher
densities. In reaching densities of the order of 108 Particlesfc.r, ,
new phenomena, including collective phenomena of the plasma as a
whole, have been observed.

As is well known, the mirror configuration is unstable, in the
simple hydromagnetic theory, to instabilities of the interchange
type where the growth of the so-called 'flutes' can cause a loss of
plasma to the walls. It is interesting to note that the classical

theory of Rosenbluth and Longmire! predicts instability at all densi-

i

ties, the growth rate being proportional to (n)? at low densities

and equal to (g k)% at high densities, where n is the plasma den-
sity, k the wave number of the perturbation and g the equivalent
gravitational acceleration. Physically, however, this kind of gross
instability is expected to set in only at a density where the Debye
length becomes comparable to the typical plasma dimensions, for then
electric fields in the Plasma can begin to cause collective move-
ments of the ions and electrons. Rosenbluth, Krall and Rostoker?
(R.K. and R) first modified the theory of Rosenbluth and Longmire

to include the effect of finite Larmor radius of the ions. In this
— —
E x B
B2

and electrons in the electric field of the perturbation, a stabili-

drift velocities of ions

case, because of the difference in

zation effect results for perturbations of large wave number k at
high densities. Extensions of this calculation have been made by

Mikhailovskii® and later independently by Post to the case where the
2

47Mc?

appropriate for the low density plasmas obtained in most high energy

assumption n >> was not made. These calculations are more

mirror machines. It has been shown by Mikhailovskii that the plasma

is stable at high densities to disturbances of large wave number k,



just as R.K. and R. have found, but that a region of instability
separates this from another region of stability at very low densi-
ties. The upper region of stability is obviously of great interest
for the achievement of ‘high density thermonuclear plasmas, although
ié should be remembered that perturbation of small k are still
unstable. It is in the context of a high density stable region that
Damm, Foote, Futch and Post? have interpreted their observation of
apparently stable low frequency oscillations in 'Alice' at Livermore.

More complicated modes have been observed in the 'Ogra' machine
by Golovin and co-workers®, although here they seemed able to sup-
press the growth by the application of 10 kV positive potential on
end electrodes.

In the Table Top experiment,Perkins et al® have observed at
intermediate densities what appears to be an extreme case of an
m = 1 instability where the plasma column drifts to thé wall while
at the same time precéssing around the axis. The observations
suggest the existence of upper and lower stable regions of density.
Experiments of Ioffé et al’ showed strong flute-like instability
in mirror geometry which effectively limited the lifetime of their
plasma to some tens of microseconds.

At densities around 107 particles/c.c., the electron plasma
frequency becomes greater or equal to the ion cyclotron frequency
and under such conditions a longitudinal electrostétic wave invol-
ving a coupling of axial electron oscillations to ion gyromotion
can produce the so-called Harris instability%® This is charac-
terized by strong coherent emission at the ion cyclotron or related
frequencies. Although such instabilities do not cause any movement
of the plasma as a whole, they can produce axial scattering and
hence possible particle loss. Since this instability originates

from the anisotropy in velocity space of the particle distribution



function, which is inherent to some extent in all magnetically con-
fined plasmas, it may prove much more troublesome to eliminate than
hydromagnetic instabilities. Observations of strong ion cyclotron
oscillations have been reported by workers from the Alice, Ogra and
Dcxiomachines. So far no satisfactory method of eliminating this
instability has been found.

In our present experiment, the neutral injection Phoenix machine,
we have observed low frequency electrostatic oscillations at the
surface of the plasma, the frequencies of which are closely related
to the grad B precession frequency of the ions in the mirror field.
At the same time, ion cyclotron oscillations at the fundamental and
half the fundamental frequency have been observed. These phenomena

are certainly related to the instabilities di scussed above.

I1. EXPERIMENTAL APPARATUS

The basic principles of the experimental set-up have been dis-
cussed in a previous paper? In Fig.1 is shown a schematic diagram
of the main components of the apparatus. A beam of neutral hydrogen
atoms obtained by dissociation of 60 keV H: or H: ions is injected
into a mirror magnetic field perpendicular to the field lines in the
median plane. The base pressure in the central chamber is maintained
at 10_9 Torr by the use of titanium gettering on surfaces cooled to
liguid nitrogen temperature. A recent addition to the injector line
has been the magnetically driven paddle wheel rotating at 6000 r.p.m.
This paddle wheel serves to prevent water molecules from the disso-
ciation chamber from entering the central chamber while leaving the
fast neutral atoms relatively unaffected. The pressure in the
central chamber is limited by residual gas pressure alone and is not
related to the neutral beam intensity which was usually about 8 mA
equival ent. At the base pressure of “IO—9 Torr, the charge exchange

loss, which is the main cause of particle loss in the absence of



of instabilities, results in a plasma decay time of approximately

100 milliseconds.

The particles are trapped in the mirror field mainly by the
process of Lorentz ; x E electric field ionization, which is about
300 times more effective than residual gas trapping at pressures of
10"? Torr. At the peak magnetic field of 40 kG, all excited atoms
in states with principal quantum number n > 10 are ionized. The
particles, once trapped, precess about the axis due to the gradient
of the magnetic field and hence an axially symmetric plasma is
formed. As the Lorentz trapping mechanism ionizes particles at all
radii out to 20 cm, the radial extent of the plasma is limited by a
scraper probe placed at 8 cm radius. The axial extent of the plasma
is determined by the width and divergence of the neutral beam and
by the characteristics of tﬁe magnetic field. In the present case
with a 5 c¢cm diameter neutral beam, the axial extent of the plasma
varieé between 5.2 cm in the centre to 7 c¢cm at 8 cm radius.

Fig.2 shows a section through the median plane where most diag-
nostic tools are situated. One of the most important tools consists
of an array of CsI scintillation counters collimated by narrow tubes.
These counters were used to measure the emission of fast neutral
atoms at 0%, 5° and 12° to the median plane. By comparing currents
in these directions with those at low densities it is possible to
detect small deviations from the expected axial spread of the plasma.
Measurement of fast ion current to the scraper gives the number of
ions trapped in an annulus just outside the plasma. This was used
to calibrate the neutral emission counters in a low density stable
regime. The current from the 0° counter, which is far higher than
that at other angles, is then used in conjunction with the decay
time of the plasma after beam switch off to give an effective
measure of plasma density in all regimes. Uncertainties in the

knowledge of the secondary emission properties of the scraper probe
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and the axial extent of the plasma provide about a factor of two
uncertainty in the absolute determination of the plasma density by
this method, though relative densities from pulse to pulse are
determined with an accuracy of d 10%.

An electrostatic probe, which consists of a plate screened from
charged particle bombardment but capacitatively coupled to the plasma,
was used to measure the plasma surface potential. This probe was
coupled to an amplifier the input of which has an integration time
constant of 30 ms. At high frequencies, the voltage which appears
at the input of the amplifier is the surface potential of the plasma
times the ratio of the probe to plasma capacity to input capacity.
The capacity of the probe to plasma has been measured using a sep-
arate model so that absolute surface potentials can be measured with
about a factor of two uncertainty;

The loop aerials shown in the diagram were used in early experi-
ments to detect emission at the ion cyclotron frequency. For the
Tecent experiments, however, ion cyclotron radiation Qas picked up
electrostatically on 90° segments mounted as part of the end plates
inside mirror coils. The rest of the end plates were connected to
d-c amplifiers to measure end plate currents.

The magnetic field is obtained by electronic integration of the
signal from a pick-up coil located at 16 cm radius and is presented
digitally to a relative accuracy of 1 part in 103.

The signals from varioﬁs probes and detectors are displayed on
a 24 channel oscilloscope which is photographed with a polaroid
camera for immediate appraisal, Detailed data for analysis is photo-
graphed on moving film using oscilloscopes coupled in parallel with

the main display unit.

IIT. EXPERIMENTAL OBSERVATIONS

The magnetic field Pulse used in these experiments rises in



about 1.2 sec. and falls with a similar time constant. The beam was
switched off for 100 ms at 1 sec. from the beginning of the pulse so
that plasma decay times could be measured at constant magnetic field.
Most measurements were taken as a function of magnetic field and
density, the latter being varied by changing the injection current
or the residual gas pressure. Three distinct regimes occur:

(i) Discont inuous oscillation at the ion cyclotron frequency
(~ 60 me/s at 40 kg).

(ii) Continuous oscillation at the ion cyclotron frequency.

(iii) Strong low frequency ( ~ 100 kc/s) oscillation.

Strong discontinuous oscillations at ion cyclotron freguencies
occur in bursts of 0.1 - 1 ms duration. During this time, a sharp
drop in the neutral emission at 0° to the median plane is observed
while the 5° or 12° emission remains constant or even rises slightly.
There is also a negative current to the end plates and a positive
rise in surface plasma potential of a few hundred volts which
recovers in a time consistent with the time for replacement of elec-
trons in the plasma. After the burst, the 0° neutral emission
gradually recovers in a time corresponding to the build up time of
the plasma. These observations are consistent with an electrostatic
ion cyclotron resonance instability of the kind described by Harris?
In some cases, two frequencies differing by up to 20% are observed
simultaneously, and since the magnetic field varies to this extent
from the centre to 8 cm radius, it is likely that these short bursts
of emission correspond to very localized regions of instability in
the plasma. The apparent quenching of the instability is possibly
associated with the axial scattering of the particles which may
change the anisotropy of the ion-velocity distribution enough to
quench the instability.

Fig.3 shows a plot of observed frequency against magnetic field

obtained by analysis from a single pulse. In this case, the plasma



radius was limited to 5 cm and consequently the field was uniform

to 75 and no simultaneous emission at two slightly different fre-
quencies were observed. !lowever, it is interesting to note the
presence of emission at half the ion cyclotron frequency. Prelimi-
nary measurement of the phase correlation between two opposite end
plate sectors indicate that the signals are in phase at the funda-
mental frequency, and 180° out of phase at the sub-harmonic freguency.

At lower magnetic fields and in general, higher densities, con-
tinuous emission at the ion cyclotron frequency is observed. In this
case the oscillation can continue for many tens of milliseconds.
Continuous axial scattering of ions occurs until a quasi-stable
situation is reached. In this case the instability possibly extends
over a much larger region of the plasma than is the case for discon-
tinuous emission.

Attempts to increase the plasma density above 3 x 108 particles/
c.c.result in a new and radically different phenomenon. Strong low
frequency oscillations appear on the electrostatic probe which cor-
respond to potentials at the surface of the plasma of a kilovolt or
more. If the beam is switched off at this stage these persist even
when the density has fallen far below the critical value. These
oscillations often aprear to be triggered by a burst of discontin-
uous ion cyclotron emission. In cases where it is not triggered,
rise times of 5 ms or more have been observed.

The frequency of these oscillations is normal ly locked to about
half the ion precession frequency calculated for the outer radius
Qf the plasma and is independent of density. Occasionally the fre-
quency drops to a lower value. When in this mode of oscillation,
the frequency appears to be approximately proportional to density.
The transition between the density-independent higher frequency and

the density-dependent lower frequency mode is often continuous. And



significantly, the lower frequency mode is always accompanied by
intense discontinuous or continuous ion cyclotron frequency oscilla-
tions.

Fig.4 shows the frequencies observed for a single pulse plotted
as the ratio of observed frequency ® to precession frequency & ,
against 1/B. The two modes and the gradual transition between them
are clearly seen. Since the precession frequency is proportional to
ion energy, measurements have been made at 30 keV and 20 keV, and
Fig.5 shows that the observed frequencies change in the expected way.
The branch at low magnetic fields for the 30 keV case shows also a
gradual transition to the lower frequency mode.

As the correlation of ion cyclotron emission with the lower fre-
quency oscillations is a rather unusual feature, results from five
pulses are collected and shown in Fig.6 where it may be seen that
the change in frequency is related to the intensity of ion cyclotron
emission.

By correlating signals from two electrostatic probes 135° apart
in azimuth, it has been established that both the higher frequency
and lower frequency precession modes represent an m = 1 charge dis-
tribution rotating in the direction of the ion precessional drift.
Observations of the neutral emission at the onset of these oscilla-
tions show approximately equal drops at the three angles of 62, 5°
and 12° to the median plane. These facts suggest an eccentric pre-
cession of the plasma, as expected from an m = 1 flute instability,
which then causes large plasma loss to the scraper probe. The poten-
tial appearing on the electrostatic pick-up probe varies approxi-
mately sinusoidally with time which suggests that the configuration
corresponds to a small displacement of two cylindrical charge dis-
tributions.

By superposing results from many pulses, it has been possible to



build up a general picture of regions on the density vs magnetic
field plot'where certain instabilities occur. Fig.7 shows the path
of many pulses where discontinuous and continuous ion cyclotron emis-
sion occur. It may be seen that all emission occurs above the line
wp = wc where wp is the electron plasma frequency and wc the ion
cyclotron frequency, and that continuous emission tends to occur at
lower magnetic fields. Similarly it has been possible to compile

the points during the magnetic field pulse at which the flute insta-
bility starts. This is shown in Fig.8. It is to be noted that there
is a strong dependence on magnetic field and that below about 15 kG
the plasma is apparently stable at least up to the density investi-
gatéd. It should be noted that since the magnetic field is pulsed,
the plasma is present for only about 200ms at fields below 18 kG,

and for longer times at hizher fields. The observed effect may
possibly be connected with this varying time, that is to say that

the plasma may remain stable for longer periods at lower densities.
This point will be settled by further experiments.

Fig.9 is a schematic diagram of the results of Figs. 7 and 8
combined,

It is interesting to ask to what extent the presence of these
instabilities limit the densities attainable in the present system.
From a series of pulses where the injection current, j, was kept
constant while the residual gas preésure was progressively lowered,
it has been possible to obtain a plot of density at a fixed magnetic
field against plasma decay time constant T. In the absence of all
but the charge exchange loss, the ion density n' is given b?:—

+ 1 dn

n = —_ =

dn”
dt

therefore the density should be directly proportional to T. As may

= " o Tj



be seen in Fig.10, at densities below 3 x 108 particles/c.c., this

is indeed so; but above this attempts to increase density result in
the appearance of nflutes" whose amplitude increases with T with
little change in density. Preliminary results of applying poten-
tials between 1 - 10 kV on the end plates, as in the Ogra experiment,
show that indeed higher densities may be obtained with potentials

> 3 kV (see Fig.10). However the low frequency oscillations are by
no means suppressed and the wave forms become much more complex and
irregular. These measurements on the effect of end plate potentials
are still at an early stage and will not be discussed further in

this paper.

IV. DISCUSSION

A. ELECTROSTATIC INSTABILITY

It has been shown by Harris® that longitudinal electrostatic
oscillation in a high-temperature low-density plasma may be unstable

if the velocity distributions of ions and electrons are sufficiently

anisotropic. In the calculation the Vlasov equation together with
Maxwell's equations: V.E = 4xeffd°V and VxE = - % %% = O are

used; and by assuming different initial distribution functions, f,
different results are obtained. Harris has calculated the case when
the ion and electgon velocity distributions are of the form

f o 6(V") exp —(é%],that is there is a spread of velocities in the
direction perpendicular to the magnetic field and zero velocity
parallel to the magnetic field, and hence the ratio of perpendicular
to parallel energy TL/T“ is effectively infinite. In this case,
oscillations are found at frequencies W =,€wc where € 1is any

integer and W, the ion cyclotron frequency. These oscillations

are unstable if:-

” w _ a k_L
B (exp (T—ESd)1 (=) > £F
2 O 2
kK< W 2w 2W
Cc ce ce



where k is the wave number, kI and kL components of k parallel
I

and perpendicular to the magnetic field, and wce the electron cyclo-

tron frequency. From this it may be seen that the most unstable

wave is where £ = 1 and kzis close to k. The instability condition

then reduces to the familiar form wp > wc.

Since the unstable wave is in part propagating parallel to the
magnetic field, it may be expected that a spread in velocities in
the parallel direction might produce a Landau damping effect and

12 hHas made calcula-

relax the instability condition. Recently Kahn
tions on the same lines as Harris but assuming instead that the

electrons have zero velocity and that the ion distribution function

is of the form:- V2
f. = exp et 90 (%2 4 ~Lj
i 252 I M2
> _ 5
M® = T .

Interesting results are obtained in that the frequencies of unstable
waves are found to be in the region:-
1
= < W w
(s + 3) w, < (8 + 1) o
where S is an integer 2 0. The instability condition is

w_ > (5 +1) w_and instability exists between the Sth and (S +1)th

P c
T
resonance only if (S + 1) € 3 T$ . Therefore for the most unstable
Il
case, S = 0, T_L = ZTH. These results do not however imply that
there would be an unstable wave at w = 3 w_. A very recent calcula-

c
tion by Dnestrovsky et all® assuming Maxwellian distributions for
both ions and electrons in transverse and perpendicular directions
has given similar results. Giving the electrons some temp%rature
allows stability for higher values of anisotropy, that is Té% >> 2.
It is interesting to note also that the growth rate for theuéave at
w =3 W, is found to be negligible compared to that at w = w .

s . i 1
Therefore the reason for our observation of emission at w = 3

has to be sought elsewhere,



B. LOW FREQUENCY DRIFT INSTABILITY

1. Survey

It is well known that magnetohydrodynamics predict interchange

instability for plasmas in simple mirror magnetic field configura-
1

tions with a growth rate of w, = (g k)2, where g 1is an effective
centrifugal acceleration and k is the wave number of the perturba-

tion. The magnetohydrodynamic approximation, however, breaks down
w.
for slow growth rates, when EB , becomes comparable to (k a)®, the
=
square of the product of wave number with ion Larmor radius.

The effects of a finite Larmor radius, which becomes very impor-
w
= aﬂ , have been studied by many authors. The
c
papers most relevant to our experiment are those of R.K and R, Krall

tant when (k a)Z
and Rosenbluth'#’ 157 18 .14 Mikhailovskii®. R.K. and R. have
treated the case of a low 3, infinite, inhomogeneous plasma using
the collisionless Boltzmann equation under the condition that plasma

2

density n >> , where B 1is the magnetic field and M the ion

47Mc?
mass. The magnetic field was assumed to be constant apart from the
small inhomogeneity caused by currents whose effect was shown to be
negligible. It was shown that for large enough wave number such

w
that (k a)?® > GH , where w _ is the hydrodynamic growth rate, stabili-

H
zation results.C In this calculation it was assumed that the electric
vector associated with the oscillation was parallel to the direction
of propagation of the wave. The authors call this the "longitudinal
and electrostatic' approximation. The recent calculation of Krall
and Rosenbluth'® allows for the possibility of the existence of both
components of the electric field perpendicular to the direction of
propagation. Although the 'longitudinal' mode is still found to be
a particular solution of the general problem, there is also a mixed
mode and a purely transverse mode. The mixed mode contains the

electric field perpendicular to the zero order magnetic field, while

‘the transverse mode contains only the electric field component

s A -



parallel to the magnetic field. The mixed mode is found to be oscil-
latory and stable to the order (k a)*, while the transverse mode is

1%

found to be unstable at frequencies w = - kUD and w = - k f? where

UD is the ion drift velocity and B is the usual ratio of plasma
pressure to magnetic field pressure. For small values of [ , the
growth rates for these waves are found to be extremely small.

The earlier paper of R.K.and R. also treats the case of cylin-
drical geometry and applies the results to mirror machines. The

mirror configuration was taken into account by introducing an equi-

valent gravitational force with the components in Cartesian co-

2 2
ordinates [E%f % y m%— ;X , 0]. This was taken to represent the
o o

effect of the inhomogeneity of the magnetic field, which was other-
wise assumed constant. The effect of the finite Larmor radius was
again found to be a stabilizing one for all harmonics of the poten-
tial E = rmeim¢ except for m = 1. For the latter mode, there is no
stabilization whatever. The physical explanation offered was that
since the electric field is uniform, the ion and electron drifts
caused by the electric field are the same and the size of the Larmor
orbit is irrelevant. The growth rate for the m = 1 mode was found

L
to be (g k)2, exactly as in magnetohydrodynamics. However, it is to

be noted that the solution E = rmelm95 was obtained with the assump-
tion that the magnetic field was constant throughout. It has

already been pointed out that the calculations of R.K, and R. assumed

n >> — . As this corresponds ton >> 5 x 109 particles/c.c. for
B = 10 kG, their theory is not applicable to the conditions in the
presentday high energy injection mirror machines.

The ﬁroblem of a non-uniform infinite plasma in a constant mag-
netic field has recently been treated by Mikhailovskii, whose
calculation is not restricted to any particular density range. Two
ion velocity distributions have been considered and the ion cyclo-

tron motion was taken into account. The dispersion relation, for

o A5 =



a Maxwellian velocity distribution, in the high density limit takes

the form:-

K12
wQ_%(—Ev)w.;.gx:O wwws 011
c
for
2772
l{_g_<<1
w
C
where K = % %% the relative density gradient, and V2 the mean
272
square of the ion thermal velocity. The condition 5—;— << 1 is
w
c
satisfied for the longest wavelengths in most experiments. The

resulting stability condition is identical with that of R.K. and R.

For large enough values of k such that:-

16w
— < g< 1 ceer (2)
Kk? (V2)2 :
stabilization results. Otherwise, for small k's which do not satisfy

1
this condition, the plasma is unstable with the growth rate (¢ g)?2.

Without the finite Larmor radius term, the plasma would be unstable
2

L
for all n >> with growth rate (g k)?2.

47Mc?
For low densities, the dispersion relation takes the form:-

K1V 2 2 2
w? + w [ ﬁk - i%!— - D n] + g BEME . i = 0 e [B)
¢  B? B?
This relation, in a slightly different form, has also been obtained
by Post®. For very low densities the second term in the square
bracket is much smaller than the first:-
k| V2 4mMc?
>2> n
| &l 2 —ar .

This is satisfied for example for densities below 10 particles/c.c.
if the mean particle energy is about 20 keV, the drift velocity is

6 ‘ ' .
10 cm/sec and the magnetic field is greater than 10 kG. In this
case the finite Larmor radius effect is negligible as it manifests
itself only in the term containing V2. 1In fact, it does not become

really important until the above inequality is reversed. Under the

listed conditions the stability condition becomes:-

- 14 -



2
1éreTe < cee. (4)
Mgk 2

One can now try to apply this plane geometry result to a plasma of

cylindrical shape by setting

gk _o . €& 1 dB -
o _9_5-PTB‘:""dr » and k =

(3

o]

where T 1is the thermal ion energy, r the plasma radius and m is

the mode. From (4), we then obtain:-

167e®r xn

< < 1 ee..(5)
v 1 dB
mI‘B dr
47tMc? n)%

Once unstable, the growth rate is (g¢ ,
B

It is evident that the procedure by which the above transforma-
tion is obtained is highly unsatisfactory. The electric field in
the cylindrical geometry becomes purely azimuthal which is certainly
not the case. By assuming a large & , one implicitly assumes a
highly non-uniform magnetic field, while the calculation assumes a
constant magnetic field throughout. Nevertheless, the stability
condi tion resulting from the full equation (3), with the appropriate
values for the parameters, has been compared with the experimental
results on a density vs magnetic field plot as shown in Fig.13. The
strong dependence of the theoretical stability boundary on the mag-
netic field enters indirectly through the density gradient because
of the way the plasma edge is defined in Phoenix; as the scraper

probe removes particles over one Larmor diameter, the most reasonable

assumption is:-
It may be seen that the theoretical stability boundary is lower by
two orders of magnitude than the experimental ly found boundary. It

would appear then that the plane geometry calculation when applied

in this way to cylindrical geometry is grossly unsatifactory.

g 1. e



To explore the possibility of the existence of an upper high
density stable region for m = 1 in cylindrical geometry, one again
performs the same transformation on relation (2) and obtains the
result that the plasma will be stable at high densities provided

a dB
8ro dr

m2k a’B

< 1.

This relation is extremely difficult to satisfy for most plasmas in
mirror geometry and it is certainly not satisfied in Phoenix.

From the foregoing discussion, it may be seen that a theory
treating the mirror magnetic field correctly and taking into account
the finite size of the plasma at least in the direction perpendi-
cular to the magnetic field would be highly desirable. Such an
approach has been made and will be described in the following para-

graphs¥

2. Calculation for mirror geometry

The Poisson equation in cylindrical co-ordinates (r, ¢, z) is
used: -
_ 2 T _ ' 1
Ve ¥ = 4mec (ni ne)

where | is the electrostatic potential considered to have the
form ¥ = VY(r) exp(iwt + imp) and n; and n; are the perturbations
in ion and electron densities of the form n’ = n’ (r)exp(iwt + im@)
The perturbations n; and ng are calculated from the linearized con-

tinuity equation:-

']
gn + D . Vn' + Yn + n_ div T =0
ot o o o

where no(r) is the unperturbed density distribution. The zero
order velocity is taken to be equal to the drift velocity due to

the magnetic field gradient:-

* This approach was suggested and outlined to us by W.B. Thompson.

- 16 -
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The magnetic field is defined to have the form:-
B

- 0

z

o o}

-+
z
1+ ]3~1r2

This type of magnetic field dependence on r produces very con-

veniently a precessional drift frequency which is independent of the

co~ordina tes: -
-3

R_Jﬂ).l.__ET
e

r

)
WLW
o

The perturbed velocity V! is determined by the drifts due to the

oscillating electric field:-

2, D (E
v * ot o)
C
—y

ad
i . -a—? + U]_D_ . V) E Mc
B? e B?

=i
"
us 13

where

E = =¥

=l

By using (3D . V)E where U is only the guiding centre motion, the
finite Larmor radius effect is not taken into account; this effect
will be treated separately in section 3,

With the above assumptions, the calculation of n; and n; is
straightforward. Restricting the calculation to the case B << 1,
to low frequencies = ﬁi'<< 1, and neglecting the electron drift

o o

in the magnetic field Re << w ~ &, the following equation for the

electrostatic potential is obtained:-

2 o dn 2 dn ) 5
av [% + 47Mc o (1—26)] av . [z4Tecm @ o (1-28) m 1 v =o0

.- B2 dr dr w({w+mL)B dr ET 2
.. 6)
where (
2
e =1 2EME n ,and & = v1nB
2 Vinn
B Q



Before this equation is simplified to apply to the low density
regime, we would like to compare this equation with the result of
R. K and R. We therefore set m = 1 and ¥ = r (which implies a
uniform electric field) in equation (6) and obtain:-

Mc? eck -0

B w(w + Q)

It may be seen immediately that this can be a dispersion relation
only if B is constant, contrary of course to the assumption

® = constant. If, however, one does make this inconsistent assump-
tion, we then get the usual magnetohydrodynamic result that the

growth rate

|-

3
oy = (R 0)% = (g k)
It may be concluded therefore that if the magnetic field variation
in mirror geometry is taken into account properly, then the internal
electric field cannot be uniform even for the m = 1 mode. In conse-
quence, the conclusion that the finite Larmor radius effect is non-
existent for the m = 1 mode, for all densities, does not appear to

be correct.

The differential equation (6) has not yet been solved for all

densities. However for densities below 109 particles/c.c. and mag-
; ; 47Mc? )
netic fields above 10 kG, - n_ << 1 and equation (6) can be
B

reduced to a Bessel's equation provided certain reasonable density

distributions are chosen.

Equation (6) for low densities takes the form:-

dn 5
azy .14y -4xecm?Q o (1-28) m? )
dr? ¥ r dr * [w(w + mR)B dr r rg] =0 e (7)

1

This equation with & = 0 was obtained by Kadomtsev "and solved

| dn, (1 - 28) .
assuming B = constant. We require az Br = constant. This may

be satisfied by a density distribution of the following form:-
N, (1+B r2 )2
no(r] = [—— - 1] ce..(8)

(1+B r2)2_- 4 "(1 +B r?)?
10 1
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where L is the plasma radius at which the density is zero, and
N, is the plasma density at r = 0. This density distribution is
shown in Fig.11 by the curve marked nOI. For this density distri-
bution, the solution for the potential inside the plasma boundary
is A Jm(ar) cosm$ where @ is defined by:-

B1No

_ 2
58 - 16Tecm®R el (9)

T w(w + mR) 30[1 - (1 +Biri )2]

The dispersion relation is obtained by requiring that the radial

and azimuthal electric fields be continuous across the boundary at

ro=or_. The electric fields for r > r_ are given by:-
E c cosm@ E = C ms i nm®
r 2 ¢ - # :

The boundary condition then requires:-

(m - 1) 3 (ar)) =ar J _ (ar) ceee (10)

Equation (10) gives the following dispersion relation:-

” i { [ 32Ke2r§ ]%j
== =1+ [1 - N smaw F1%)
x 2 zZ T[(1+B r?)-4] °
m 1 o
where
Z = 5,76 for m = 1
m

12.68 for m = 2 etc.

The frequency % has a parabolic dependence upon density N0 and this

is shown in Fig.12. It is interesting to note that the frequencies
at which the unstable oscillations may be observed are % = ‘§

The minus sign means that the wave is travelling in the same direc-
tion as the ion. Also shown is the prediction from the theory of
Mikhailovskii as given by equation (3) used with the appropriate
cylindrical geometry parameters. It has the same functional depen-
dence as the other calculation because at these low densities finite

Larmor radius effect is negligible. The stability condition given

by equation (11) is the following:-
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N0 € 6,85 x 107 particles/c.c.

for the following characteristic Phoenix parameters:-

B1 = ,.004
E = 20 keV
r = 8 cm

o

It would now be interesting to see how much this stability con-
dition is dependent on the radial density distribution. The density
gradient assumed in this calculation is smaller than any encountered
in the experiment for fields greater than 5 kG. As has already been
mentioned, the density profile in Phoenix can be better approximated
by a curve similar to nOII in Fig.11. The wvalue (r2 - ri) is given
by one Larmor diameter and hence is inversely proportional to magne-
tic field. The equation for the electric potential can now be

written from equation (7) for the three distinct regions:-

dn 2 2
b —8 .5 Shgd ay + (Y2 -2y ¢y =0
1 dr 2 r dr 2
dr r
2 . ZN
= = Shes s %% —2 = constant oo (12a)
wlw+ mR) B%r
v = A J (Yr)
m
2 2
r < r<r d-y + L %% + (4% = = ) v =0
1 2 dr? ol r?
2 -4mecm?Q dno (1 - 20)
a< = pm = constant vi s L12b)
w(w+ mR)B r
v = D, J (ar) + D, N _(ar)
d2y 1 4y _ m?
r>r 4 === - — V¥ =0 vee. (12€)
2 dr2 r dr 2
r T
C
¥ o= -



where A, D , D , and C are constant co-efficients, and Jm and Nm
1 2 b
are Bessel and Neumann functions of order m respectively. The

boundary problem can again be solved by matching the radial and tan-

gential electric fields at r = r1,and r=or,. This gives the
following relation for m = 1.
QL
- J1(Yr1) [Jo(arg) Eo(ar1) Jo(ar1) Eo(arz)]
= JO(Yr1) [J1(GI1) u (arg) - Jo(are) E1(ar1] ] o ww e (] &)

This was solved numerically18 for ari, and the dispersion relation
obtained. The results are plotted in Fig.13 where a stability
boundary for various magnetic fields is shown. As the density gra-
dients taken are all steeper than in the case of profile n I, the
stability boundary lies just below the value NO = 6.85 x 107 pafti-
cles/c.c. This confirms the expectation that the plasma is more
stable for smaller density gradients.

Since experimentally the plasma is observed to be unstable above
about 2 x 108 particles/c.c., the predictions of this calculation
are only about a factor of four down and this may be considered
quite satisfactory. It should be pointed out that we have assumed
the precession frequency R to be constant throughout the calcula-
tion, while in Phoenix the precession frequency rises with radius
and at 8 cm is about 1.5 times the value used in this calculation.
This is because while the magnitude of B 1is quite well represented

B
by the simple analytical form B = —2—— , B = .004, the gradients

1+B r® :
of B at large values of r are not.' The exact effect of the
variation of precession frequency on the stability boundary is
unknown, but if one assumes that the value of the precession fre-
quency at the plasma boundary is the most important one, then the

present calculated stability boundary may be raised by 50%. The

effect of considering a plasma cylinder of finite lengths with the

- 24 =



appropriate boundary conditions rather than an infinite one may also
change somewhat the stability boundary®*

It is interesting to interpret the experimental observations in
terms of the dispersion relation given in equation {11}land expressed
graphically in Fig.12. This dispersion relation predicts stable
oscillations for low densities below some critical value. For
higher densities an unstable rotation occurs at a frequency equal
to half the ion precession frequency. This is consistent with the
experimental observations although it is important to note that the
value of ® used to normalize the experimental results is that
calculated for the edge of the plasma; the central value being some
50% lower. In practice, the presence of the scraper probe limits
the maximum radial extent of the plasma and attempts to increase
the density result in increased separation of the ions and electrons
which results in increased electric fields but little increase in
density. The separation of the ion and electron clouds necessary to
explain the experimental result is of the order of 1 cm to be com-
pared with a plasma radius of 8 cm., This is consistent with the
near sinusoidal azimuthal variation of potential of 1 kV observed
experimentally.

Switching the beam off results in an exponential decay of plasma
density and amplitude of the sinusoidal electrostatic probe signal.
The frequency of the signal remains either nearly constant to * 20%
or decreases approximately linearly with density over at least an
order of magnitude. This is to be compared with the prediction of
equation (11) which suggests the possibility of two modes, the upper
increasing towards the ion precession frequency and the lower decrea-
sing towards zero frequency, as the density is reduced.

It is difficult to make detailed predictions of the exact motion

¥ A freatment of this effect and the effect of variations in n/B®
will appear shortly in a separate publication by W.B. Thompson.
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of the plasma from equations such as those given above since the

exact motion depends on the linear combination of y(r)exp(iwt + img)
necessary to satisfy the initial conditions. To understand this in
more tangible terms, a calculation has been performed by Wind and
Sweetman using a simplified model in which the electron and ion

clouds are assumed to be rigid rotating cylinders. The electron
cloud is driven by a constant electric field due to the charge separa-
tion while the ion cloud is driven by a combination of the same field
and thé precessional drift about the magnetic axis. It is found that,

for low densities, an initial displacement of the electrons results
E x B
in a subsequent motion that is essentially ——55“ drift of the elec-
B

trons cloud around the ion centre. The ion cloud is unable to move
; . ?B x B . .
far from the axis because of the rapid ——>  drift. This may cor-
B

respond to the lower branch of Fig.12. An initial displacement of
the ions al lows a much more complicated motion. The fact that the
frequency dependent mode of the oscillation appears always together
with ion cyclotron emission is perhaps not surprising since it is

known that the electrostatic instability at ion cyclotron frequency

leads to a profound disturbance of the electron distribution.

Bz Finite Larmor radius effects

Most of the finite Larmor radius effects have been taken into
account in the derivation of the equation (6), such as the drift in
the magnetic field represented by the velocity 30 (or 3D)' but the
effect of the finite Larmor radius on the drifts produced by the
electric field has not been taken into account completely. The fact

that the ions see a variable electric field due to their drift velo-

g hag been
(VO.VJE
taken into account by introducing the drift velocity —Be

city 30, apart from the explicit time dependence exp(iwt)

which results in the automatic inclusion of the plasma dielectric

4TMc?

= However, the ions also have a velocity v
B

constant E =1 +



around their centre of gyration and consequently there is an addi-
tional drift velocity arising from the fact that the electric field
seen by the ions is different from that at the‘guiding centre. This
drift velocity produces what is usually known as the finite Larmor
radius effect.

We estimate the change in the drift velocity due to the finite
Larmor radius by replacing the electric field at the guiding centre
by its average around the Larmor orbit. An expansion of the electric
field in powers of Larmor radius up to the second order is used for
this purpose. This procedure corresponds to solving the equation of
motion in a crossed magnetic and an inhomogeneous electric field
accurate to the second order® It may be easily seen that the aver-

age electric field along the Larmor orbit is given by:-

B (r,0) + 2 VB (r,8) + ....

4
where (r,$) are the co-ordinates of the guiding centre. The addi-
tional drift velocity 3L is then:-
T = Eg VE x B
L 4 2

B

_ 585, 2 vy -3

d o=
4B o ar (v ¥ ]

o
This results in an additional term in the equation for V¥ (egn.(6))

of the form:-

2
4%Mcn0 KkV2 (1 - 30) 72 T
B2 4wc(w-+m9)

The equation (6) can now be corrected by replacing € by:-

47Mc3n  KkV2(1 - 38)
B2 4wc(w + mR)

et =& +

and the full equation for the electric potential including the first

* W.B. Thompson, private communication.
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.
K= @n

3 F;
o

order finite Larmor radius effect becomes the following: -

2 2
= 47Mc no( KV _k(1-36) Y1 d_y_ 47Mc2 dng V2k2 (1-30) s\
+ oM =2 - =r
L1 % B< L 4wc(w+m§a} | 4c2 [r B2 dr {(1 2004+ ml_ {(W+mR) dr
dn . 2;.2
-4%ec o 2 Vok= (1 - 38)mw) _ vV =0 ceea(14)
+l:w(w+ m% ) Br (m b 402
We can now check our assumption &’ = 1, which was made implicitly in

applying equation (7) to the experiment. Apbroximating w by %?

and setting m = 1, we find that e’ differs from unity by 6% to 20%

in the region between 40 kG to 10 kG, and that the difference increases
rapidly below 10 kG becoming over 60% at 5 kG. These figures are
calculated for an experimental ly reached density of 3 x 10-8
particles/c.c. Since the equation (14) has not yet been solved, the
exact importance of the finite Larmor radius term is not known.
However, the fact that €’ begins to differ markedly from unity below
about 10 kG and at densities above a few times 108 particles/c.c.

may be regarded as an indication that the finite Larmor radius effect

could begin to® be important.

V. CONCLUS ICNS

We have observed experimentally strong emission at the ion cyclo-
tron and related frequencies at densities where wp‘> wc{ This,
together with the strong axial motion of the elecf;ons observed,
tends to indicate an unstable longitudinal electrostatic oscillation
which arises from the strong anisotropy of the velocity distribution.
This type of instability has been extensively studied by Harris, and
others. The emission of ion cyclotron radiation has been observed
to be either self-quenching or continuous depending on the density
and magnetic field. The self-quenching phenomena may be connected

to the strong scattering of ions out of the transverse plane during

the instability, as this reduces the anisotropy of the distribution.



This aspect of the problem has not so far been considered theoreti-
cally, although experimentally much information on these lines may
be obtained.

It is interesting to note that the plasma is apparently stable
to this instability at all investigated densities and magnetic
fields below about 12 kG. A recent calculation of Harris19 which
takes full account of ion and electron distributions but assuming a
cylindrical shell of plasma indiéate that the plasma may be stable
at all densities provided w_ is sufficiently small. Although this
calculation is not strictly applicable to the present case where
Larmor orbits are overlapping, it may be conjectured that a similar
conclusion can be drawn. This would agree with the experimental
observation and may point towards a way of eliminating the instabi-
lity altogether in future experimeﬁts.

A major obstacle to the attainment of higher density is presen-
ted by the m = 1 low frequency instability which in this case is
induced by charge separation due to the ion precessional drift in
mirror magnetic field. The growth of the instability is limited by
the physical presence of a radial probe and an equilibrium situation
is set up when the amount of plasma supplied by the injection current
is equal to that removed by the probe. The density is thus limited
at ~ 3 x 108 particles/c.c. for fields above 20 kG. This order of
density appears to be the limit in all present day high energy injec-
tion simple mirror systems. It is interesting to note that we have
observed two kinds of frequency dependence on density, both for
m = 1 charge separation. Both the density dependent and density
independent oscillations have also been observed in the Alice experi-
ment®. However, we have not observed frequencies much above % the
ion precession frequency, whereas in the Alice experiment frequencies
at and above the ion precession frequency have been observed. We

have shown that the infinite plane plasma calculation is grossly
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inadequate when applied to a plasma of cylindrical shape by writing

1 ; ok . .
k = = , the predicted stability boundary is two orders of magnitude

too lgw. Although the finite Larmor radius effect is taken into
account in this calculation, the fact that the electric field is
assumed to be varying only in the direction of wave propagation
essentially invalidates its application to a cylindrical plasma.

In the present calculation, where the cylindrical plasma and
the boundary conditions are properly taken into account, the stabi-
lity boundary prediction agrees quite well with experiment above
20 kG. The variation of frequency with density is also quite well

explained although it is not understood why frequencies above 3
have not been observed. It has been found that the electric field
inside the plasma cannot be uniform. This means that finite Larmor
effect can be expected for m = 1, contrary to the conclusion of R.K.
and R. The complete equation for the electric potential including
first order finite Larmor radius effect shows that at densities
above 108 particles/c.c. and magnetic fields below about 10 kG, the
finite Larmor radius could be expected to play an important role,.
This may explain the extremely sharp rise in the stability boundary
at 15 kG observed experimentally (Fig.8). However the exact effect

of the finite Larmor radius term cannot be predicted until eguation

(14) 1is solved.
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The magnetic field and density profiles assumed in the calculations. The curve
marked B shows the assumed magnetic field profile which is a convenient and
close approximation to the magnetic field profile in PHOENIX. The curve
marked n,[ shows the density profile given by eqn.(8). The curve marked noII
shows the density profile defined by eqn.(12), for the case where B, = 36 kG.
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