COLHAMCBRARY| [iacrin |

CLM-P 320

on the undePStandiiig that extracts or references will not be

- H z i‘./" IECE GN LY his document is intended fiFPIIb_I% ;n a‘j-cEnal, and s m;de
R[EP\L NLL : l ’t

published prior to publication of the original, without the consent of the
authors.

UKAEA RESEARCH GROUP

Preprint

APPLICATIONS OF INTERACTIVE COMPUTING
IN A SCIENTIFIC ENVIRONMENT

- T JMARTIN
A SYKES

CULHAM LABORATORY
Abingdon Berkshire

sli979

s,
\f;‘- SR
"):"' A5

S
:*F\' N i
S e

CLM-P 320

APPLICATIONS OF INTERACTIVE COMPUTING IN A SCIENTIFIC

ENVIRONMENT

T. J. Martin and A. Sykes

(Paper to be presented at ONLINE 72 meeting at Brunel
University, 4-7 September 1972)

ABSTRACT

Interactive computing has been used at the
Culham Laboratory to solve a wide range of problems.
We here give examples from the fields of physics,
engineering and mathematics, and use these to
demonstrate the techniques used and the benefits
obtained. 1In particular, we find that when applied to
suitable problems, the interactive approach can enable
the scientist to obtain a far better understanding of
his problem than could be gained by conventional batch
computing.

UKAEA Research Group
Culham Laboratory
Abingdon

Berks.

August 1972

13 Introduction

In this paper we specifically want to consider the
suitability (or otherwise) of the interactive approach to
given problems arising in a research environment. We consider
the basic criterion to be - will a solution process
benefit from human intervention, or can it be fully auto-
mated? The potential value of man machine interaction is
easily demonstrated: consider Fig. 1. It is obvious to

the human eye that point A is outside the general region R
and point B is inside.. But to get a computer to recognise
this is a non-trivial problem!

We first describe the hardware configurations used at
Culham Laboratory, and the available software. Next we
discuss several problem areas in detail, noting whether
they are amenable to interactive study. We describe
suitable programming techniques, and estimate the
benefits obtainable from interactive computing.

e Hardware and software configuration

Most of the work described here was done on an ICL
KDF9 computer, coupled to a DEC PDP8 with a DEC 338 display
unit, running under the EGDON 3 operating system. The
EXECUTE facility of the COTAN multi-access system was used
for interactive work (1,2).This facility was, however, only
available to privileged users, as the whole 32K KDF9 core
had to be rolled-in, rolled-out for interactions.

The present system comprises an ICL 4-70 with 640 K
bytes of core storage, coupled to a CTL Modular One, a
Cossor CSD 1000 refresh display, and several storage tube
displays. The Multijob operating system is used, and this
normally provides two roll-in roll.out streams, each of
96 Kb (approximately 25,000 32-bit words), some small
service streams, and a 200 Kb production stream. At off-
peak times, larger streams of up to 500 Kb are available.
The system is ideally suited to interactive work.

The GHOST graphics package (3,4) has been developed
into a very flexible system; graphical information is
usually written to disc files, which the user may process
onto teletype, line printer, display, storage tube or
(more usually) the CI120 microfilm recorder. Interactive
programs short circuit the intermediate storage, processing
information directly onto the output device; we discuss
the special graphics requirements of interactive programs
in Section 4.

3a Applications .

2. Field design calculations

. We examine here two actual problems in field design.
They are chosen to illustrate the suitability question, for one
is ideally suited to interactive study; the other is more
efficiently done by standard off-line computing.

Example 1: It is required to obtain as uniform a field as
possible over the length A B by varying the positions of
40 identical coils, each carrying the same current.

Fig. 2(a) shows the field on the axis of a single coil:
Fig. 2(b) shows an approximate solution.

c
« (o*+ x2)=

AX1S

A ' y/i e

Fig. 2(b)
Although non--linear, the field due to each coil is a well
behaved function of its position; the total field at any
point of A B is similarly a well-behaved function of the
positions of the coils, and the optimum positions may

-

easily be found by a least squares minimisation technique.
This is a routine process, ideally suited to automatic
computation; Dbasically, each of the 40 parameters is
slightly varied in turn until no further reduction is
obtained -- typically after several thousand variations.

Note that to adjust the position of each coil
interactively would be a very tedious and time consuming
process.

Example 2: we wish to design an electron beam focussing
device in a hemispherical annulus, by choosing plate
potentials Pl’ P2, P3 and various other parameters (Fig.3).

v
o
Ze

Fa

SOUVARCE F?

Pig. 3

As in Example 1, we can easily compute the field at
any point. However, the trace of each electron orbit in
the focussing region F is a very complicated function of
the field at each point of its trajectory, and so is a very
ill-conditioned and unpredictable function of the design
parameters. Hence, even if the problem can be formulated
as a least squares minimisation problem (and this is by no
means obvious), a global minimum is unlikely to be found
by any automatic process.

‘ So we proceed interactively as follows. For each
choice of values of the parameters, we compute the orbits
for a small range of source emission angles, and show these
orbits on the display. The engineer can immediately
recognise the effectiveness of the parameter set and, by
adjusting each parameter in turn, can in a few minutes
develop an understanding of the device that would be
difficult to obtain in weeks of batch runs.

To summarise, the Example 1 is a routine problem; the
effect of varying any parameter is clearly defined; the
problem can be programmed for purely automatic computation.

Example 2 however is a research type problem - we are
investigating the unknown response of a complex system; this
is best done by building in the expertise of the electronics
engineer and using the computer as an analogue device.

b. Computer simulation of a plasma

A plasma fusion experiment (hopefully the basis of a
future generation of nuclear power stations) might contain
1020 particles (ions, electrons) at a temperature of 106 °c
for time scales as short as 10-2 secs or as long as several
seconds.

It is obviously extremely difficult to measure such
high temperatures or such short times; 1in fact even setting
up the experiment is usually an uncertain procedure - the
plasma may touch a wall, vapourising it and hence producing
contamination.

Since the basic laws governing the motion of the
individual particles are known, it is possible to simulate
a real plasma on the computer. A computer 'plasma’
contains only say 104 particles, due to speed and storage
restrictions, and since each computer particle is therefore
representing around 10 real ones, the force laws have to
be modified to give realistic collisional effects. Further,
ion-electron mass ratios have to be considerably reduced
from the real values. Apart from these approx-
imations, the computer plasma has great advantages to the
physicist: the initial distributions, timescales, and
energy growth rates, temperatures (measured by the degree
of - random movement) etc, are under perfect control.

We have found interactive computing to be of -great
assistance in the plasma simulation, both during the
development stages of the simulation code, and also for
exploratory investigations.

Firstly, when constructing the code, very many test
runs are needed to check basic properties, for example
that particles do not get lost; that momentum and energy
are correctly conserved; and that timestep schemes are
stable. The next stage is even more important, the
physicist needs to investigate under what conditions, 1if
any, the computer 'plasma' behaves like a real plasma.
This involves a detailed study of ion and electron

oscillations; energy distributions; Fourier spectra;
instability growth rates; initialisation methods and so on.

Graphical output is often required; simple plots may
be output on the teletype; use of the display is of course
preferable. Fig. 4 is a 'phase space' plot, of VX (velocity
in X direction) against X. Fig. 5 is a velocity space plot,
VY:VX. Many other diagnostics may be called upon.

Fig. 5

It is fairly obvious that the use of interactive
computing can give two advantages: many test runs can be
completed in a very short time, giving rapid progress; and

the physicist can obtain a better 'feel' for the plasma
behaviour than he could obtain with batch computing, as he
can fully control the run, calling on relevant diagnostics

as he sees fit. However, we would claim a further advantage,
that of efficient computer utilisation. For when performing
a series of exploratory tests, standard batch runs usually
(in our experience) have a high failure rate. We estimate
that as much as 75% of computer time may be wasted; besides
the obvious total failures, many of the successful runs

will have performed far more timesteps or iterations than was
necessary. 1In contrast, interactive runs avoid complete
failures, and curtail the run when the desired result is
obtained.

Ca Visualisation

The intense temperature of a plasma would instantly
vapourise any material substance, so a plasma must be held
well away from the walls of its container. This can be done
by electromagnetic forces, usually applied by coil windings
around the container.

_ Since plasma containment devices are often of toroidal
shape, and the windings spiral around them, the config-
uration is very difficult for the draughtsman to draw, and
for the designer to know the answers to such questions as:
will the start and end of .a winding match up correctly?
will there be space between the windings for a probe in a
specified position?

Mathematically however, the windings are usually very
simple, typically being defined by just three or four
parameters. SO interactive graphics facilities can be used
to assist, as follows. The windings are shown on the display
for the set of parameters specified by the designer, who can
view the winding from any position, and adjust the parameters
at will. Unlike architectural applications, where hidden
1ine removal for arbitrary (as opposed to rectangular) shapes
is a difficult problem, the filamentary windings are best
visualised by using intensity variations - that is,
brightening near lines, and dimming distant lines. This 1
a very simple and effective process.

Fig. 6 shows a plan view of an unsymmetric toroidal
winding. Fig. 7 shows a perspective view of a system
representing cylindrical coils on a rectangular base. The
'menu' list provides both for the construction of standard
shapes, and the possible scalings, rotations and
perspectives. (These 'intensity variation' figures have lost

some of the variation effect in reproduction; they are
reproduced from polaroid photographs which were taken by
a hand camera from the 338 display. The DEC 338 allows 7
levels of intensity; all 7 were used on the originals).

Fig. 7

Fig. 8 shows the contours of the field produced by a coil
system; the positions of the coils are adjusted inter-
actively so that the field acquires the desired properties
- in this case, that plasma escaping from the centre region
is led away into traps, so that it does not come into
contact with the container walls.

d. Root Finding

Finding the roots of a function in the complex plane is
a time-worn problem which frequently occurs in plasma
physics - usually in investigations of the growth rates of
plasma instabilities. Feormerly, the engineer .or physicist
had to spend a considerable amount of time, performing
tedious and error-prone algebra to locate the approximate
position of the roots in which he was interested. Tentative
application of a computer program would then yield "improved"
estimates, perhaps only to find that a pathological region
of the function gave rise to divergent behaviour in the
numerical root-finding method. The turn round time for such
a process would probably be of the order of several hours.
Since present numerical techniques cannot fully automate
the root-finding process, it is interesting to see what
improvements the use of interactive computing can give.

There are essentially two different ways of approaching
this problem, depending on hardware availability and
suitability. Because a DEC 338 display was available on
the KDF9, the first attempt was to use the powerful
graphical output language (GHOST) to contour the function
over specified regions of the complex plane. This not only
gives useful topological information about the function but
if the zero-height contours of the real and imaginary parts
of the function are plotted on the same frame, the crossing
points (if any) will give fairly reliable initial approx-
imations to the required roots. (See Fig. 9).

= B ~

Fig. 9

These estimates can then be corrected by applying an
iterative method - such as that put forward by Muller,
which is simply based on a Taylor series expansion of the
function about three reighbouring points. A useful off-
shoot from this approach is that the path of the iteration
may be easily plotted, any divergence of the method being
quickly detected.

The second version of the program, written for the
ICL 4-70 machine, was considerably different since initially,
fully interactive graphics was not available. The omission
of the graphics lead to the use of much more sophisticated
numerical methods to compensate for the lack of graphical
information. Rather than try to apply a global numerical
method, our experience suggested that a set of techniques
should be available, the user being able to choose the
most suitable for his particular function. In the present
program, Muller's method is included as a general technique
as it produces good results for reasonably behaved functions.
It is supplemented by two other methods. One in which the
function is locally approximated by a bilinear form thus
overcoming the problem when a root is very near to a pole
of the function. The second in which the Cauchy Residue
Theorem is used to evaluate the number of roots in any
given (circular) contour; the general form of the theorem
then being used to explicitly evaluate the required roots.

Typically, the function not only depends on the
complex variable z but also on a number of independent,
real parameters resulting in the equation

f(z,a192...an) = g
to be solved. Not only are the roots required for
particular values of the parameters but also the position

of the roots as a continuous function of any one of the
parameters may be requested. This is achieved by predicting
the new position of the root by guadratic extrapolation

and using one of the above mentioned methods to refine the
approximation. More sophisticated techniques have been
developed for the Cauchy method in which step-halving and
adjustments to the radius of the contour are automatically
carried out to keep trackof the root; nevertheless, the most
important ingredient is the experience of the program user.
e. Data Analysis

It is of great assistance to a research worker to
have available all previously published information
relevant to his work. Recently it was decided to produce
a compilation of all the experimental data in the
scientific literature on low-Z nuclear fusion cross-
sections. The data consisted of some 300 curves drawn from
some 200 published papers, referring to some 50 different
nuclear reactions. It was almost impossible to compare
curves directly, as apart from simple scaling differences,
curves could be drawn using linear-linear, log-linear, or
log-log scales. The problem was to produce 50 figures,
each including all the curves referring to a given reaction,
drawn on a single standard scale; to renormalise or
possibly reject obviously discrepant data, and finally to
produce 50 publishable figures, with each curve and scale
suitably labelled. The tediousness of such a task, if
performed manually with the necessary precision, would have
been prohibitive: in fact, the software was written in
about eight man weeks, the curves were input during three
days, and the figures for a preliminary publication were
produced within a fortnight.

In brief, the typical operating procedure 1is as
follows: a film strip projector or epidiascope is used to
project an image of the material directly onto the
phosphorescent screen of the DEC 338. (See Fig. 10).

With the light-pen the user inputs to the display memory
puffer two reference points defining the co-ordinate axes,
followed by a sequence of points lying on each curve which
he wishes to process. He then inputs to the PDP 8, by
teletype, information about the scale (whether it is linear
or logarithmic for example, and the co-ordinates of the two

reference points).

- 10 -

On the basis of this information, the KDFS calculates the
actual co-ordinates of each input point and computes a
smooth curve passing through them, treating them as the
knots for cubic spline interpolation. This curve is then
displayed on the DEC 338, to permit a direct comparison
with the original curve. The whole procedure takes perhaps
one minute per curve (the actual computer time used being
~ 1 sec). If the user is dissatisfied with the agreement,
he can then delete or add knots, again using the light pen.
When he is satisfied with the fit, the co-ordinates of
these knots, together with a name which he has assigned

to the curve, are recorded in a previously specified file
on the KDF9 disc. Almost any number of curves can be input
in this manner, the only limit being the amount of disc
space available. To recall this information, it is
necessary only to specify the name of the curve and a
suitable scale, which need not be identical with the
original scale in any respect, for it to be displayed on
the screen of the DEC 338. Any reasonable number of curves
may be superimposed on the screen, the only limitation
being the size of the DEC 338 memory buffer. Finally,

if the user wishes a permanent record of a picture made up
by superimposing curves in this manner, he can ask for the
names of the curves and the scales to be recorded in an
editorial file on the KDF9 disc, and the information in this
file can be used to generate instructions on the magnetic
tape belonging to the microfilm plotter, which will then
provide a photographic record. The quality of this final
output is designed to be such that it can be used directly
for reproduction in the scientific literature, and it
includes all necessary scale markings, captions and
graticules.

T Finite element mesh design

The method of finite elements has recently become
popular for the solution of harmonic or biharmonic equations
in field or stress analysis. The commonest element used is
an equilateral triangle, and the first step in the process
is the subdivision of the region of interest into a mesh of
these basic triangular elements. See, e.g. J.K. Reid (5).

Near the edges of the domains, the triangles must be
distorted in order to represent the boundary; but numerical
analysis theory dictates that they must be as nearly
equilateral as possible, as the error of the eventual
solution depends inversely on the sine of the smallest
angle. Another consideration in the triangularisation
process is that the engineer or physicist will require more
detailed information in certain areas, and hence will
require a finer mesh there., Also, regions of maximum stress
will require a finer mesh than unstressed regions to obtain
acceptable overall accuracy.

We can see 3 solutions to this triangularisatibn
problem.

a) entirely by hand. This is very tedious for large and
complicated regions; it involves drawing all the triangles,
adjusting to boundaries, providing finer meshes where
indicated, and avoiding small angle triangles. 1In addition,
the co-ordinates of the mesh points must then be read off
and fed into the computer.

b) entirely by computer. The process can be automated;
starting with a uniform triangular mesh covering the whole
region, exterior triangles are omitted; corners of
boundary triangles are moved onto the boundary, and some
maximisation process juggles the triangles to avoid small
angles. There are two difficulties with this process;
first, although a fairly simple computer program can
correctly handle say 99% of triangles, it is extremely
difficult to guarantee 100% success for every shape of
region; and attempting to cope with every possibility
always produces a complicated and lengthy code. Secondly,
the engineer or physicist must specify the finer mesh
regions by some unnatural process, such as supplying
functions which are negative inside the desired area, 2zero
on the boundary and positive outside.

c) using interactive graphics. This can combine the best
of both above methods. A simple code performs the iniEist
triangularisation, getting say 99% of it correct; and
projects its attempt on the display. Fig. 11 shows a simple

~ 12 -

hole-in-plate example, which has been well triangulated

by the simple program. The engineer/physicist can now
'touch up' any defects by moving corners with the light
pen, using the 'menu' keywords ZOOM (zooms in on a
specified part of the picture); MOVE (moves an indicated
node to an indicated position), and UNZOOM (returns to
normal view). To refine the mesh is equally simple; the
keyword REFINE is given, and a triangle interior indicated.
This triangle is then subdivided by the program into 3
triangles,

Fla. 114

The final result of a single node adjustment, plus
some additional refinements, is shown in Fig. 12. The
mesh is now ready for presentation to the numerical part
of the program to obtain the desired field or stress
solution.

4. Interactive programming technigques, and graphics
regquirements

To tackle interactively the problems described in this
paper, we adopt the following procedure (we almost always
use FORTRAN):

1. All parameters of the problem are initialised to
their most common values.

2. Then, and after each stage, the program returns with
the prompt KEYWORD?

3 Associated with each’ of the parameters is a 'keyword'
which enables the variable to be identified. For example,
the timestep in an integration, DT, having a default value
of 0.1 is changed to 0.05 by replying DT 0.05 to the
KEYWORD? prompt. The program recognises the command by
reading DT into WORD, and 0.05 into VALUE, and then
testing the keyword (DT) against the complete list of key-
words in a series of 'IF' tests, until it reaches
IF(WORD.EQ.'DT') DT=VALUE.

4. Keywords are also associated with program actions.
For example, 'START' might perform a series of timesteps
or iterations using previously defined data. The
relevant IF statement here may be

IF(WORD.EQ.'START') GO TO 7

This type of program control is very easy to write in
FORTRAN and to some extent is self-documenting if sensible
names for the keywords are chosen. 'By using this method,
most programs can easily be converted to interactive
operation and can then, by sensible use of prompts, be run
by non-expert computer users. Also, when the user wishes
to run such an interactive program as a standard off-line
job, the data file for the run will consist of the same
data as would be used for interactive control and will be
self-documenting because of the 'keyword' system.

Interactive programs are usually more dependent on
graphics than the average as information must be conveyed
quickly and concisely to the user. We see three special
requirements for interactive graphics:

i) since roll-in, roll-out streams are of necessity
small, the graphics must be as efficiently coded as possible
to allow maximum space for the users program.

ii) also, since the computing time slice is usually
very short, the graphics must be as fast as possible.

iii) if a refresh display is used, the size of the
refresh buffer is often a severe limitation; graphical
information must be packed into it as efficiently as
possible. (Storage tubes of course do not have this
problem).

These requirements favour the use of a low-level graphics
package, built round the specification of the relevant
device. Unfortunately, this usually means the introduction
of a new low-level language; however it is possible by
careful design to combine a standard user-image with
efficient device utilisation; in the GHOST system this is
done by the provision of special processors.,

S Conclusion

We consider that the problems met in a scientific
environment can be classified into three groups:

i) Problems - usually of a routine nature — that are
best done by conventional batch computing;

ii) Difficult or exploratory problems that cannot be
formulated for purely automatic computing; they require
constant interaction from the problem originator, and
hence the interactive approach is almost essential;

440 Problems that can benefit to varying extents from
interactive computing, possibly just in the program
development stage, possibly throughout.

We consider that the greatest benefit obtainable from
interactive (as opposed to batch) computing is not the
possible time savings - useful though these may be - but
the improved understanding that a problem originator carr
obtain by interactive study of problems of the second type;
a study that requires him to be an expert in his problem
field, not a computer scientist.

6. References

(1) P.C. Poole, 'Some aspects of the Egdon 3 operating
system for the KDF9',IFIP Congress, Edinburgh, 1968.

(2) 'A Users Guide to Cotan', UKAEA Paper, Culham
Laboratory Report CLM-R75,

(3) Larkin, F. M., 'A Graphical Output Language and its
Implementation' UKAEA Paper, Culham Laboratory
Preprint CLM-P139.

~ T5

(4) Prior, W.A.J. 'The GHOST Graphical Output System
User Manual', UKAEA Paper, Culham Laboratory
Report CLM-PDN 8/71.

(5) Reid, J.K. 'On the construction and convergence of
a finite element solution of Laplace's equation'
J« Irsts Math. Appligs. 9, 1-13, 1972.

