_______________.__.‘-—-—-"

QULitAa LpuuRrl UL

————

Lt

10061 72

—

A Y

e

!

.

Lhis H“““‘Q‘It is intended for publication in a journal, and is made

authors.

available on the understanding that extracts or references will not be
published prior to publication of the original, without the consent of the

UKAEA RESEARCH GROUP

Preprint

CEM=P 322

NEOCLASSICAL DIFFUSION ARISING FROM
MAGNETIC FIELD RIPPLES IN TOKAMAKS

R J HASTIE
J W CONNOR

CULHAM LABORATORY

Abingdon Berkshire

1972



by o

k¢ Ry J
o vl s e Wik
W

2




CLM-P_322

NEOCLASSICAL DIFFUSION ARISING
FROM MAGNETIC FIELD RIPPLES IN TOKAMAKS
by |

J.W. Connor and R.J. Hastie

ABSTRACT
A solution of the Fokker-Planck equation is obtained
for the distribution of trapped particles in the magnetic
field ripples of an imperfecfly axisymmetric Tokamak; the
resulting particle flux and ion heat flux arising from the
toroidal drift of such particles are calculated, revisimg
previous estimates which neglected the asymmetry of the
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1. INTRODUCTION

The discrete nature of the coils producing the main
toroidal field in a supposedly axisymmetric torus destroys
this symmetry and is responsible for an additional neoclas-
sical diffusion [1] having essentially the same origin as
superbanana diffusion in a stellarator [2, 3]. The resulting
magnetic fields can be written

Bo

B=—e—o7—_ (0, ®(r), 1 - &(r) cosNg) (1)
1+€cos B

where r and O are polar coordinates with respect to the
magnetic axis of the torus and $ measures angular distance
along this axis; € = % is the inverse aspect ratio, 6(r)S e
is a measure of the magnitude of the ripple, N is the num-
ber of turns in the B¢ winding and a rotational transform +
is defined through @®(r) = €&, A component B, to satisfy
div B = 0 has been neglected since we assume NE < 1, The

magnetic field strength is approximately

B ~ BO(I - €cosO - 8(r) cos N¢) (2)

reminiscent of that in a stellarator and one might conclude
that merely substituting 6(r) for €., the variation of the
helical field in a stellarator, in the expressions for super-
banana diffusion [2, 3] would yield the results for 'ripple'
diffusion in a Tokamak.

In one fundamental respect, however, ripple induced
diffusion differs from the analogous superbanané diffusion
in stellarators. Stringer [4] has given a detailed dis-

cussion of this difference which appears at small values of



the ripple well depth &6, or at very large values of N.

He shows that for values of a = %% in excess of unity the
ripple does not result in the formation of local magnetic
mirrors and consequent trapping over the whole minor azimuth,
and that in general for a of order unity, significant
reduction of the mirror depth occurs at all angles. This

can be seen from Eq. (2) by noting that minima in B({)

(where ¢ is arclength along a field line) occur only if

a sin@ < 1 .,
Even when this holds each ripple is an asymmetric mirror

with mirror ratios R+{6) where

(R -1)<26<R+-1

and a well depth A(6)

A(B) = 26['1 - a?s5in®%6 - a [— - sin-l(a|sinel)}|sin6|:| (3)

replacing 26, Stringer's estimate of the reduction in

- 1) given by

diffusion and ion thermal conductivity is obtained by taking
account of this reduction in well depth from 206 to A(8),
but although this effect is of greatest importance it neglects
the asymmetric distortion of the ripple wells. In the next
section we present the solution of the Fokker-Planck equation
for the ripple-trapped distribution in a field of the form (1),
and derive the consequent transport coefficients.

The analysis presented is valid in the experimentally

important range of collision frequencies vj given by

1/2 2

- j Th . 0

S > __J (4)
&

w I‘2

VTth V. v,

R o .

J



where Vh is the thermal speed of species j and W,
J

is the gyro-fredquency. This means physically that the

effective collision frequency Vegs = % is less than the

Y
2
- bounce time of a ripple trapped particle Wy = . vThN ’

R
but greater than the drift frequency around a complete

superbanana orbit in the minor azimuth of the torus,.

2. SOLUTION OF THE FOKKER-PLANCK EQUATION
Collision frequencies in the range (4) may be treated
by writing a kinetic equation which assumes the bounce fre-
quency and effective collision frequency Vegg = V/O are
comparable [5] and then considering a subsidiary expansion
in veff/wb‘ We introduce the distribution function fj
which is the average over a gyro-period of the larmor radius

correction to a Maxwellian Fj satisfying the equation [5]

0q n.V fj + xdj.v FJ. = C(fj) : (5)

where 7 3
" & "y
FJ = ‘Z‘Jt?j—r"D nj (r] exp - W;) (6)
with Kk = v?/2, the kinetic energy per unit mass, and o

is the sign of the velocity q along the field., The gradient

operators in Eq. (5) are taken at constant energy ¢

2 e. ®(r)
. P Ratey
2 mj

where @(r) is an electrostatic potential, a function of

radius only. The drift velocity Y4 is given by
J

(7)

2
= =— nA(uB + g® n.Vn) - 52



where n 1is a unit vector along the field and | is the
magnetic moment: K = q?/2 + UB .
In order to obtain a tractable equation for fj we

‘must replace the exact Fokker-Planck collision operator

C(fj) by a simpler model. For electron-ion collisions

one may use the excellent Lorentz approximation

- g 0 9
Coi (£) = Vg () 5 5 A 5 1 (8)

while ion-electron collisions may be ignored in comparison
with ion-ion collisions. The two like particle collision
operators Cee and Cii may also be replaced by operators

resembling (8), namely

a a P.m.
() = v.. 8 =5 e F . P, =1
CJJ( J) VJJ(KI) E 35 ak 55 f; + v”(fc)q ; Tj (9)
with
43 . f.
5. - J v oV, (fc)qJ
j m
T.-'L fdsv v..(k) qu.
j ]

The justification for this form of operator is that it may
be derived from the Rosenbluth-McDonald-Judd form for
distributions fj localised in velocity space [6], as in
the present case. The term containing p ensures momentum
conservation but may be ignored here, for with a localised
distribution its contribution is small. In fact it may be
included in the analysis, but does not alter the result,
This term is essential in the axisymmetric case where momen-
tum conservation plays an important role. In that case
results obtained using this collision operator are identical
with those obtained from a more accurate variational treat-

ment [6]. We remark that reference 2 employs this form of

- k=



collision operator, Finally we must define the form of

the collision frequencies [2]:

5 4
i%'x_ng_?\. A (x) (10)

V., (k) = - .
¥ mjVB 2 Ik

J

where x. = —i- and
J Tj

. ~%a
Ajk(xj) = (nk + - sz) o (11)
with *x
_ 2 -t Y ._ dn
e (%) == Z‘ e " t'®dt, n'= ax, °
Clearly in Aei’ x; » x_, so that
SA
_ =2
Aei(xe) = x ‘ (12)

Returning to the solution of the kinetic equation (5),
in order to include the effect discussed by Stringer we
must take account of the slow variation in 6 over a ripple
period by using the field line equation O = 60 + t$, where
60 is a reference angle, constant for each field line., Thus,
introducing the variable 60 explicitly into the basic

kinetic equation the first term becomes

J
while the second term is

of .
_ og
o Vo1 L S (13)

B /.2 oF,
1
yVE, = -2 (ﬂﬁ x5 sin(6_+4¢) + O(e?),(14)

j W, B R ar
J
We seek a solution for those particles trapped in a magnetic
V.gr
field ripple and for these we expand equation (5) in T%i; .
b
5 9f .

The term -—= —i may be annihilated by the operator

; ¢, R 2¢
;E; / _ﬂg_ where q(¢1) = q(¢2) = 0 . Unless we make the

o ¢



ansatz

- ,
ol PR E0 £ f(o)+ eff f(U

+ .. (15)
Velf B

£ =

. P2
i : ; ) QE
we are led to a contradiction since = ¥4 NV Fj # 0.
: J
s 91

However, with the expansion (15) we have in lowest order
ag, (1)
J

9¢

and in the first order, after applying the annihilator, one

(-1)

=0 (16)

obtains the following equation for fj

b2
(-1)
oF . 1 d¢(q? + uB) . 3 af.
§;l : 7 f 3 sin (80+ +¢) = }E}jk(K)éﬁ B J —gﬁfﬁﬁ
coj b1 "
(17)
P b2
where J E/ng’;:/AfZ[;c-pBOH-é cos N¢ -¢ c05(60+ +@) ] de .
®1 b1 (18)

On the left hand side of equation (17) taking X = Ng¢
as the variable of integration with a range of less than 27T
it follows that

sin (60 + +0)

1l

sin (6_+ ﬁ X) ~ sin 6_ + o(%)

¢z
2
and since oput) _ | /‘ 99—(“B - g%) and L~ 0(5)
u 5 q uB

we may write equation (17) in the form

(-1) /0 ,
—J b B ol AT e e e et V. (K.‘)+O((5,—.
or wCOlR RED P L H o B em . ik N
J (19)

The appropriate solution of this equation in the range

K

< =
max Bmin
| :

(~1) _ 9 I

: K 1
fj _Eﬁ‘qej-ﬁ.SIH GO(LL-Bmax> '
Z vjk(fC)
6 -

B

(20)




where Bmax’ the lower of the two maxima containing the’

well is given, with the aid of expression (3) by

B

g:x = 1-¢€ cos 604-6{V1- azsinzeo— a]sinf%l[ﬂ- sin-lhlshleo,)]].
(21)

3. DIFFUSION AND HEAT FLUX

The diffusion flux is defined by

27 2 ) K/B
o o G o K.'/Bmax
and the ion heat flux by
27 27 0o K/B
a0 [ dg \~ Bdp  (-1)
Qi = /‘Zﬂ /.Zﬂ ;{; /éxdm q fi m. K vdri (23)
- ® S Kijax
where
v * i 6 (24)
- sin
drj B Yeo R °
.l

and %(_” is given by equation (20).

The | integration can be performed to yield

2 @ dx x %2 e- *j n.” e.®" A
A Tj xj j ......‘j_+—-—J—— (é - JC);I—,J-]
/ n. T. pA J j
2 (x.) J J
J

L =

J
: T
J eBR
(27) oLka .
k (25)
and
b/ =X ,
A T. V “dx, x./2 e ‘[ n* ed”’ 3 y T,
. ”"1‘> = e~ C R
17 (20) 2 '\ eBR/ § O i i Yo
vik(xi)
(26)
k
where 27 b ) %2
A:-”—ZNf d®  sin® 0 /dgs (1 - > (27)
3T o fo) B
max
o a
and B(a) = B(b) = Bmax' Earlier results follow from

- 7 -



different approximations to this numerical factor A.

fa Limit of @ « 1. In this limit (1-B/Bmax)'V6(l4—cos N¢),
the 60 and ¢ integrations can be performed separately,

and

: 3

a >0 -6-

This limit, @ > 0, corresponds to the results obtained
by analogy with stellarator diffusion and applies when there
are deep ripples, e.g. 6 ~ €,

2 Taking a model mirror with an appropriately defined
well depth to take account of the decrease in well depth

for finite values of «
LA(e -
B - BO(1 - ZA(GO) cosN ¢ € cos 60) (29)

with A(B) given by equation (3), the ¢ integration can be

per formed explicitly, and

5 g T %, 3
64 fa 1 . 2 ( A) - 64 /o
A = = & = [ sin q) 5% d60 =5 o) I(a) (30)
o)

which is the result obtained by Stringer [4].

In general, however,

3
A:é;;iéfz Gla) (31)
where
F 2 Yl (X) 3
Gla) = -3—M7—2 f dx cosX ain X dY{cos X - cosY-(Y-X)sinX}/Z
8 ma. CLz— Sinz:x
& X
(32)
where Y = Y, (X) is a zero of the inner integrand.
7T
c = 5 ; a > 1
= sin | (@) ; @ <



Asymptotic forms for G(a), for @« « 1 and @ » 1 are

G(a) ~ 1 - 30 + O(a?) ;o o« 1
Gla) ~ 24§E + O(—l;) ;oo » 1
a a

and comparison with the correction factor I(a) obtained by
Stringer [4] shows that G(a) < I(a) for all q , and that
G(a) ~ I(a)/1.6 for most of the range of a of interest.
Thus the diffusion estimates of reference 4 are sl ightly
pessimistic. In figure 1, G(a) and I(a) are plotted

against a.

-0
— I (a) correction factor. ref 4

\ == G(a) correction factor
\ present estimate

Ol

Ol

00l . L O 7
O O - 20 & 30
Fig. I

Finally we must perform the energy integrations
appearing in expressions (25) and (26); these have been

evaluated numerically [7] to give



|

@ B’ T.*
o . .8438 G(a,)( ) 2L s 42 +-—T-+ 3.37%].(33)

p - %% 0 GM)( >‘278 _e-..g’+345~———](34)
e 9 (2m)”2  \eBR n, T

e

where
. = N2m ne?)
Jk m, /2 T, %l
J J
Thus the ions diffuse more rapidly and the radial electro-
static field adjusts to reduce their diffusion rate to that

of the electrons. Using quasi-neutrality, n, =n_=n

T, 5 T.”
3 = - —i[ﬁ B 3BT . (35)
e Ti

we obtain

n

Substituting this expression in equation (33) we find

the ambipolar flux T

3 2 . ’
A T . T, T T,
oo - dgad & Glo) -—e> {E 1+——1>+ 3.37 =2 + 3.45 — {(36)
v ¥ eBR/ Ln T T T,

€1

and similarly for the ion heat flux

3/ 4
2 T
Q. = - 46,5 &~ Gla) 1) j (37)
1 Vi eBR 1
ii
where
vi.. P 4 N2% ne”A h
jk 3 m. 112'1' s
J

We note that the numerical coefficients appearing in
expressions (36) and (37) differ slightly from those of
Stringer [4]; the coefficients used by Stringer were
obtained by approximating A (x) by x_:vz. We refer to
Stringer [4] for further discussion of these results and

their importance for present and planned experiments.
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