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ABSTRACT

It is well known that the properties of stable quiescent plasma
may be calculated by a method known as the "superposition of dressed
particles". 1In this paper an analogous superposition principle is
constructed for turbulent plasmas. This shows that the turbulent
fluctuations may suppress the growth of the instabilities which give
rise to them. The fluctuation spectrum, diffusion coefficient énd
dielectric constant of turbulent plasma are calculated for the guiding
centre model. The relationship of this theory to that of Dupree and

Weinstock is discussed.
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1. INTRODUCTION
The study of fully turbulent plasma of necessity involves

departures from conventional small amplitude perturbation theory,

In this paper we investigate one such unconventional approach which
illustrates how the turbulent fluctuations may limit the growth of

the instabilities which gave rise to them, so leading to a steady
turbulent state which can be described in some detail.

| In order to introduce the approximation employed for the turbulent
state we first re-examine the dressed-particle picture of the fluctua-
tions in a quiescent plasma. This intérprets the fluctu&tions in

terms of an assembly of non-interacting particles each accompanied by

by a screening cloud. Our derivation follows closely that of
Dawson and Nakayama (1966) and leads to the expressions for the
electric field fluctuations given by Rostoker (1961) and by Hubbard (1961).
By considering how this result breaks down as instability is approached
one is led to a new dressed-particle picture applicable to the fully
turbulent state.

In the turbulent plasma, fluctuations are again represented by
an assembly of independently moving particles but the screening
accompanying each charge is now dependent on the field fluctuations
themselves. An important point about the calculation of this screening
is that it does not start from the assumption that the fluctuations are
small, only that they are random. The present calculation is thus a
complete departure from, for example, qudsi—linear theory.

Our results have much in common with those of Dupree (1967,1968)
and of Weinstock (1968, 1969, 1970); indeed in many respects all
three approaches are equivalent. However we believe that our develop-
ment brings out more clearly what is involved in the theory, provides
a valuable physical picture of the mechanism and in some‘minor respects
yields a more satisfactory result. In particular, Dupree and Weinstock
determine the diffusion coefficient (from a non-linear dispersion
equation) independently of the level of fluctuations and of their
source - in fact the spectrum of such fluctuations remains undetermined
in their calculations. In the present work the source of fluctuations
is introduced explicitly and both the equilibrium level of fluctuations
and the diffusion are determined as part of a single integrated

development. The equations of Dupree and Weinstock then appear as



approximations to our formulae.

2, THE DRESSED PARTICLE MODEL

For simplicity we consider a single species, spatially homogeneous

plasma governed by the equation
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The electro-static field is determined by Poisson's equation

V'E = kﬂel[ fdv, (2)

the magnetic field we take to be constant and uniform.

It must be emphasised that Eq.1 is to be interpreted as the
exact equation for the (singular) distribution, not as the macroscopic
Vlasov equation referring to the smoothed fields and distribution
function.

The dressed particle picture can be introduced by splitting the

distribution function into three parts
t = fo +g+h (3)

where
(i) fo is the space-averaged distribution. This is a smooth function
of velocity only, fo = fo(x), which we further assume to depend
only on v*,
(ii) g(x,v) is the difference between the distribution fo(x) and that of
an assembly of non-interacting particles, that is
—
a(x,v,t) = >J 5 (zg - zgi(t)> 6 (x - y,i(t)) - £ (v) (%)
L

where

V.
~1

—— =5 (v, xB), (5)

and
(iii) h(g,x,t) is all that remains of f and is to be determined by

the theory.
Now by the definition of (fo + g) equation (1) can be written
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where d/dt denotes the convective derivative along the orbits defined

by (5). Similarly, equation (2) becomes

VE=tme (fg dv + [ b dy) (7)

'(we have assumed the usual neutralising background which cancels the

contribution from fo)'

a) Stable Plasma

Equations (6) and (7) are exact; to solve them we must introduce

an approximate procedure. One approximation, applicable to stable
systems only, is based on the observation that g,h,E are all zero in
the fluid limit (1/n > 0, e > 0, with ne, e/m and thermal velocity
remaining finite). In other words, g,h,E are non-zero only by

virtue of the discreteness of the particles and we can therefore

treat them as small, first order, quantities in an expansion in terms
of a discreteness parameter, formally proportional to l/n. The
quantity fD is zero-order in this expansion.

The unknown first order quantity h 1is then determined by

dh e _ af°
H-F n_l']\i-]. ax =0 (8)
and
V'E=tre (fgdv + [h dy). (9)

Equation (8) can be solved to give

.of
h(x,v,t) = - = G, B =2 (10)

~

where G0 is the appropriate propagation operator of equation (8), i.e.

i
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This expression is, of course, nothing more than the well known
"integral along unperturbed orbits". The electric field is then

given by the linear equation

4me® 2 iy N '
L R /d;g G, B - 7y - e 2_!6 (x - x,(t)) (12)
i
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and E can therefore be expressed as the sum of independent contribu-
tions, each associated with one of the sources on the right side of
(12). 1Introducing fourier-laplace transforms and observing that the
left side of equation (12) defines the usual linear dielectric
constant &(k,») one finds

i ik o' (1c,0)

EB(k,w) = - 4me Z m (13)

where p(l) is the transform of the ith independent particle

o :

pi(g,w) =/ dt exp (- ikex (t) + iot >. (1%4)
0
Thus, the electric field of the interacting particles is

equivalent to that of an assembly of independent particles, but each

independent particle is 'dressed' i.e. carries with it a charge

cloud whose effect is to replace the actual coulomb field 1/k2 by

the "dressed particle field" 1/k’e(k,w). In terms of the three

components of the distribution function introduced in equation (3),

g represents the bare particles and h their screening clouds.

In the case of unmagnetised plasma (14) is particularly simple and

the field of each dressed particle is

dc ik exp(ik-[x - %; - x;¢])
(15)

e
E(:E:..)\El) - 2’}t2 kz E(I’S, E'Xi)

and the mean square amplitude of field fluctuations is
fo(w/k)

g — 6
|E(E (JJ) Ig’ (1 )

(B (x,t)) = 4me? /‘dk dw --%;

as given by Rostoker (1961) and Hubbard (1961).

b) Onset of Instability

The results described in the preceding section are valid only for

a stable plasma, that is one for which there are no roots w(k) of the
dispersion equation

e(k,w) = 0 (17)
in the upper half plane. The effect of approaching instability can

be seen from (16); as one of the zero's of &(k,w) approaches the real

w axis from below the integral in (16) increases and eventually

. -



diverges when the zero of e(k,w) reaches the real axis. When there is
a zero of € in the upper half of the w-plane the theory breaks.
down completely and the fluctuations are no longer given by equation (16).

We have described the dreésed particle model in detail +to
illustrate the important point that although the g-term, representing
the bare particles, is the source of the fluctuations, their divergence
-as instability is approached is due entirely to the h-component which
amplifies the fluctuations embodi ed in g. Indeed the fluctuation
level diréctly due to the bare particles is quite independent of the
stability or otherwise of the plasma and is

<E9g> = 4nne® %E . (18)

These observations provide the key to a modified dressed particle
approximation suitable for the description of turbulent plasma. In
this approximation we continue to regard the 'g-component' of the
distribution as a small quantity but the 'h-component' and the electric
field itself which become large in an unstable plasma, are treated on

a more exact footing.

¢) Turbulent Plasma

For a turbulent plasma, we return to the exact equations (6) and

(7) and utilise the fact that g « h to justify the neglect of g in
(6). We cannot, of course, neglect g in (7) for it acts there as

the source of the fluctuations which are to be amplified by h. Then

we have
af
dh e h e 0
el G tuE gt (19)
V'E=t4ne (fgdyv + [hdy). (20)
The first of tiese equations can again be formally solved to give

e afo

B o G(@) E- W (21)

where G(g) is now tiie propagator including the effect of the electric

field E, i.e.
_‘i
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lhen tiie electric field is given by
r af

g |
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The field is therefore no longer determined by a linear

equation. Nevertheless, if we were to regard G(g) as known, then

the solution of (23) could again be expressed as the sum of individual
contributions each arising from one of the terms in the sum on the
right of (23). That is, E would again be the field of independent
dressed particles but the charge cloud accompanying each particle would
depend on tie field of all particles. Since the dressed particles are,
by construction, independent, the central limit theorem suggests that
the distribution of the sum of their fields, E, can be closely approxi-

mated by a normal distribution with (functional) probability

3
P({E]) = N exp { fdx/ j dt] dt’ B(x,t)-E(x" ,t" W(x-x’ ,t—t'))}--
(24)
N is the normalisation and W(E,t) is the inverse of the covariance

Q(x,t):

o o0
/ d:)‘{'”‘/' dtn w(,}f_-,%”, t-—t”)Q('}é”-‘_)\(_" ,t”— tr) - 6(’}5 _ 25! )6(1} _ t’).
B (25a)
The covariance Q(x,t) is defined by

I

(E(x, ) B(x' t')) . (25b)

Qx - x', t - t")

Hence we are led to an approximate solution of (23) by first
taking the propagator G(E) to be the average propagator (G(E)) for
a normally distributed field with covariance Q(xdt) and using this
average propagator to express E as the sum of independent dressed
particle contributions. The auto-correlation of this field E is then
calculated and identified with the covariance Q(x,t) of the assumed
normal form, so rendering the calculation self-consistent. It will
be noted that this approach does not assume that the fluctuations

are small, only that they are random.

3. THE GUIDING CENTRE MODEL

The essential step in the theory outlined above is the calculation

of the average propagator (G(E)> and we shall illustrate this using a

-6 -



model in which the propagator has a simple form. In this model*
the effect of the electric fields is represented by the guiding-

centre velocity

U= (g xB) (26)

and the propagator therefore satisfies

(& w2 oo Gex') s (o) 5 (str) (27)
where
- (Zev g (28)
Then G(E) is given explicitly by .
G ({B]) = @(t-t")8(v-v") & {gc_—,:s’ ~vz(t-t') - Lds U(B(s),s } (29)

where

5%-: vz o+ U(R(s),s)
(30)
R(t') = x'

Using the Fourier representation of the &-function we can write

the average propagator, I = (G) as

ot
T- ®(_t;_tl )S(V—-V’ )/ &%T ei?\'(%‘}g’ - Vé(t—t’)) ("“-EXP { _ i;-’t ./ dsl.j(g(s),s})/ .
!
(31)

It is shown in appendix A that when U is assumed to be normally distri-
buted and isotropic
A2

lexp {- i - [ do 3(a(e),0) b { - e b G2)
u

\

* We shall not discuss the applicability of this model as it is mainly
intended for illustration of the general argument. However it would
be valid if e.g. the turbulence was of long-wavelength compared to
larmor radii and the field fluctuation aligned with the magnetic field

(k « kl) - a not unrealistic situation.
I
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where

Inserting (32) into (31) and carrying out the A-integration the

average propagator T' becomes

T (3%)

2% 1(v,t,t ) 5 1(v,t,t)

=C)(t—tI)5(V—V')6(Z—Z'—V(t—t{l . [_ (éL _ 51 ) }.

This satisfies the differential equation

R T o ot - L SO UL GO R E)
~L

The meaning of (34) and (35) is clear. In the absence of fluctua-
tions particles move along rigidly prescribed orbits, (in the model,
straight lines) represented by appropriate d-functions. In the
presence of the fluctuating electric fields the orbits become "smeared-out",
and are represented by the Gaussian function whose 'width' I(v,t,s)
increases with time.

We shall require only the long-term behaviour of the propagator

T so that I may be replaced by

I(v,t,t") = 2D(v)(t-t") (36)
where o .
D(v) = 5 | s [u(E(s),s) - (0,0) (57)
/ .
and the propagator then satisfies
2, v _pv) Z) T = 8(x-x' )6(v=v )B(t-t") (58)
vt Vg T DWW ok T PR MY BT e )

In terms of this propagator the electric field is given by

af
2
V'E + ine /'dy‘/ dti/ ¢¥i/dv'P(§15',v—v',t—t')E(E',t’}E;E =

m

I
e ) (g, (+)) - (59)
A—
i
The left hand side of the equation represents a non-linear dielectric

constant € . FEquations (38) and (39) can be solved by Fourier-Laplace

transform yielding
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which is a non-linear analogue of equation (13).

Equation (40) defines a 'non-linear! dielectric constant
describing the response of the turbulent plasma and embodies the
stabilisation of the system by its own fluctuations. As the fluctua-
tion level increases the coefficient D(v) also increases. Consequently
the roots of &(k,w) = 0, in the w-plane, move down until they are

below the real axis and the system becomes (non-linearly) stable.

4. THE DIFFUSION COEFFICIENT

The final step in the theory is now to identify the autocorrelation

of the final electric field E given by equation (41), with the co-
variance of the assumed gaussian form (24) in order to make the calcula-
tion self consistent. In the present model the self consistency condition
is reduced to the requirement that D(v) as determined from the electric
field (41), be identical with D(v) appearing in equation (38) defining
thepropagator.

Using (26) and expressing E(x,t) in terms of its fourier transform

we rewrite (37) in the form
: o2 ~ dk i
D(v) = EV—Bﬁ-/ dt/W B (t)E_ (0)exp (ik-R(t)) ) (42)
0

where V is the volume of the system. The factor exp(iE-R(t)) may
be recognised as the fourier transform of the propagator G. In
accordance with the general approach of this paper we replace G by
its average I, then

2 a E (t)'E (0)
;BE‘ /dt/ d_l{m(ﬂdk Vm-k exp (ig-lrt - kiD(V)t)- (43)

D(v) =

In order to calculate Ek(t) we use (41) and observe that because
of the non-linear stabilisation deseribed above, all the roots of
;(k,w) = 0 will be in the lower half of the w-plane. Thus the
asymptotic, steady state, value of @k(t) will be determined by the

=g =



contributions to the inverse laplace transform arising from the

zeros of pi(g,w) which are on the real axis. Then
k exp(- ig-[xi+vit])
B (t) = - tmei ¢ Z ¢ (&%)

The next step is to multiply (43) by the corresponding expression for

E_k(O) and form the ensemble average. Since the bare particle coordinates

and velocities are, by construction, uncorrelated, this leads to

<§k(t)-§_k(0)> ) (4%)292./9 dv fo(v) exp (i kz vt) . (45)

v Tk '{(‘g,kzv) ’é(-k,—-kzv)

Substituting (45) in (43) and performing the time integral, we obtain

b() - LEELE /wdu o2 K, D0V

L )

léé(g,kzu)é(-g, ~k u) {1 (v-u)® + K D?(v)}

(46)
This expression for the diffusion coefficient completes the
theory and is one of the main results of this paper. The equilibrium

fluctuation, obtained by putting t = 0 in (45), is

<|£i|2> 17 )2 &2 3 dv fo(v)
e’ ) /é@’kzv)g(_b_kzv). (47)

—o
5. DISCUSSION

Equations  (46) and (47), together with the non-linear dielectric
constant (40), provide a complete description of the turbulent plasma
in terms of the mean distribution function fo(x). (We do not discuss
the determination of fo(x) which depends in part on the external conditions. )
The essential content of this theory is that a plasma which is unstable
according to the usual linear theory, may be stabilised by the effect
of its fluctuating electric field which produces a 'smearing out' of
the particle orbits. The extent of this smearing is represented by
the coefficient D and is determined self comsistently by (46), the
corresponding level of fluctuations is then given by (47).

That the dielectric constant embodies the self stabilising mechanism
of the fluctuations can be made more explicit if one replaces D(%) by a

constant D. Then the non-linear dielectric constant is simply related to

- 10 -



the linear one
e(k,w) =¢ (k,w + ik?D) (48)
~ ~ A4

and the non-linear growth rate Y is given in terms of the linear

growth v as
¥(k) = (k) - KD (49)

The system is therefore stabilised when the fluctuations have raised

fhe diffusion coefficient to such a value that

D> D0 = Max (Y(k)/ki) . (50)

This quantity D0 is an oft-quoted estimate for the diffusion coefficient
of a linearly unstable plasma. In fact, however, the diffusion
coefficient is not determined solely by the dielectric constant but
by equation (46) and the proper interpretation of (50) is as a condition
for the validity of the theory leading to eq,(46)!
However DO may, in fact, be the solution of (46) in the limit
e® > 0 when such a limiting solution exists. For, defining
r r f(u)k?
1(D) =/ d“'kj du = (51)

k’aé(;g,kzu)é(—;g,_kzu) [ 2?4 kiDQJ

it is apparent that as e® = 0 equation (46) can be satisfied only if

I(D) » . This may occur when the poles in the integrand at

ku=w i (y - D), (52)

arising from the zeros of A(k k u) ;(—k -k u) approach the real
axis,as they do for some value of k when D » D . If indeed I(D)* w
then its limiting form can be found by expandlng € in the vieinity of

=0 to give

et |~ B2 00 - 0)” v (D). (33)

The resonant factor arising in this way has a width ~(y - k? D) and
a height (Y—-kiD)h so that as I(D) approaches its limiting value

variation of the other factors may be ignored. Then

I(D) =~ k- Wki'—kfﬁy ¥ (54)

w 34 -



Whether I(D) does diverge as D = D is now seen to depend on the
igzg_(but not the mawnitude) of ('\r(k)/k2 in the vicinity of its
maximum, for this determines the type of singularity in (54) If
the maximum of Y(k)/kg occurs along a line in three dimensional k
space (as would be the case when Y depends on k through k? and
the maximum is not at ki = 0) then the 51ngu1ar1ty in (54) when
D~ max(y(k)/ki) is of the form

&k
k2

and I(D) necessarily diverges as D > D~ which is therefore the

limiting solution of (46) as e® > 0. Furthermore there must be a
solution of (46) for finite e satisfying D > D.

In other cases the structure of v(k) will be such that
max(y(k)/ki) occurs only at a point in k space. Then (54) need
not diverge and I(D) is bounded for all D > D . We cannot then be
certain that (46) possesses a valid solution. If it did not this
would imply that the dispersion of particle orbits by fluctuations
was never sufficient to stabilise the original instability no matter
how large the fluctuations! It may be noteworthy that this can
apparently occur only when the instability is completely three
dimensional in character.

The dielectric constant E(g,w) and the estimate (50) were derived
some time ago by Dupree (1967) and subsequently by Weinstock (1970).
However equations (45) - (47), which are needed to complete the
description of turbulent plasma, were not contained in these earlier
investigations. Instead, both Dupree and Weinstock used a single
equation expressing the diffusion coefficient in terms of the fluctua-
tions ( F*(k) ). As the spectrum ( (k) ) then remains undetermined
such a description is, in principle, incomplete. The formulae of
Dupree and Weinstock may be obtained by assuming that the poles (52)
lie very close to the real axis and that most of the contribution to
the integral (46) will therefore come from the vicinity of (kzu) = uﬁL.

Then we may ignore the variation of other factors with u and write

K22 (k b w)E(-k,-k,u) | (kzv—wkNL)2‘+ KID? (v)]

(55)
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Comparing the remaining integration over u with the right hand
side of equation (47), we see that D(v) can alternatively be

expressed as

5 (e ) K D(v)
D(v) =< | a . — (56)
R / ~ (0,7 - ") 41 22 (v) ]

which is similar to the expressions derived by Dupree (1967) and hy
Weinstock (1968). -

This last expression also has some similarity to that arising
in quasi-linear theory and it is appropriate therefore to comment on
the relation of this to the present discussion. Essentially the two
theories are complimentary. Quasi-linear theory describes the
stabilisation of an instability by the effect of fluctuating fields
-on the average distribution fo(x), essentially by assuming that the
fluctuations convert fo(g) into a stable distribution. The present
theory describes the stabilisation which arises from the influence
of electric field fluctuations on the particle orbits, even though
the mean distribution function fo(v) may remain one which would be

unstable in the conventional linear theory.

o 4% -



Appendix A
We need to evaluate an average of the type

A=(e®) (A.1)

where t
o= -y - [ u(a(s) 0)as (a.2)

tl

and the probability of w is to be given by a normal functional distri-
bution.

If R(s) is a fixed path, independent of u, (for example the
unperturbed orbit, B(s) = XS): the average is easily performed, for ¢
is then a linear functional of u(r,s). In this case ¢ is a gaussian
random function when E(r,s) is a gaussian random function. However, in
realitylg(s) is itself a functional of 3(£,s) and so a strict application
of this argument is not possible. We shall therefore simply assume that
2(&(5),5) is itself a gaussian random function of time, recognising that
although this is not entirely satisfactory it is no less plausible than
the assumption that E(E:S) is gaussian. (We are not aware of any general
theory concerning the relationship between the statistical properties of

Eulerian and Lagrangian variables. )

Subject to the above assumption we may determine A by a method due to
Edwards (1964). Writing E(S) for B(@(s),s), we may indicate the averaging

procedure explicitly in the form of a functional integral, thus:-
t

A= N‘/{l du(s)exp { - iA [E(s)ds - %/wds f :s' E(S)‘E(S')W(s,s')} (4.3)
\ Y LA

N indicates the normalisation constant. W(s,s') is the inverse of the

covariance function Q(s,s’):-

[+ 2]

'/ ds’ W(s,s' )Q(s,s") = &(s - s”) (A.4)

= co

and Q(s,s’') is defined as

a(s,s') = Culs)u(s') s . (4.5)
We introduce a change of variable:-
t
u(s) = x(s) - iﬁf ds'Q(s,s’ ). -~ (A.6)
tl

Then in terms of X(S): A is

- 14 -



o o t t
_ 1 . o
A = N/élr(s) exp{— :—2-/ ds/ds X(s)-x(s')W(s,s') - -Q-é-/ds/'ds' Q(s,s') s
©  w ' Tt

!

(A.7)

The functional integral now cancels the normalisation, leaving

t t
1\2
A = exp { - E‘—L- /ds/ds'- Q(s,s')} - (A.8)
t! 1!

Using the definition (A.5) of Q(s,s’) and returning to the original
notation, we may alternatively write (A.8) as
A2 .t t
A-ep{ [ as [ as CalB),0)nR(),6)) b (a.9)
v
which is the result needed to establish equations (32) and (33).
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