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ABSTRACT

The paper describes how an automatic graph plotter, used
as a digital computer output device, is capable of providing
useful regional and global information about functions in
the complex plane., This information, in the form of the
approximate locations and types of roots, singularities and
branch cuts, enables one to choose starting points for root-
finding iterations with a high degree of confidence in the
convergence of the iterations. A number of contour graphs
are presented which illustrate general features of complex
functions near typical roots, poles and essential singular-
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1.é Introduction

The numerical evaluation of those values of 2z which satisfy

f(z) = o, e (101)
where f(z) is a suitably single-valued,continuous and differentiable
function of the complex variable z, is one of the classic problems
of numerical analysis and many methods exist for systematically
improving estimates of one or more such values. Some of these
methods, such as those due to Graeffe or Bairstow, are designed
specifically to deal with polynomial functions, whereas others, such
as Newton's method and Muller's method, are in principle applicable
to the general case.

Leaving aside special methods constructed for special functions
(such as polynomials), which do not require an initial estimate of
the intended root, the common difficulty with iteration procedures
is that of ensuring convergence. Generally speaking the best that
can be said of any practical procedure is that it may be ''guaranteed
to converge to the required root provided the initial estimate is
accurate enough'", and the deliberate vagueness is by no means inten-
ded as disparagement.

The object of this paper is to show how an automatic graph
plotter may be used to obtain an approximate general picture of the
properties of the function under consideration, and hence provide
starting values for iterations from which convergence to the
required root may be unconditionally guaranteed. The technique des-
cribed is only suitable for implementation on an automatic computer,
since hand computation would be unbearablyrtediOus, and it does
necessitate some degree of human intervention. However this appa-
rent liability turns out in many practical cases to be a mos t
rewarding imposition simply because the intervener, or any other

interested party, can find at a glance the approximate location and



type of his function's roots, singularities and branch cuts in the
complex plane. This information may not only make it possible to
avoid wasting computer time on divergent iterations, but may also
provide the heuristic basis upon which to build a fruitful analytic
approximation.

2. The origin of convergence troubles

Iteration procedures commonly used for finding roots of a
general function f(z) may be regarded as operating by fitting a
simple function to f(z) over a local region of the =z plane, and
then taking an easily computed root of the simple function as the
current estimate of the required root of f(z). (Note that the word
nsimple" is not intended to mean "schlicht').

For example, if z is an estimate of a root, Newton's method
gives the new estimate z, as

f(zo)
Z, :ZO— T i (2.1)
£ (z )
o
which is actually the result of using f and its first derivative

to fit the linear function
]
wiz) = f(z ) + (z - 2z ). £ (z) vee (2.2)
o o

to f(z) at the point z_, and then taking the root of w(z) as the
next estimate of the desired root of f(z). Muller's technique
avoids the necessity for computing a derivative of f and fits a
quadratic in =z to function values of f at three distinct points
in the =z plane; one of the roots of this quadratic is then taken
as the next estimate of the root of f(z). Another method, which
also avoids the difficulty of choosing between two roots of a quad-
ratic whilst still retaining convergence characteristics similar to

Muller's method, is to fit the bilinear form

Z=~a
W(Z) = E—;—Q— P (2.3)



to function values of f at three distinct points in the =z plane,
taking "a" as the next estimate of the required root of f(z).

This process involves the elimination of b and c¢ from three
simultaneous linear equations, but has the virtues of only requiring
function wvalues and of being unambiguous.

One can see roughly that methods of this general type will be
useful only if the required root of f(z) happens to lie within the
region of the complex Plane where the simple, fitted function is a
fair approximation to f(z), i.e. if the initial estimate of the root
is good enough. The principal source of difficulty with this kind
of iteration is that in general it can utilise only local informa-
tion about f(z) whereas some global, or at least regional,
information is required in order to decide upon a suitable starting
point.

3. Converpence regions

For a given iteration process requiring one initial estimate of
a root, one can envisage the function f(z) as dissecting the complex
Plane into '"convergence regions'", such a region being defined by
the properties:

(i) There exists a 1 : 1 correspondence between roots and
convergence regions, each root lying inside its convergence
region.

(ii) From any starting point within a particular convergence
region the iteration will proceed to the root associated
with that region.

It is convenient for this purpose to consider the point at
infinity as a genuine root if lf(z)l -+ 0 as lzl —+ o, and in that
case its convergence region will completely surround the convergence
regions for all roots in the finite prart of the plane.

Clearly it would be of interest to establish the convergence



regions of a function under a given iteration before embarking upon
the perilous procedure of the iteration itself. In genéral this is
very difficult, but it is simple enough to isolate graphically every
root of f(z) within as small a region of the 2z plane as desired.
However, it is possible to establish the convergence regions for any
function under a steepest descent type of iteration, equivalent to
the limiting case of Newton's method with a very small step length,
and this is described in section 6.

4. The scope of graphical display

The following simple technique may be used to obtain useful
information about f(z) in any prescribed, finite region of the
complex plane.

Let f(z) = ulx,y) + ivix,y) vee (4.1)

where z = x + iy ceo (4.2)
and regard the single valued functions u(x,y) and v(x,y) as defining
surfaces in a three dimensional space. The zero height contours of
the functions u and v, drawn in the (x,y) plane, must certainly
intersect at the roots of f(z), and an nth. order root will be
crossed n times in each surface. Moreover, all contours of u
and v, of all heights, pass arbitrarily near to all the poles. To
see this, suppose z is a pole of order n, then the dominant term

of the Laurent series of f(z), expanded about z is

(EjgﬂTn , a = constant oo (4,3)
(o]
Let z - z = Rele
o
ip :
a = Ae , where A is not zero,
so that (4.3) becomes
i(¢-nb) e

Ae _ ACos (¢ - nbO) ; Ai_Sin £¢ nd) oy (4.4)

R" ' R" R
Now consider the contour ul(x,y) = U. Choose any R, greater



; A
than zero, such thatﬁh 2 U and we see that there must be exactly

2n values of 6 for which

A Cos (¢ - nB)

n

R

= U LN (4n5)

Thus the contour height U in the u(x,y) surface intersects a
circle, with arbitrarily small radius, centred on the pole, exactly
2n times. In fact these intersection points are spaced equidistantly
around the circumference of the circle and the effect is that the
contour appears to pass through the pole n times at angular
spacings of g. A similar argument applies to the imaginary part
of vix,y).

If ulx,y) and v(x,y) are computed at the nodal points of a mesh
spanning the finite region of interest this information may then be
pProcessed in order to compute the curves ulx,y) = 0, v(x,y) = 0 in
a form suitable for bPresentation to an automatic graph plotter.
Also, if a few extra contours of positive and negative heights are
added, the resulting picture gives a clear indication of the approx-
imate positions and types of roots, singularities and branch cuts in
the region of the complex plane considered.

Figure 1 illustrates contours in the u and v surfaces for

the function

(z=-1)(z-i)
flz) = T;:TTT;:TTQ coe (4.6)

The location of the roots and poles is clear at a glance, and
the order of either is determined by counting the number of times a
zero-height contour passes through the root or pole.

If £(z) is a rational function, having only a finite number of
roots and poles, these can all be located by plotting two contour
graphs as follows

(i) Plot contours of the real and imaginary parts of f(z)

inside the unit circle in the =z plane. This finds



all roots and poles inside the unit circle:

(ii) Make the conformal transformation w = % and plot con-

tours of the real and imaginary parts of f(%) inside
the unit circle in the w plane. The values of W
at the roots and poles which now appear in the w
plane can then be inverted to find the positions of
the roots and poles of f(z) which lie outside the
unit circle in the =z plane.

However, if f(z) is a trancendental function, having an infinite
number of poles or zeros and one Oor more essential singularities, at
least one of the above two pictures will be very confused, due to
the fact that the discrete mesh will be incapable of resolving the
fine structure. For such functions one can obtain rather crude
general information by the above method and then proceed by examin-
ing selected regions of the 2z or w planes in more detail.

5. The electric field analogy

For the purposes of subsequent discussion it is convenient here
to review one of the many physical interpretations assignable to
functions of a complex variable.

T4 flz) = ulx,y) + ivix,y)

is a function of the complex variable =z, then

log[f(z)] = glx,y) + ih(x,y), sam LB«1)
where g(x,y) = log lf(z)] cee (De2)
and h(x,y) = arg [£(z) ] ... (5.3)

is also a function of =z, and g(x,y) and h(x,y) both satisfy

Laplace's equation

v2g =0 = Vzh oo e (5=4)

except at the singularities of log[f}. This allows us to use f(z)

to construct a two dimensional electric field in the following way.



At the position of each pole of f(z) place an infinite positive
line charge of magnitude equal to the order of the pole, and at the
position of each root place an infinite negative line charge of
magnitude equal to the order of the root. The equipotential lines

of this electrostatic field are given by

log| £(z)| = constant coe (5.5)
and the electric field lines are given by the orthogonal curves

arg[ f(z)! = constant cos (5.6)

Thus a picture of the electric field associated with the func-
tion f(z) is obtained simply by plotting contours in g(x,y) and
h(x,y), the real and imaginary parts of log[f(z)], in exactly the
same way as was described for u(x,y) and v(x,y).

The electric field vector is (- %ﬁ, - gﬁ),and on appealing to
the Cauchy-Riemann relations we see that the null points in the
field occur where

e o0 (517}

1
o

d 1
iy [log (£)]

i.e. at those points, other than roots of f(z), where gé = 0,

Figure 2 illustrates the electrostatic field associated with the
function defined in equation (4.6). The equipotentials plotted are
given by

glx,y) = -1, 0 and +1,

whilst the electric field lines are given by

hix,y) = -® + E%E, n=20,1,...6

The branch cuts in the plane are due to the discontinuity in
the arctan function as the arguments increase from
[Cos(m-g), Sin(x-g)] to [Cos(m+e), Sin(n+e)], € being a small
positive number. Since seven lines of constant arg(f) are plotted,

the order of a root or pole is found simply by dividing the number



of lines issuing from a singularity in log({f) by seven.

6. Convergence regions for a simple descent method

Consider the i1iteration formula

z, = z - A f}Z) ; waw [6a1)
' i(z)
which reduces to Newton's method when A = 1, It is easy to show

(e.g. Lance, 1960) that one stage in the iteration represents a step
in the complex plane, of finite length, in a direction tangential to
the line of steepest descent in the loglfl surface at the point =z.
The real, positive number A simply fixes the length of the correc-
tion step. If the step length is made small by making A small the
iteration will proceed along a line of steepest descent in the
log]fl surface, i.e. along a field line, away from a pole and
towards a root, in the associated electric field.

The electrostatic field associated with f(z) now provides a
useful heuristic basis for discussion of the convergence of itera-
tion formula (6.1) in the limiting case where A is small, for we
need only consider the disposition of field lines in relation to
charges and null points., In general a field line starts (high
potential end) and finishes (low potential end) either on a charge
or at infinity. Also, apart from charges and null points, exactly
one field line passes through every given point in the (x,y) plane.
Field lines which pass through null points are termed '"critical",
and such a field line will only intersect charges of the same sign,
whereas an ordinary field line will start at a positive charge (pole)
and end at a negative charge (root), either of which may be at
infinity. Thus from any starting point not on a critical field line
the iteration must converge to a root, either at infinity or in the
finite part of the plane.

The convergence region for any particular root is simply that



region in the complex plane which exactly contains all the field
lines which end at that root., Moreover, the boundaries of the
convergence regions are those critical field lines which do not pass
through roots, since it is impossible for the iteration to cross
such a line. Thus in order to delineate the convergence regions we
simply evaluate arg(f) at the points where

d
dz

[log(f)] =0
and plot contours of arg(f) at these heights, in the region of
interest,

Figure 3 illustrates the convergence regions for the function
defined in equation (4.6) under this small step limit of Newton's

iteration, the picture corresponding exactly with figures 1 and 2.

The points A, B and C are null points in the electric field, i.e.

d )
the zeros of g;ilog[f(z}J}. It will be seen that the convergence
region for the root at z = i completely encloses the convergence
region for the root at z = 1, and this in turn is completely sur-

rounded by the convergence region for the root at infinity. One
curious consequence of the disposition of the convergence regions
is that, from the starting point S, the iteration will converge to
the root at z = i, not to the nearer root at z = 1, even though the
point z = 1 lies between S and the point z = i! Notice also that

the critical field lines which pass through roots, but not poles,

delineate the convergence regions for the function Tz7° and in this
/
case dissect the plane into two infinite parts.

7. Some general remarks on convergence repgions

If A in equation (6.1) is a finite positive quantity the itera-
tion will in general step onto a new field line at every stage.
This means that an iteration starting from within a convergence
region for the small A case could well step out of that region

either towards infinity or to a different root., It is difficult to-



be precise but intuitively one would expect this danger of
"wandering' to be great if
(i} the iteration starts near to a convex part of the boundary
of a convergence region for the small A case,
or (ii) the iteration starts near to a root of é%[log(f)j,
or(iii) A 1is large.

In particular a Newton iteration starting from the point S in
figure 3 will diverge to infinity, and there exists a significant
region surrounding the point B from which the iteration also
diverges to infinity; moreover the rate of divergence in both cases
is considerably aggravated as A is increased. Lance suggests a

proceedure of increasing A wup to N, the first integer for which

[flz - )2 0] 5> |2 - NED e (7.1)
f f

given that

| [z - N1 < |£(2)]
f

ciovever, in view of the example taken the author concludes that this
is unwise as a general practice; it certainly appears that finite-
sized convergence regions become smaller as A is increased.

Now cons ider a root of f(z) surrounded by its associated conver-
gence region under the iteration (6,1), where A is finite. We can
regard (6.1) as a conformal mapping which transforms the point 2z,
inside the convergence region, into the point 2z, which in some
sense is nearer the root than 2z is. Moreover (6,1) maps the
entire convergence region onto itself so that, in particular, the

boundary of the region is a curve which is invariant under the con-

formal mapping

w =z - Lz cae (T92)

£'(2)

The points which transform into themselves under (7.2) are

- Jil =



given by

f(zl

f (z)

=0 iee (Te3)

i.e. they are the poles and roots of f(z). Clearly the roots of
(f(z) must be invariant under (7.2) or the iteration would never
converge; the fact that the poles are also invariant indicates that
it will be inefficient to start the iteration from near to a pole
Similarly, the convergence regions for an iteration procedure of
the general type,
w = f(z) cee (7.4)

must be mapped onto themselves by the conformal transformation.

An illustration of the concept is given by the application of

Newton's method to the function

flz) = -2 veo (7.5)
z-1
In this case the conformal mapping (7.2), with A = 1, becomes
w = ZE LR (706]
which transforms the unit disc into itself. Thus, for Newton's

ﬁethod, the unit circle marks the boundary of the convergence

region associated with the root of the function defined in equation
(7.5). Figure 4 shows the electrostatic field picture of this func-
tion and the progress of two Newton iterations is marked,illustrating
the role of the unit circle as the boundary of the convergence
region,

8. Contours of some typical functions

The examples portrayed in figures 1, 2, 3 and 4 illustrate some
general topolographical properties of rational functions. As far as
roots and poles are concerned the electrostatic field analogy seems
to the author to be the easiest way of visualising such a function,
One interesting result of this analogy is the fact that Lucas's

theorem, wnich states that the zeros of the derivative of a



polynomial must lie within the smallest convex polygon which con-
tains all the roots of that polynomial, is physically obvious from
the fact that no null points in the electric field can lie outside
this polygon.

By way of further example, contours of some other common func-
tions are shown in figures 5,6,7,8,9 and 10, Figure 5 shows contours

of the real and imaginary parts of

fle) = ' b (8.1)

and figure 6 shows corresponding contours for its logarithm, thus
_illustrating behaviour near roots and poles of fractional order. In
this case the position of the root is not clear from figure 5, but
is quite plain in figure 6. Figure 7 shows contours of the real and

imaginary parts of

wl-

flz) = e ceo (B.2)
near the isolated essential singularity at z=0; as is well known,
behaviour of the function near this point is seen to be very complex.
However, the electric field analogy, portrayed in figure 8, is much
easier to understand and illustrates that (8.2) represents an elec-
tric dipole situated at z=0. An essential singularity as a limit

point of poles is exemplified by the function
f(Z) = Cosec (12) e 00 (803}

which has such a singularity at z=0. Figures 9 and 10 illustrate
contours in the real and imaginary parts of Cosec(%) and its loga-
rithm. Near the essential singularity the structure is too fine to
be resolved by the finite mesh, but the general features are clear
enough to establish the existence of a concentration of singulari-
ties near the origin.

9, Implementation of the technigue

All the graphical results presented above were obtained using a

z 13 =



computer program written by the author in a dialect of FORTRAN.
The computer used was the I.B.M. 7030, or STRETCH, at A.W.R.E.
Aldermaston, and the automatic graph plotter was the Bensen-Lehner
Model J. The program is in general use at the Culham Laboratory of
the U.K.A.E.A. and can be used by personnel with a minimal knowledge
of computing, Normal operating procedure, given the function f(z),
is to compute contour graphs over a finite rectangle in the complex
pPlane and thence proceed either to iterative root-finding or to
further contour graphs over a smaller rectangle contained in the
original one. However, a number of program options provide a good
deal of flexibility in operation and output, and no single procedure
can be regarded as '"the best'" in all circumstances.

The contour graphs have been edited somewhat for the purpose of
presentation, but this editing consists largely of annotation and
is not normally required iﬁ'everyday work. In practice automatic
contour plotting has been found, over a period of more than a year,
to be a very versatile form for presentation of computed results,
and its use at the Culham Laboratory is by no means confined to the
study of functions of a complex variable.

The iteration procedure available in the program is of the form

Z’ = z-A f(Z) o e o (9-1)
g\z

where g(z) is a 3-point approximation to %é. In figure 11 the
points z;, z_, and z, are spaced equidistantly around the circle

centred on z, and the approximation to the derivative is given by

2ix 4im
f(z,)+e 3 f(zg)+e—_§- flz,)
T P pp— 2 s 09.2)
= 3z, - z)

1
Normally A is set equal to unity but is reduced appropriately,
after first trying a more accurate estimate of gé, g If(z’}l is

found to be greater than ]f(z)’. The radius of the circle, on



which z,, z, and z, lie, decreases as the iteration converges, as
shown in figure 11. This method avoids the necessity for explicit
evaluation of %é whilst retaining quadratic convergence characteri-
stics similar to those of Newton's method proper. A disadvantage is
that f(z) must be computed three times at every stage, but its
inherent simplicity and reliability make it attractive for cases
where f(z) is easily computed. Moreover this iteration is conver-
gent in many cases where Newton's method proper is divergent since
the limiting case, when M is made small, must be convergent.

10, Conclusions

An automatic graph plotter, used as an on-line or off-line
digital computer output device, is capable of providing reasonably
accurate regional and global information about functions of a
complex variable, This information, in the form of the approximate
locations and types of roots, singularities and branch cuts in the
complex plane, enables one to choose starting points for a root-
finding iteration so that convergence of the iteration may be
guaranteed. In special cases the convergence region for a parti-
cular root may be located exactly, but in any case a prel iminary
graphical study can isolate the root well enough to inspire
confidence in the convergence of a subsequent iteration. Moreover,
the physical insight provided by the electrostatic field interpreta-
tion of a function of a complex variable is helpful in understanding
the function generally, as well as in guiding one's choice of a
starting point for the iteration.

The contour graphs presented illustrate how general features of

a function may be recognised at a glance.
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