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ABSTRACT

A set of coupled nonlinear partial differential equations (PDE)
describing a liquid in contact with a hot wall is derived. As an
alternative to obtaining an approximate solution by linearization it
is shown how the nonlinear PDEs may be reduced to nonlinear ordinary
differential equations (ODE) under a variety of approximations. In
the case of the acoustic approximation the important parameter is
the rate of heat transfer, L, across the interface. Tor large
values of this parameter vaporization is initially suppressed due to
the rapid pressure rise. The system then relaxes by volume expan-
sion and vaporization occurs. The temperature, pressure, thickness
and time of formation of the vapour layer are all calculated. For
exceptionally large values of r; » vaporization is completely sup-
pressed until supercritical temperatures are reached. Although
large pressures are obtained their duration is short; however, if
the system is contained, large, long-lived pressures occur for
quite moderate heat-transfer rates. It is suggested that the large
pressures which occur in a contained system could account for a sub-
stantial proportion of the shredding that occurs in a thermal
interaction. That is, much of the area increase is an effect rather

than the cause of a thermal interaction.
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NOMENCLATURE

A, cross-sectional area;
Al’ constant;
AZ’ constant;
A3, constant;
A4’ constant;
AS’ constant;
Ai, Airy function;
A{, derivative of Airy function;
Bl’ constant;
Bz, constant;
BB’ constant;
BA’ constant;
BS’ constant;
Bi, Airy function;
Bf, derivative of Airy function;
Cl’ constant;
C2, constant;
C3, constant;
D, length of constraining column of liquid;
D2, constant;
DA’ ceonstant;
Da(x) Dawson's integral;
—exy [ -cz
Dag(x;a,b,c), = exp(-ax-be )J exp(az +be “)dz;
o

Eé’ constant;
F(t), function of time;
FS’ constant;
M, mass of slab;
Mi’ mass of constraining column of liquid;
N, positive integer;

Py pressure of liquid;

Po’ initial pressure of liquid;

o critical pressure;

maximum pressure;



WO

= P-P ;

o}
heating rate;
temperature of liquid;
initial temperature of liquid;
critical temperature;
temperature of hot wall;
volume of slab;
initial volume of slab;
constant;
constant;
specific heat of liquid; constant;
complementary error function;
function of time;
thermal conductivity of liquid;
mass of slab/unit area;
summation index;
constant;
heat flux;
= -dR/dT;
sonic velocity;
time;
dummy variable for integration;
time;
time;
velocity of liquid; variable;
space dimension; variable;
= 20 ;
variable;

constant;

Greek symbols:

o

»

Y,

¥ (nyx) ,

variable;

coefficient of expansion of liquid;
X .t n-1,

= J e t dt the incomplete gamma function;
o

coefficient of compressibility of liquid;



= 3.14159... ;
density of liquid;
initial density of liquid;

- KT

integral of Q.



1. INTRODUCTION

It is well known that when a hot molten metal comes into contact
with a cold vaporizable liquid an explosion of considerable violence
may occur. This type of explosion is called a thermal interaction or
a fuel-coolant interaction, the hot liquid playing the role of the
fuel whilst the vaporizable liquid is the coolant, and it is known to
be the result of some physical rather than chemical process.
Explosions can also occur in liquefied hydrocarbon/water systems [1].
Witte, Cox and Bouvier [2] quote many examples of such interactions.
In addition, these authors as well as Brauer, Green and Mesler [3]
and Groenveld [4] give resumes of some theoretical models of thermal

interactions. Numerous references may also be found in those papers.

There has been much discussion on the importance of vapour pro-
duction in thermal interactions. For example, the violent explosion
is sometimes attributed to an extremely rapid rate of vapour produc-
tion. On the other hand a vapour layer between a hot surface and a
cold vaporizable liquid will inhibit heat transfer. It is, therefore,
important to investigate the conditions under which vapour production
will occur and this is the subject of this paper. To be specific, we
deal with the problem of a cold vaporizable liquid adjacent to a hot
wall. (The word 'cold' implies only that the temperature of the
vaporizable liquid is initially leés than that of the wall. An
extremely important case where a thermal interaction may occur is in
certain hypothetical accidents in the sodium cooled fast reactor.
(There the 'cold' liquid is liquid sodium.). The situation under
investigation is depicted in Fig.l. The initial conditions could
occur in several ways; For example, the wall could have the same
temperature as the liquid and then be heated very rapidly; or the
hot wall might initially be far from the liquid and then be brought
up extremely quickly. We assume that heat transfer essentially takes
place in only one direction. By solving the coupled heat transfer
and pressure equations we are able to predict the temperature and
pressure within the cold liquid. By comparing this P-T curve with

the saturation P-T curve the pressure, temperature, thickness and



time of formation of the initial vapour layer may be predicted. In
our analysis we assume that physical properties such as thermal con-
ductivity, specific heat, etc. are constant, Since the values of
these constants are markedly different in the vapour our analysis is
valid only up to the time when vapour is first formed. To proceed
further the temperature dependence of physical properties must be

taken into account.

In section 2 we derive a set of nonlinear PDEs describing the
system. The linearized version of these equations has been con-
sidered by Epstein [5]. To deal with the nonlinear equations
themselves we reduce the PDEs to ODEs; the variety of ways of doing
this as well as the motivation is the subject of section 3. In
section 4 we discuss the results and in section 5 we consider a

situation where the slug of cold liquid is completely trapped.

2. THE PDE METHOD

We derive the nonlinear PDEs describing the system illustrated
in Fig.l. On the assumption that conduction is the only heat-
transfer mechanism present, the net heat gained by a slab of liquid
in unit time is ki52T/5x2 per unit area. Hence from the first law of

thermodynamics we have

.2
oT v du o T
oL ¥ — = L=
Po 3t * ) L ox ¢ ax2 (2.1)

where po s €, Y, #, and k are respectively the liquid density,
specific heat, coefficient of expansion, coefficient of compressi-
bility and conductivity and all are assumed to be constant. u is
the liquid velocity. The equation of state provides a second

equation
o Lol 1%a (2.2)
M ot X

du_ _ 1 2

It is not difficult to eliminate u from these equations, the result

being an inhomogeneous wave equation for the pressure
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and a third order equation for the temperature.
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v 9T _ o2 _ 3% 5 g
(p c + T)a YTat k—a-}—{-z . (2.6)

Due to the nonlinear nature of these equations further analytical
work in this direction is difficult. Two alternative courses of

action are

1. Linearize the equations.
2. Retain the nonlinearity but reduce the equations to

ODEs by means of some approximation.

The second of these alternatives is the main subject matter of this

paper and will be considered in section 3.

The nonlinearity of Eq.(2.6) arises from the terms T OdT/dt and
T O0P/dt and so the equations may be linearized by neglecting these
terms. The source of the nonlinear terms is T du/dx in Eq.(2.1),
thus a linear theory is produced if the energy equation is assumed to
that of simple heat conduction. Since the physical basis of the non-
linear term is the fact that the internal energy is a function of
volume as well as temperature, we see that a linear theory will be
accurate in the case of substances for which this volume dependence
is slight. The linearized equations, which may be solved using
Laplace transform techniques', are the subject of a paper by
Epstein [5]. However, there are two main disadvantages in dealing

with the linearized equations:

* Epstein gives no details of the method. For convenience we give
details of the solution in Appendix 1.



1. The Laplace transform method can only be used if the length

of the system is infinite.

2. The only heat-transfer process that is considered is simple
heat conduction. In fact, it is unlikely that this is the
only significant process; turbulence is observed to be
present in thermal interactions and this will certainly

complicate any heat-transfer mechanism.

For these reasons we consider an alternative approach.

3. THE ODE METHOD

In this section we consider how a solution to the general prob-
lem posed in the introduction may be obtained by reducing the PDEs
(2.1 - 2.3) to nonlinear ODEs. This may be done by assuming that
within a given slab of liquid the temperature and pressure are uni-
form, i.e. space independent. Apart from mathematical expediency

there are two reasons for taking this step:

1. A numerical solution to the problem involves dividing the
liquid into cells within which the temperature and pressure
are assumed to be uniform. Thus an analytic solution
should assist the interpretation of numerical results where,
of course, the nonlinearity is even more pronounced since
the properties of the materials are assumed temperature

dependent.

2. The results will be used in a future paper in the develop-

ment of an analytic model of thermal interactions.

As a justification of the ODE method we note that

1. In a paper by Cho, Ivins and Wright [6] uniform tempera-
ture and pressure is also assumed within a certain =zone.

The results they obtain do not rule out this approximation.



2. The results obtained by Epstein [5] indicate that uniformity
of temperature and pressure is not a gross assumption behind

the pressure peak except for very early times.

The equations describing the system depend precisely on what
mechanism is used to constrain the slab and also on whether constant
or variable mass of slab is assumed. We consider first the acoustic
approximation. We expect this approximation to be valid up until the
time taken for a sound wave to travel the length of the system and

back again. Thereafter, the system will be inertially contained.

A, Acoustic Approximation.

Consider a slab of liquid next to a hot wall (Fig.2). The
liquid/hot-wall interface is stationary at all times but the opposite
end of the slab is free to move via the excess pressure and also
expansion due to temperature rise. The velocity of this end is u.
Beyond the slab lies the constraining liquid whose temperature,
pressure and density remain constant in time. The cross-sectional

area is A. From the first law of thermodynamics we have

aTr y dv _ .
Me e + T At RA (3.1)

where M = pxA is the mass of the slab and R 1is the rate of heat-
ing per unit time and area. V is the volume of the slab. The

pressure is given by

g P AL Ly (3.2)
t t

For the acoustic approximation of infinite extent we have the equa-

tion of motion

a . AC-Fo) (3.3)
dt P,S )

where s 1is the sonic speed in the unheated liquid. Thus Egs.(3.1)

and (3.2) become

T+—Y— r(pp) = R (3.4)
M.mposc 0 mc
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where m = px 1is the mass per unit area of the slab. The initial

conditions are

P(0) =P T(0) =T
o o]

To proceed further we must specify whether the mass, m, being heated
is constant or not. The well-known solution of the Fourier heat con-

duction law in one dimension is

T = TW erfc( = > (3.6)
20/t
2

o = k/poc and T(o,t) = T,

Although the solution (3.6) implies heating throughout all space,
the effective sphere of influence is usually taken to be x = 20/t .
Thus in Egs.(3.4) and (3.5) we define the variable mass approximation

to be such that
m = poont

where x_ =20 . Eqs.(3.4) and (3.5) become
. _L -
T+—-:-2Y—t2TQ= L e (3.7)
np “sex P, cx
-3
l—’Y. t
__T__L . i
Q¥ “p_sx_ (3.8)

(Henceforth we shall use Q = P—PO as the pressure variable.

The initial condition is Q(0) = 0).

As an alternative we may use the constant mass approximation
m = constant. Numerical solutions which use a Lagrangian mesh have
constant mass cells, thus this method provides a more direct com-
parison with computer codes. In this method, however, we still have
an unknown, x, in Eq.(3.5) to account for. (x may be replaced by

m/p but p is also unknown). To circumvent this problem we replace

*The value of x, is a matter of definition. Some may prefer to use
X, = 40 thus extending the region effectively heated. The effect
on the numerical results is slight and certainly the overall con-
clusions are unaltered.



x by m/Do. This approximation is equivalent to replacing - ﬁ%-&v

in the equation of state by - ;%— &V where VO is the initial vol-
ume. Assuming that V 1is a monétonic increasing function of time
the effect of this approximation is to decrease the pressure from
its correct value. With the constant mass approximation Eqs.(3.4)

and (3.5) become

: Y R
+— = —
% MmpP sc L mc (3.9)
o
=Yg _ Q.
Q " T msm (3.10)
B. Inertial Constraint.

In this case the interacting slab of Fig.2 is constrained by a
mass Mi of unheated liquid. Let the length of the unheated slab
be D. (D > x, hence D 1is constant). The acceleration of the

constraining slab is AQ(t)/Mi and so

dv A2 pt
It M Q(t’)dt’
i o

thus Eqs.(3.1) and (3.2) become

-t
Y Fidel = e
T T alt" Jdr = (3.11)
(0] o]
" Y - 1 ',f't
R =g T = Kponx 'Jo Q" Jdt" . (3.123

For the constant mass approximation we have to solve the equations

no Y - R

T 4+ mcp D TQ = (3.13)
. Vo ]_

Q= = T - = Q (3.14)

t .
where () = i} Q(t’)at’ and Q(0) = Q(0) =0 .

With the variable mass approximation the relevant equations are

% 1 '
T —Y _tTPTQ =_R_ 77 (3.15)
npzx Dc P cxo
(o]
.. z L
Q=:—:T——-—]-'———t2£'2. (3.16)



Before any of these sets of equations can be solved the rate of

heating, R, must be specified. We use two approximations:
1. Constant heating R = r (3.17)

2. As the temperature of the slab increases we expect
the rate of heating to decrease, thus a second approxi-

mation is (variable heating)

-1 T (3.18)

rl and r, are constants. It should be noted that the heat-transfer

mechanisms are not specified. A detailed estimation of ry and r,
might take into account conduction, convection and radiation as well
as the modifications of these processes due to turbulence, but in our
calculation ry and r2 are simply input parameters. Average heat-
ing rates of 107j/s/m2 have been measured but heat transfer rates

much larger than this may occur during the initial stages.

We now discuss how the various sets of equations may be solved.
The simplest case is the acoustic constraint, constant mass and con-
stant heating approximation (Eqs.(3.9), (3.10), and (3.17)).

Elimination of T and T gives

YZT
G+—— %+ 5—2—)+
ump sc L Msm nzmp sc

o o

i [ BN
+_Y_QJQ-—1—=D (3.19)
uzszmzpoc s
ot
where Q = Jo G (e Jde? . Equations similar to (3.19) are discussed

in most books on nonlinear differential equations and it is known
that solutions with fixed critical points exist only for certain
values of the coefficient of Qz (see, for example, Murphy [7] or
Davis [8] ). Unfortunately, in this case the coefficient of ﬁz does
not fall within this class. Little work has been done on equations
whose critical points are not neéessarily fixed. To obtailn an
approximate solution we solve the temperature equation (3.9) with the
nonlinear term set equal to zero and then use this solution in the

full set of equations. This method is not equivalent to linearizing



the equations. Comparison with numerical solutions shows that this
method of obtaining the temperature solution is reasonably accurate.
Hence we find a first order equation for Q and this is easily

solved to give

£ A
-
_ 1 1/5
= C .= = — J< )
Q 1@21%( 7 E T3 Bl>
4 1 2) <A1 /2')‘
- exp\-At - 5 Byt D\ 5 B ] (3.20)
r
T=T +-L¢ (3.21)
(@] mcC
where
1 2y
A = L _l_—o_
1  usm “2mp sc
(o]
_ Y ¥l
Bl =573
n“mep s
(@]
_..Bg¥
Cl T men
Da(x) is Dawson's integral [9]
_e 2 X2
D (x) = e =% J e? dz
a (o}

The other sets of equations may be dealt with in a similar man-
ner. In all cases we can obtain a single differential equation for
Q (or some integral of Q times a weighting factor™) but in no case
have we solved the resulting equation. For the acoustic constraint
we always find a second order differential equation whose critical
points are not necessarily fixed whilst in the case of the inertial
constraint the differential equation turns out to be third order
monlinear. Approximate solutions may be obtained as before. We

find the following+ -

* See Appendix 2.

T See Appendix 2 for more details.



A. Acoustic Constraint.
1. Constant mass

(a) Constant heating

Eqs. (3.20) and (3.21)

(b) Variable heating

rl rl
T=—=-\7 -1, exp(-D,t) (3.22)
P, 2
c, . B B, -D,t\
g =5t {emelgl-ayr-p e T -1 4
2 2 2
+ A, Dag(t;Az,leDz,Dz) } (3.23)
Wo. L, v’ry
2 Hsm 24.2mpoa-.w::r2
- )
4 wmp sc M2 °
I L S
2 men \ r, @ o
= X
D, 2
mc
l‘-x

_ -cx -cz
Dag(x,a,b,c) = exp(-ax-be ) Jo exp(aztbe “)dz

2. Variable Mass
(a) Constant heating
2r %
1 2

Po €Xg

T=T # (3.24)
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1
exp(- Ayt~ 28 t%) Da(B3/JA3)}

2 rl'Y2

2 3 2 2
H D sc X
o

Variable heating
r,

_4{

By

(
2, 2, (55

2B4 )
D

(s
exp \ 4 t

-D, t
!w

2At —?ﬁ'el‘-
4

» 2B /D J]
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(3.25)

(3.26)

(3.27)



B. Inertial Constraint
1. Constant mass

(a) Constant heating
T given by Eq.(3.21)
Z

- ot R r
@ = nrs, PR (-2) | AGy)ay -

Z

o}
7’ If‘z
- By (-z) J B,(-y) dy } (3.28)
2o
-2
B I}
£y ¥ gl
i)
_ 3
z = z0 + B5 t
2
1 ¥ To
As = L
nDm H mcpoD
er
B. = L
3 HmZCZPOD
. |
5] mcH

/
Ai and Bi are the Airy functions (ref.[9] p.446) and A; and Bi are

their derivatives.

(b) Variable heating

T given by Eq.(3.22)

Q can be found in terms of integrals and derivatives of Bessel

functions of imaginary order and argument.

2. Variable mass
(a) Constant heating.

T given by Eq.(3.24)

Q can be expressed in terms of a series solution whose

coefficients are determined by a three-term recurrence relation.

- 12 =



(b) Constant heating
T given by Eq.(3.26)

No solution for Q has been obtained.

4. DISCUSSION OF RESULTS

A, Acoustic Constraint.

The solutions (3.20), (3.23), (3.25) and (3.27) can all be written

in the form

-t
Q = constant e'F(t) J f(t’)eF(t’)dt' (4.1)

o
where in each case F and f are positive for all t > 0. Q(0) = 0 and

it is not difficult to prove that in each case Lim Q = 0. Since Q is
=

a non-negative function it follows that Q must have at least one maxi-
mum in the range (0,®). Numerical evaluation indicates that only one
maximum exists. If the pressure and temperature equations are used to
eliminate t we find that the P-T curve takes the form shown in Fig.3.
Also shown is the P-T saturation line for water. The liquid vaporizes
when the P-T curve crosses the saturation line. Since the saturation
line has only a finite extent it is possible that no intersection occurs.
In this case vaporization is suppressed completely until the high density
gas is formed at the critical temperature. Tables 1-3 display some

results for the case when the liquid is water . (Appendix 3 gives

details concerning the evaluation of the integrals).
The results shown in Tables 1-3 indicate that:

1. Variation of r, has little effect provided rl/r2 > 103. Physic-
ally this means that if r is large enough the fact that the
slab's temperature is rising has little effect on the net rate
at which heat is entering the slab. By considering conduction
across a slab whose ends are at temperatures Tw and TO we
find

'rl R
r 2

* See Appendix 4 for the application to sodium.

- 13 -



In the case of thermal interactions Tw and T0 are typically

such that r1/r2 ~ 103. Thus, from the point of view of thermal
interactions, it is sufficient to consider only constant heating
models. Of course, if the temperature of the liquid, T, becomes

a significant proportion of T then the variable heat approxi-

W
mation must be used to predict the temperature as a function of

time.

The temperatures and pressures at which vaporization first occurs
differ only slightly from one approximation to another. Thus the
constant mass, constant heat approximation (the simplest) may be
used to predict the temperatures and pressures at which vaporiza-
tion occurs in all cases. (Although we have not presented any
results for this approximation we have already seen that using
variable heating is a refinement which has little effect on the

results. )

The time at which vaporization occurs is the only result that is
significantly model-dependent. Since the temperature and
pressure for any of the acoustic approximations may be predicted
using the simplest case and since for each approximation we héve
an explicit expression for the temperature as a function of time,
the vaporization time is effectively known by considering only

the simplest approximation.

As r increases higher temperatures are required before vapor-

1
ization occurs, i.e. the liquid is heated so rapidly that the
pressure rise due to a rapid temperature rise is sufficient to
suppress vaporization until the system relaxes by expansion.

If r is large -enough vaporization is suppressed completely

untillthe high density gas is formed at the critical tempera-
ture. It should be observed that quite large values of r, are
needed before large pressures are generated. In section 5 we
will show that if the system is contained, large pressures may

be generated for small Ty

- 14 -



B. Inertial Constraint
/ ‘ 52
By using asymptotic expansions for Ai(—z Y Bi(—z), J Ai(-y)dy
z o

[1
and | Bi(—y)dy ([9],p.446), an approximate expression for Eq.(3.28) can be
o
derived %< BSt) L
= - I 2
Q F5A5 ] 4—%5 Sin A"t (4.2)

(By using Luke's [10] expansions higher terms can be shown to be negli-
gible). Thus the P-T curve has the form shown in Fig.4. Vaporization
occurs when the P-T curve first intersects the saturation line. As
before we see that vaporization is initially suppressed due to the
rapid temperature rise causing a rapid pressure rise. It is found,
however, that vaporization can occur at much lower temperatures than

in the acoustic case. This is because the constraint due to a column
of liquid (D ~ 1m) is slight. Thus a rapid expansion of the slab can
take place after the initial pressure rise. This results in vaporiza-

tion at low temperatures.

5. INFINITELY STRONG CONSTRAINT

We have seen how large pressures can occur in a vaporized regibn
by having a large influx of heat. However, it is to be expected that
the duration of these pressures is short (see Tables 1-3 and also
Epstein [5])*. In this section we show how long-lived pressures can

be obtained with quite moderate heat fluxes.

We assume that the system discussed previously is bounded by a
rigid wall to the right of the slab of liquid. (As far as thermal
interactions are concerned such a situation could occur if jetting
takes place and the vaporizable liquid is trapped by the hot fuel).
To represent the infinitely strong constraint we assume that the sys-
tem cannot relax by volume expansion. In this case du/dx = 0 and

Eqs.(2.1) and (2.2) become

2
oT _ o°T
.UOC"B'? = k S;{-z- (5.1)
OP _ Y oT
= = (5.2)

* See Appendix 1.



Hence v
P = PO + £ (T—TO) ; (5.3)

For water the P-T curve given by Eq.(5.3) lies wholly above the satura-
tion line. Thus vaporization is suppressed. If we assume that the
solution of Eq.(5.1) is simply the solution in the infinite region

then (for perfect thermal contact)

_ X
T = TO + (Tw,— TO)erEC(ZGV@) . (5.4)

On substituting Eq.(5.4) into (5.3) we see that the maximum pressure is

- I -
Pmax- P, = = (Tw TO) (5.5)

which is exactly the same as that calculated by Epstein [5]. However,
unlike Epstein's model the pressure in this case does not decay but

tends to become equal to Pmax throughout the whole region (Fig.5).

For the spatially independent situation we have

dT _

B EEZE = By -y T (5.6)
a _ ydr |
dt n dt (5.7)

these equations being for variable heating. x 1is deE or a para-
meter depending on which of the variable or constant mass approxima-
tions is used. The solutions to Eqs.(5.6) and (5.7) are given by
Eqs.(5.3) and (3.22) or (3.26). For variable mass the maximum

pressure 1s
-T) (5.8)

, _ .6
which for r, = 107, r,

very high pressures may be generated by quite moderate heat fluxes.

= lO3 and 'I‘O = 300K gives 4400 bars. Thus

If we use the expression
1 _ TW + T,
r 2

with T._ = 1000K then P - P 2200 bars.
W max

= 16 =



6. CONCLUSIONS

We have seen how high pressures may develop as a result of two
different mechanisms. In the first case, if the heat input is high
enough large pressures occur initially and vaporizatioﬁ is suppressed,
The system then relaxes by expansion and vapour is formed. However,
it is expected that any large pressures occurring by this means are
short-lived. 1In the second case, if the system is contained by rigid
walls quite moderate heat fluxes can produce extremely large long-
lived pressures. There exists the possibility that a large proportion
of the shredding that occurs during a thermal interaction is the
effect rather than the cause of the interaction. If the cold liquid
is trapped by the fuel then the pressures that result from quite
moderate heat transfer rates are sufficient to blow the surrounding
fuel apart. Thus any model of thermal interactions that claims to
Predict the area increase must separate out this particular source of
shredding and that which is the cause of the coolant being trapped..
That is, the area increase that occurs by, for example, jetting, is
the means of the coolant being trapped by the fuel; further area

increase can then occur by this surrounding fuel being blown apart.
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TABLE 1

T, -

Time at

Temperature

Pressure of

1 which wvapour at which Thickness layer at
(j/s/m?) layer forms vapour layer (mm) formation
(secs) forms (k) (n/m?)
-2 -
108 2:24 x 10 373 1.46 x 107" 1016 x 105
-4 -
107 230 x 10 374 1-48 x 1072 1-041 x 105
-8 -
108 2:84 x 10 380 164 x 107° 1-289 x 10°
-8 -
10° 5-44 x 10 414-5 2:28 x 107° 3:767 x 105
-9 - )
1010 1.74 x 10 504 4:07 x 10°° | 28.49 x 105
11 . -
10 Vaporizes above critical temperature
Table 1 Vapour layer formation using the acoustic, variable

mass, constant heating approximation. [Eqs. (3.24)

and (3.25)].

(PO=1

liquid is water.

- 19 -

bar,

T = 300K).
o

The




TABLE 2

: . !
- r, Time at  Temperature | Pressure of
1 ! . which vapour , at which Thickness layer at
. 2y ! (ifs/ : ;
(j/s/m=) o Sy layer forms | vapour layer (mm ) formation
z g (secs) | forms (K) i (n/m?)
| l ! -
j !
; -~ | -
106 | 103 5-00 x 107~ | 373 2:18 x 107" | 1013 x 10°
. |
-4 i =
107 103 2:40 x 107 | 37355 1.51 x 10 '] 1-04 x 108
|
-6 -
108 103 2-72 x 10 380 165 x 107> 1:29 x 10°
-6 -3
108 Tt 2:-89 x 10 - 380 1:67 x 10 1.28 x 105"
-8 =
10° 103 552 x 10 414 -5 2:29 x 1074 | 3:76 x 10°
- -4
109 10% 5:56 x 107 4144 2+30 x 10 3-75 x 10°
| .
10° 10% 5:82 x 10 ! 413-5 2-35 x 10 365 x 10
-9 =5
1819 105 ! 1-77 x 10 504 4.11 x 10 28-44 x 10°
| -9 5
1010 104 1:78 x 10 504 4.12 x 107 | 28-41 x 105
-9 )
10! 10° 1.78 x 10 503 4.12 % 10 2829 x 10°
= -5
1010 105 | 1-82 x 107° 501 4-16 x 10 27:02 x 105
101t Vaporizes above critical temperature
Table 2 Vapour layer formation using the acoustic, variable
mass, variable heating approximation. [Eqs. (3.26)

and (3.27)]. (P, = 1 bar, T_ = 300K). The liquid

is water.
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TABLE 3

@ Time at Temperature Pressure of
1 . which vapour at which layer at
(j/s/m*°) layer forms = vapour layer formation

(secs) forms (K) (n/m?)
106 4-80 x 10°" 375 1:078 x 10°
7 -2 |
10 3.30 x 10 3755 1-106 x 10°
-3 |
108 3.46 x 10 381:5 1-354 x 10°
-4
10° 4-83 x 10 | 414 3:833 x 10°
-5
1010 8+54 x 10 . 504 28:5 x 10°
1ol Vaporizes above critical temperature
Table 3 Vapour layer formation using the acoustic, constant

mass, variable heating approximation. [Egs. (3.22)

and (3.23)]. (P0 = 1 bar, T = 300K, m = xp_,

=3 3 ; ; ;
x =10 m, r, = 10°), The cold liquid is water.

For other values of x the same temperatures and

pressures occur but the times are altered in propor-

tion. For example, if x = 10-4 and r, .= 10%  then
the time to vaporize is 480 x 10 ?secs. Variation
of r, affects these results only slightly. cf.
Table 2.

= Bl =



/ / / Cold vaporizable liquid

Hot wall . Initial temperature Tq
/ Initial pressure R

Temperature Ty

// / p Initial density _Z

Rigid
inferface

Figure 1. The Initial Conditions.

l.u
///// Cold vaporizable | Constraining
Hot wall liquid } liquid
Temperature Ty Temperature  T(t) i Temperature To
/ ; Pressure P(t) | Pressure Ps
/ Density p () | Density Do
I
Rigid
Interface
= X Pom
Figure 2. Conditions at time t (less than the vaporization

time) for the ODE method.
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T e e e e . e e —— — — — —— — —

Figure 3.

Typical P-T curve for the acoustic approximation.

The dotted curve is the saturation line for water.

Pc and Tc are the critical pressure and temperature
respectively. The intersection of the two curves gives
the pressure and temperature at which vaporization
occurs. Notice that P = P0 (= 1 bar) when

T = TO(= 300K). At T = 300K the saturated vapour

pressure of water is 0.0356 bar.

B



Figure 4.

P-T curve for the Airy function solution. The dotted
curve is the saturation line for water. The first
intersection of the two curves gives the pressure and

temperature at which vaporization occurs.
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—p= )

Figure 5. Infinitely strong constraint : pressure as a function

of space and time (t2 > tl). The curves are obtained

by eliminating T from Egs.(5.3) and (5.4).
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"APPENDIX 1

We indicate how to obtain the solutions of the linearized

equations
32 P 3%p 32 T
<Py B =P,
dt? ax? at?
aT 2 2T
Friaiiliears
9x
0? = k/poc and the boundary and initial conditions are
_ 9P
T(o,t) = Tw ox I = 0 P(x,0) =P
x=0 o
Thereis no loss in generality in taking PO = 0, T0 =0

The solution of Eq. (Al.2) is

T =T erfe (——) .
W 20 vVt

Take the Laplace transform of Eq. (Al.l) with respect to t.

4% 1,
dx?

2 _ - _
kP, E°L Yo, T, £ exp (- xvE&/0)
The solution of Eq. (Al.4) is

. Y p, T, exp (- xVE/0) Y p, T, exp (- VKD; £x)

(|<pO £ - 1/0?%) /Kpo'o (Kpo £ - 1/02)5¥ '

By using tables of inverse Laplace transforms we find that the
solution of Eq. (Al.1l) is

1
Yy T { t + ¥YKp X 1 x -1 2
W 0 2
P = exp(—-—-—————-—-) erfc ("‘ - § —— +
2K 2 20 g Vk pol

oK p

= DG

(A1..19

(Al.2)

(A1.3)

(Al.4)

(Al.5)



Y TW t - Kpo X Vi - Vkp'x
= exp erf 9 e (t - vkp 'x) (Al.6)
g° kP, o /Kpo' g

where

1 3 x>0
0 (x) = { 5
0 3 x<0

If the initial temperature and pressure are To and P (non-zero)

(e ]
then P is given by Eq. (Al.6) plus P0 and in this equation TW is
replaced by (‘1‘W - To)' T 1is given by

X

T = (Tw - To) erfec ( ) + T0 .

20 vVt

By using the asymptotic expansion for erfc(x) the time as a function

of interface pressure can be shown to be

2 2 2 ’
g% y“ p T ~-T
£ v 0[ Z..2 } (Al.7)

TK P(o,t) - PO

For water the time to fall from the maximum pressure

o (T = T )=6300 bars to 10 bars is 1.34 x 10-8 secs, (T - T = 103).
K w o w (o]

Eq. (Al.7) is used by Epstein [5] and Buchanan (see footnote on p.3)
for Na/UOZ; however, the time quoted in both those papers for the
interface pressure to fall to 22 bars is incorrect and should read

2.77 x 10_7 secs.,

S iy



"APPENDIX 2
We give a more detailed discussion of the various sets of
equations that appear in section 3.
A. Acoustic constraint.
1. Constant mass.
(a) Constant heating.

The equations are

. r
T 4 —Y—— 7Q = —£ (A2.1)
Km p_sc mc
C yr g
e=Ir-—. (A2.2)

The formal solution of (A2.2) is
Yo = _l_ .[ I
L Q + Q dt T .

Thus substituting for T and T in Eq. (A2.1) we get Eq. (3.19). To

obtain an approximate solution we substitute for T 1in Eq. (A2.2) and

then use Eq. (3.21) for T. This gives
Q+ (4 +B t)Q=¢C (A2.3)

and the solution of this equation is

t
Q =C, exp (A, t - l-B t2) exp (A, x + l-B x?) dx (A2.4)
1 1 2 1 1 2
o
(b) Variable heating.
The equations are
. r, r,
T + _,_;I___.TQ = e ) in T (A2.5)
Km p_ Sc mc  mc
= L el
Q K x Ksm (a2.6)

- 98 =



T can be

terms

On using

solution

eliminated as before giving Eq, (3.19) plus the additional

¢ S r r, T. Y
2 2 + 2 £+ 2.0 .
mc 2

m Ksc mcK

Eq. (3.22) we find that Q 1is given approximately by the
of
'+ A " _D2t Dyt
Q 2 2e )Q'_Cze (A2-7)
t
B, p;pt By -Dax
exp (- A, t=-—— ¢ ) exp (D, Xx + A_X +=— ¢ ) dx
2 D2 2 2 D
- 2
(A2.8)
Variable mass,
(a) Constant heating.
We have
T+——1—-———t2TQ=—-—---—t2 (A2.9)
2 p_ cx
K p_“ scx o o
o
1
. . =3
I £ .
Q - T T . (A2.10)
o
On eliminating T and T we find
2
aa [233 b 9]3_9. 5
dt? sz 3s2x% ¢ t
: o 0
2
+ 29- - 4C, =0 (A2.11)
2 dt 3
K P scx
o o

t
i
where Q = .[ t 2Qdt and T2 = t. This equation is of the same
o ,
(

type as Eq.

3.19). Using Eq. (3.24) we find that the approximate

- 29 _



solution is
1 E 1 |
= - - 2 e 2
Q C3 exp ( A3 t 2B3 t*) ]. X ° exp (A3x + 2 B3x ) dx  (A2.12)
o
(b) Variable heating.

In this case

Q=Yr-t 2 | (A2.14)
K Kp, SX_

If T and T are eliminated we find Eq. (2.11) with the additional

terms
2 r, dg . 4r2 Q2 . 4r2'YT0
Po “%o 4 kp? cx ’s Py %o

t
B D, t?
Q =E -24A t% = 2-----[t e 4 x-% ex 2A_:ﬁ -D x%
4 ©XP 4 B, P 4 4
(o]
B -, x°
% 3‘-*- a & >dx (A2.15)

B, Inertial Comnstraint,
1, Constant mass.
(a) Constant heating.
The relevant equations are
. T

6 oo el TH = —k (A2.16)

Kmep D

1}

.-.30_.



0 o= Lo Ll g (A2.17)

t
where Q= [ Q (tl) at’ .
0

00 + (Ag + ——T—— @) 6-F =0 (a2.18)

There seems little hope of making much progress with this nonlinear

third order differential equation.

Using the approximate temperature solution Eq., (3.21) we find

that ) satisfies.

Q +[jA5 + B5 t;]ﬂ = F5 . (A2,19)
; 2/3
The transformation - B5 z = A5 + B5 t converts Eq. (A2.19) to
2 =
L z 2 = FB 2/3 (A2.20)
dz? '

which is the inhomogeneous version of Airy's equation.
(Ref. [9], p.446). This may be solved by standard methods

(Ref., [7] , Bl, 12-3) and we find

R (z) = A\ Ai (2) + A, Bi (2) - TF, 35‘2’3 &1 =) fBi (z) dz

-2

273
+ T F535 ¢ Bi (z) ./Ai (z) dz (A2.21)

A, and lz are constants to be determined by the initial conditions

1

_ df -
Q(Zo)—-d—z-l =0

- Bl =



1 .
B /3 E& thus we arrive at Eq. (3.28).

Finally Q = - 3
Z

By using Luke's complete asymptotic expansions [10] we can

show that a more accurate expression for Eq. (4.2) is

B
1
Q = F5 Al [ Sin wt - =2 (1 - Cos wt)

5 3/2
AS
B B
+K—5—t|:% Sin wt +-—-——-§-3—/—2-(71+Cos mt):|
5 32 A
5
B 2
v WPl Be ww ), (A2.22)
32 & 2
5
b1,
where w = A5 + 7 A5 B5 t .

(b) Variable heating.

The right hand side of Eq. (A2.15) becomes

i 3 r

G = T and on eliminating T and T we find Eq. (A2,17) plus the

me me
additional terms
r, ., r . ¥ L
S B e b e o

meK
T KD m2c

Using Eq. (3.22) we find that § satisfies

. ‘D6 5 . -D6t
Q + A6 - B6 e = Eg e (A2.23)
where
2
Yo r 2 T
Ae:K]l)M+ : B6=__1_'—"<?1'To>
2 2
chpoDr2 chpoD 2
r T
=2 o o s N
D6 me E6 mc K (rz - TO>.

The solution of Eq. (A2.23) can be obtained by standard methods

- B9 =



(Ref. [7] , Bl, 12-3) if two linearly independent solutions of the

homogeneous equation can be obtained, By making the transformation
z=2e —B6/D6
the homogeneous equation may be transformed into Bessel's equation and
thus Eq. (A2.23) may be solved.
2, Variable mass.

(a) Constant heating.

In this case

. el r _1
Tt o 72 T = ek (72 (A2.24)
2
o o De By s
a8 . _'l
= %-T - C £ 2 (A2.25)

On eliminating T and T we find

o "o
1 xS 3f2 1
+ + t - =
K Dx K? p 2x De 4
P o 0
+ ki t3/2 (D:'tlil +
k2 p ¥ x 2 D%
o ‘o
i Yr
g b (t @)2._.____£__ t2 =0 (A2.26)
2
ZK% xoDC N
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Using equation (3.24) we find

. -1 =
2 = 2
Q+(A7+B7t ) Q D7t
2 2
) 2y r, 1 Y TO
A7 = T B7 = +
2 2 2 2
K po xo De Kpo on K p0 xOch
Y rl
D7 = L]
K po cxo

(A2.27)

Eq. (A2.27) may be solved by means of a series whose coefficients are

given by a three term recurrence formula,
(b) Variable heating.

The right hand side of Eq. (A2.24) becomes

and on eliminating T and T we have Eq. (A2.25) plus the additional

terms

Using Eq. (3.26) we find

where

= 3 =

(A2.28)
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APPENDIX 3

We describe in more detail how the integrals Da and Dag are

evaluated. Dawson's integral is well-known and may be evaluated using

either the ascending series

_XZ @ X2n+1
Da(X) = n=o (2n+l) n!

or the asymptotic expansion

1 5 _ (n-3/2)!
Da(X) ~ Zx n§l (_1/2):}(2(11—].)

Dingle's [11,12] theory of converging factors may be used to increase

the range of usefulness of the asymptotic expansion.

Evaluation of the integral Dag(x;a,b,c) depends on the sign of
c. If ¢ 1is negative Dag can be expressed simply as the differ-
ence of two incomplete gamma functions. In our case, however, c 1is
positive. For positive ¢ , Dag can be expressed as a sum of a finite
number of terms plus the difference of two incomplete gamma functions
but if a/c is large the number of terms in the series is large and the
expression is useless for actual calculation. By expanding exp(be_cx)
and integrating term by term the following series is obtained
®

Dag(x;a,b,c) = exp(~ax-be ) ézg E; ng;ET {e(a_HC)X —l}
This result assumes that Nec # a for any positive integer N. The
exceptional case is easily treated by replacing this term by be/N!

-CX

If b 1is large the substitution u = l-e enables us to obtain the

series

-CX, & 1y
D (x;a,b,c) = exp(-ax-be ™) 2 -ifiﬁ—ll*—'y(n+l,ab)
ag be n=o bn(p-l)[n!

 p=1+alc and ¥Y(n,x) is the incomplete gamma

where @ = l-e
function (ref.[9],p.260)

. |
Y(n,x) = | e B¢ ae

= B =



This series converges if @ <1 . If ex is sufficiently small D._:1

can be approximated by a combination of Dawson integrals.

One final point to note is that terms like Da<ﬁ t+ é ﬁ)

are best evaluated by means of a Taylor series about the point

é—l
2 JB -

= 8 =



APPENDIX 4
In this appendix we give some results of applying the foregoing

theory to liquid sodium. The following input parameters were chosen

(MKS units).
€ =1.58 x 10 °
S = 2595
v = 2.8 x 107>
p,= 830
c = 1300
k = 63

The vapour pressure curve was taken to be

ln P = 29.2 - 133521-— 0.613 In T

(P in dynes /cm?, T in K) (R.B. Duffey, CEGB Report RD/B/N1609) and
the critical temperature was assumed to be 2803 K. Tables A4,1 and
A4 .2 show the results for the constant mass, constant heat and variable

mass, constant heat approximations. The system is acoustically con-

strained.
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Time at which Pressure of layer Temperature of
r vapour layer forms at formation layer at formation
(secs) (n/m?) (K)
10° 5.67 % 10" 1.013 x 10° 1153
10° 5.67 x 102 1.014 x 10° 1153
10’ 5.73 x 10> 1.019 x 10° 1153
108 6.81 x 10* 1.069 x 10° 1163
10° 1.17 x 102 1.569 x 10° 1208
1019 3,37 x 10 6.568 x 10° 1412
101! 8,66 % 100 56.43 x 10° 1903
12 -6 ) ..
10 1.84 x 10 vaporizes at critical temperature
Table A4.1 Vapour layer formation of sodium using the

acoustic, constant mass, constant heating

approximation,

-3

m=Xp o, x = 10 " m,

o B -

Py= 1 bar, T

= 1100 K,




" time at which thickness of
1 layer forms (secs) layer (mm)
10° 1.877 x 10 6.62 x 10
10° 1.877 x 10+ 6.62
10’ 1.917 x 10 ° 6.69 x 10!
10 2.708 x 107> 7.95 x 1072
10° 7.993 x 10/ 1.37 % 102
1010 6.631 x 1072 3.94 x 1072
wott 4,379 x 107° 1.01 x 1073
1012 1,977 x 10 -0 2.15 x 10
Table A4,2 Vapour layer formation of sodium using the

acoustic, variable mass, constant heating

approximation. (p, = 1 bar, T = 1100 K).
The time of formation and thickness of the
initial vapour layer are given for various
values of r; . The pressure and temperat-
ure at the time of formation are given in

Table A4,1.
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