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towards establishing their general character. It is found that within the
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Alfven and Lawson is not present per se. Practical considerations, however,
would argue that this limit has rather broad validity in the strictly rela-
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I. Introduction

Intense relativistic electron beams have created considerable interest
~in certain quarters as a new energy source with potentially bright prospects
for useful applicétions. In particular, a number of individuals engaged in
controlled thermonucleaf research are examining the possibility of utilizing
the large energy densities and sizeable magnetic fields produced by such
beams in plasma heating and confinement experiments. One of the early ques-
tions faced by workers in the field was whether any limitation existed to
the current which could be carried by a beam. The experimental evidence to
date suggests that under a variety of conditions there does not exist a limit
to the primary beam current. Both the reasons for the possible existence of
a limit and the absence of one are understood reasonably well on the basis
of various theoretical arguments, and a considerable body of literature on
the topic exists by now.

It seems, nevertheless, of some possible interest to reexamine the ques-
tion of current limitation in the light of certain general features exhibited
by selfconsistent equilibria. While there is little guarantee that a given
physical experiment will correspond to conditions described by selfconsistent
calculations, the existence and character of such equilibria may serve as a
useful guide to the experimenter.

The intent here is to examine certain features along with some specific
examples of stationary equilibria involving current carrying electrons and
fixed ions which serve to cancel exactly any space charge. Electric fields
and collisions are assumed to be absent. Inclusion of ion motion and space
charge fields would affect the bulk of our results only in fine detail. We
begin with a brief review of arguments leading to the concept of current
limitation. Conventional z~pinch equilibria are discussed next, foilowad by
equilibria in which externally generated magnetic fields are included. The

entire discussion is restricted to cylindrical geometry.



II. Current Limitation

Alfvenl and subsequently Lawson2 have shown that the self-magnetic
forces produced by a beam of electrons places an upper bound on the amount
of current which may propagate. The argument is briefly as follows. Con-
sider a uniform beam of monocenergetic electrons with radial edge at r = a ,
N 1is the number of electrons per unit length and the axial drift speed is
B,c , where ¢ 1is the velocity of light.

The current may be expressed as

-1 = (555 vg, = 17,000 vB, amps.
o
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where r0 = e /mc2 is the classical radius of an electron and e, m are
the charge and mass, respectively and we adopt the convention £, > 0
. . 2 2 -3 .
The energy of a given electron is ymc where vy = (1 = B) and is
a constant. An electron with radial turning point at the beam edge must

satisfy energy conservation according to the relation

8,0 + (a/m’y %+ -2 a-xat? s,

™
I
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In the above af, and B, represent the angular momentum and axial velocity
at the beam edge and are constants of the electron's motion. The orbital

equation follows readily

dz _ Bz(r)
dr = B (r)
2
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The orbits may be expressed in terms of elliptic integrals and we wish
to make the following observations. Consider first the case where the elec-

trons have zero angular momentum. As long as v < 2y both turning points



occur at the beam edge; however, two categories of trajectories are to be
distinguished. The first contains all trajectories in which electrons have
~@ net drift in the direction of beam propagation, while the second contains
those trajectorieé in which electrons become reflected at some z-plane and
have net drifts opposité to the direction of beam propagation. The sepra-
trix between these two classes is a trajectory describing a figure eight
with vertex centered on the origin; it represents a trapped particle with
zero net drift and the corresponding v = 1.5 y . Trajectories for v > 2y
behave as the second category above but their second turning point occurs
inside the beam at some r > 0 . From the above one may conclude that beam
propagation is limited to v < 1.5 y, with a corresponding limit to the cur-
rent, so long as electrons with significant angular momenta are excluded.
This argument implies, of course, that a properly defined beam may contain
only electrons with net drift in the same direction as beam propagation, a
qualification which need not apply to current carrying plasmas by contrast.
Electrons with finite angular momenta always have a second turning point

inside the beam. Evaluating the axial velocity at this point one finds
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From this we conclude it is sufficient, though not necessary, that

v o< a+g %m0y

in order to assure propagation.
One may easily deduce the existence of a critical v/y on intuitive
grounds. Returning to the earlier discussion dealing with electrons without

angular momentum, their orbit's local radius of curvature at the beam edge is
2 3
R = ymc B,/eBla) = +ymc B,a/2el

which may be rearranged to yield

= a/2R .
Y



Assuming the electron orbits in the self magnetic field B are similar to
Larmor orbits (they are not actually) one may conclude that R must be of
the order of a . Most authors choose unity for the critical value of v/y ,
leading to the noﬁ familiar expression

-1, = 17,000 B,y amps (3)

for the Alfven-Lawson limiting current.

We close this section by noting that the arguments leading to the con-—
cept of current limitation, while physically sound, are not based on self-
consistent field calculations. Consequently, the model leading to a critical
v/y cannot be expected to yield a precise value but only an order of magni-
tude at best. Finally, there is a hint from the above elementary consider-
ations that beams containing electrons with finite angular momenta could

lead to results appreciably different from eqg. (3).

IIT. Conventional Pinch Equilibria

A. General Comments

Bennett3 first introduced the concept of .selfconstricted electron streams;

his results lead to the well known pinch relation

132 = 20°NKT (4)

where T is the transverse beam temperature, to be made more precise subse-
guently, and k is Boltzmann's constant. In order to compare egs. (3) and

(4) we write

- = N
IB eNf, c

where B, represents a suitably averaged drift speed. It then follows that

a current satisfying the Bennett pinch relation may be expressed in terms of

the Alfven-Lawson limiting current as

2kT
s = T tac (=)
yme B,

Lawson has already shown4 that any equilibrium beam I < IA with finite



temperature must satisfy eq. (4), implying it would seem that in beams of
practical interest 2kT < Ymc2 EL - In fact, were the latter inequality to
be reversed, a conflict would arise between egs. (3) and (4).

It is well kﬁown that the pinch relation given by eq. (4) follows from
rather general stress bélance considerations with results equally valid for
beams as for plasma. For the simple axisymmetric situation under discussion

the axial current density and azimuthal magnetic field produce a radial

d x B force balanced by the pressure gradient which takes the form

B d d
Ine a;'(rB) = E=E Py = (6)
Define
r
I(r) = S Jd(r)2mr 4dr
° o o) o

as the current flowing in a cross-section of radius r and note
B(r) = 2I(r)/cr . Inserting the latter expression into eq. (6) and inte-

grating leads to
2 r
I'(r) = 2 [ [
o]

%~(ro) - QL(r)]Zwro d s, 4 (7)
The above is a somewhat more general statement of stress balance than the
one given by eq. (4). The latter follows in the event

B n(x)kT ,

L
with a constant temperature, and the integration of eq. (7) is carried to
values of r large enough to assure the pressure (number density) at that
point is vanishingly small.

A rather self-evident corollary to the above statement is that any self-
consistent equilibrium - in the absence of trapped particles - must satisfy

eq. (7) identically. Distributions corresponding to selfconsistent equilibria

are constructed from the appropriate constants of motion; and in this instance

we have

£, puip ) = Flme®;p, - £awm) (8
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where ymc = c[mc + El + D, 12 is the energy and p is a mechanical

momentum of a given electron; F 1is any arbitrary function of its arguments
obeying the usual rules for constructing probability distribution functions.
We have also introduced the axial vector potential A where B = - da/dr
and n is the beam number density.

The moments of interest are

p
n < > = =u__
Bu Ir e £ 21 p dp dp,
P = zc<p B > (2)
= —_— f 2 d :
fr G w5 dp dp.
- 00 0
and we note in passing
kKT = 3 <pBc>. (9")

L L

The above definition of transverse temperature corresponds to the conventional
one defined for a laboratory frame at rest.

One may transform the variable of integration from P, to y and after
an integration by parts find

dp
ik

— = -en<§B,>. (10
3 )

When the above is combined with Ampere's law it leads directly to eqg. (6) and
completes the proof. Consequently, we are led to the following conclusion.
Theorem: All suitably defined selfconsistent equilibria satisfy stress balance
in the form given by eg. (7) and in a form equal to or resembling egs. (4)

and (5). As such, selfconsistent equilibria do not predict current limitation
in the sense of Alfven and Lawson as given by eg. (3). Within the context of
self consistent equilibria current limitation can only arise if one arbitrarily

limits the ratio of transverse energy per particle (kT) to drift kinetic



energy (-~ y mc2 §;2).

As mentioned earlier the concept of current limitation may still be of
physical validity in that the act of preparation may produce beams more rep-
resentative of the non-selfconsistent models used by Alfven and Lawson than
any selfconsistent equilibria. Furthermore, there may be good reasons why
in physically realizable systems kT must be limited. The foregoing discus-
sion serves largely as a warning to the experimenter that the concept of cur-
rent limitation does not follow from universal considerations. Some illus-
trative examples of equilibria may be of interest in that they reveal certain
features which may be a useful guide to experimenters.

B. The Bennett Pinch

The familiar distributions resulting from Bennett's original analysis

may be put in the form
_/2n?

SIge) = 9 v B I 5 1
o L4+ {244 )
B
2 2 2
A = yme /4nnoe (11)
2 2 =12 2
AB = (BkT/Yomc Bu™) A7 .
1
In the above Yo represents an average energy, one may take ¥ = (1 - 8"2) c
while E; is the constant drift speed, in units of ¢ . It will be seen that

A is the characteristic scale length, the collision-less magnetic skin depth;
but the Bennett distributions decay on the scale AB . In the limit r >> AB

one recovers eqs. (4) and (5) with N = ﬂAano and no is the beam density

on axis.

The radial profiles of macroscopic quantitites as given by eq. (11) follow
from a microscopic selfconsistent distribution which is a suitably modified
drifted MaxwellianS. Two objections may be raised in so far as the standard
Bennet pinch profiles are applied to beams. In the first place integration
of the distribution leading to eq. (11) is unrestricted; consequently the dis-

tribution contains counterstreaming electrons. It may be argued that this



class of electrons must be excluded from any beam-like distribution. In the
second place the constant temperature appearing in the Maxwellian represents
not only the transverse temperature but also the parallel temperature. Again,
it may be argued proper beams are relatively cold in the direction of flow

and these considerations may serve to distinguish beams from current carrying
plasmas.

The significant feature of the Bennett current profile given by eg. (11)
which we wish to stress is that ultimately the current IB will be greater
than or less than IA depending on whether AB is greater than or less than
A . In either case the profile describes what we term a 'solid' distribution
in that the entire current channel supports current in proportion to its cross-—

section.

C. The Longmire Sheath

Longmire6 has given a tutorial example of a selfconsistent equilibrium
based on a monoenergetic (delta function) distribution. The relativistic
; ; 7
version of the results is contained in Hammer and Rostoker and takes the

form

= (&5
—IL(r) = (ro) YOB.. (x/2X) Il(r/?\) (12)

where now YO and B, represent the electron energy and drift speed on
axis, while Il is a Bessel function of imaginary argument.

In contrast with the previous example, Longmire's model leads to a radial
profile in which the current is concentrated within a sheath of dimensions )
at the beam edge; we term this a 'hollow' beam. Whereas distributions with
velocity dispersion usually lead to beam models in which pressure and density
decay to infinity on some scale length, monoenergetic distributions lead to
beams with a well defined edge, at say r = a . The location of the beam
edge is usually given by the requirement that the pressure vanish there.

Since the density resulting from these models is often nearly constant, mono-

energetic distributions have the somewhat unphysical consequence of a radially



varying effective temperature.

Consequently, it is not surprising that instead of eg. (4) one obtains

for the Longmire sheath

2 2 2.2 2
IL = c Yomc &) N[Il(a/l)/Io(a/l)]
_ L w2 =2
Y = (1 B} (13)
N = wazn
o

The corresponding current IL may be arbitrarily greater than IA , as pre-
viously observed7, providing a is appropriately greater than A . (In this
instance the ratio of Bessel functions appearing in eq. (13) is of order
unity). This, in turn, implies Qf = 82 - 8“2 is large compared to 8“2
since the two are related via the condition B = B, Io(a/h) .

The criterion that the selfconsistent current given by the Longmire sheath
model exceed the Alfven-Lawson limit is fundamentally the same as in Bennett's
model. 1In both cases one requires the transverse energy per particle to

exceed the drift energy on axis.

D. A Finite Temperature Equilibrium

The question of whether the standard Bennett model is appropriate to
beams has already been raised. Some object to the 'hollow' beam results on
physical grounds. It is argued the 'hollow' beam may be viewed as a collection
of beams arranged in a ring where each individual 'member' obeys the Alfven-
Lawson limit. The larger the radius of the ring the greater the number of
such 'members' which can be accommodated, and IL as given by eq. (13) is
simply the sum of the individual contributions. The implication seems to be
one would actually have to superpose beams with I < IA in this fashion to
produce a hollow distribution.

While the subject seems hardly worth debating, certain apparenfly arti-
. ficial aspects of monoenergetic distributions can be removed if we add velo-

city dispersion. Rather than modify the drifted Maxwellian so as to remove

the objections raised in sec. III B, we offer the relativistic version of ‘an
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S i ; . 8
equilibrium which has appeared earlier as a further example.

We choose

2
n Y m02 = (v - v.)
o
£f = (—= ) S(p, - y_meB_ - E—A) R ©
21y mkT kT + y mc
o) o
_ 2, -3
t, = (= BY (14)
1
yme” = clm'c” +p "~ +p,
and we find
_ _ ec 5
I(r) (2r ) YOBO [pn'(p)]
o
51
r = pi(l + kT/Yomc )2 (15)
2 2 2
A = Yomc /4wn0e ¥

where prime denotes differentiation with respect to argument; and

Bon = eA/YOmc2 satisfies the selfconsistent field equation

2
Y mc 1
1 2 2 2. 3
= [pn'l' = (1 + n) exp{- = [(1+ 28 “n+ 8 “n“)? - 11}
p o o
kT
(16)
n(d) = n'(0) = 0.
The above set satisfies eg. (7) and eg. (4) according to
* 2 221
1> = Geiln TROKE F [ L4 28 “n + 8 T
o 2 o o
o Y me
(17)
3
Y _mc 7
2 2 2.3 2
exp {- —— [(1+ 28 “n+B “n%-11}) a” .
kT (@] o

: 2 :
The integral may be approximated by letting n ~ (p/2) , whereupon we find

V2kT limit
r
1 Y mc2 80 -+ 1
= = @ (18)
A 1 kT 3 limit
en’ (—) " ;
22 B =+0
Yy mc B o]
o o

and we have assumed Yomczﬁoz/kT finite in the second of the above limits.

The first of these corresponds to the fully relativistic regime while the
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second describes the non-relativistic limit.

Examples of I(r) obtained by numerical integration of eqg. (16) for
several values of the parameters are given in figure 1. We also compare the
radial profile as‘given by this model with the Bennett model and Longmire
sheath in figure 2 for é case where I > IA . The transition from 'hollow'
to 'solid' form may be observed in this illustration.

The division between I z IA occurs approximately at Yomczso2 ~ kT
as in previous models. We should note, however, that Yomc2 is required
to be large compared to kT on physical grounds. It would seem difficult
to satisfy conditions appropriate to I > IA within the bounds of this
model in the fully relativistic regime. By contrast, no such difficulty
appears in the non-relativistic regime obtained by letting Yo =1,
kT/YOmc2 = 0 , while 2kT/Yomc2802 remains finite and represents the ratio
of transverse thermal energy to drift kinetic energy on axis. We conclude
that on the basis of physical considerations current limitation in the sense
of Alfven and Lawson should be of fairly general validity for relativistic
beams resembling simple z-pinch equilibria.

The lack of direct experimental observation of current limitation does
not necessarily imply that our concern with the subject is purely academic.
Most experiments to date have been dominated by partial magnetic neutraliz-
ation due to transient return currents induced by the primary beam. In many
potential applications this phenomenon will have disappeared on the time

; .9 .
scales of interest. Finally, certain theories” proposed for plasma heating

by means of large v/y beams implicitly rely on the existence of current

limitation.

IV. Helical Field Configurations

A. General Remarks

A considerably enlarged class of equilibria exist if, in addition to the
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azimuthal self magnetic field, an axial component to the magnetic field is
allowed. 1In fact, for torcidal equilibria, the latter component is often
essential. Generally speaking, part of the axial magnetic field may be of
external origin and need not be produced by currents flowing in the beam or
plasma.

We continue to treat the simple axisymmetric cylinder with quantities
varying only in the radial direction. Instead of eg. (6) stress balance

follows from

1 d 1 d d 1
anr BB E;.(rBB) + an Bz dr Bz - T ar Prr B ;-(Prr - PGB)
(19)
+ !'— n <B > <p_ > C
r2 6 6

where in general the last two terms are peculiar to beams and usually absent
in the treatment of plasma equilibria. As will be shown subsequently, even

in the axisymmetric situation one may find Prr # The centrifugal

P =
06

term which is also included is an electron inertia term that is not negli-

gible in beam equilibria and may be of the same order as the pressure terms.

Replacing B, (r) with I(r) as earlier we find instead of eq. (7)

)
5 2% 1 1 1
Tn = 2 i {[E-Prr (ro) + 2 PGB (ro) * E?; n(ro) <Be><pe> € Prr(r)]
(20)

1 2 2
o [Bz (ro) - Bz (r}1} 21rro d x,

We now observe by comparison of eq. (20) with eg. (7) that in general we may
expect the above to be less than or greater than the conventional pinch formula
of eqg. (4) depending on whether the beam or plasma is grossly diamagnetic or
paramagnetic, since the terms in B22 can either add or subtract from I

In either case the presence of Bz will affect the arguments of sec. II
on current limitation. Hammer and R.ostoker7 have considered a non-selfconsistent
example in which Bz is taken uniform and shown that the resulting I may
exceed IA whenever BZ is suitably large compared with the maximum self

magnetic field B An example of selfconsistent equilibria has been given by

9
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Hieronymus and R.ostokerlO in which they use a solid rotor model. These tend

to give diamagnetic behavior and cannot be generalized to the fully relativ-
istic regime. Nevertheless, it is a useful model for beams of experimental
interest. 1In the-plasma literature there are several examples of equilibria
which are admixtures of conventional z-pinch and 9-pinch models in connection
with screw pinch and related experimental configurations. Needless to say,
there is a rich variety of equilibria corresponding to the situation described
by egs. (19) and (20). Our principal concern, however, will be with equilibria
which tend to describe paramagnetic behavior in BZ and are closely related to
force-free configurations. For a variety of plasma confinement applications
this class seems to be of particular interest.

B. Force-Free Configurations

Strictly speaking force-free magnetic field configurations require the
right hand side of eq. (19) to vanish. This, in turn, implies force-free
configurations cannot support beam or plasma pressure (finite energy density).
Yoshikawall has shown one may achieve equilibria which are arbitrarily close
to force—free configurations and the resulting currents may be arbitrarily
greater than IA . A specific example will be discussed in some detail in
the following section. For the present we wish to collect some features of
force-free configurations.

As a subclass of possible configurations we choose a model in which the

drift velocity lies on a helix of constant pitch

J = kr J (21la)
v z

where 27k 1 is the pitch length. It follows that

B = B - KrB (21b)
z Z0O 0

. 3 =1 ,
where Bzo is the value on axis. We also cbserve that 27k is the ratio
of I to the azimuthal current per unit length. Substituting into eg. (19)

we obtain a standard force-free result in the absence of beam terms

— zo _ 8 (22a)
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and it will be recognized the above is the same as given by Longmire12 for
a helical field of constant pitch. The paramagnetic behavior in BZ is
apparent. Corresponding to the above results one obtains

ec . Pz 22
I(r) = (ES; ) ( ) (22b)

2
o mc K 1l 4+ ¢'r

which may become arbitrarily large compared with IA .

In order to obtain a simple estimate of finite beam energy density ef-
fects we follow Yoshikawa's example and include the centrifugal term with
the additional assumptions that the beam density is uniform and we may
approximate <pe> = ;-mr<88>c with ? a constant. Replacing <Be> by

-Je/enc we obtain from egs. (19)

S U S s
r dr 0 z dr r dr
(23)
A2 = ?hc2/4wnoe2 .

There are an arbitrary number of solutions to the above which will satisfy
realistic boundary conditions; but, we are interested in pursuing the conse-
quences of a finite A introduced by electron inertia on the helical drift
model given by egs. (21). We note in passing beam pressure effects as such
are not represented by the approximate manner in which we included the
centrifugal force. We shall pursue pressure effects in the following sub-
section.

Eliminating B, via eg. (21b) we re-write eg. (23) in the form

8

k gt = (1 + iﬁf + 1 (24)
dx X

2 ;
where B_ = Bzo(l + f), x = K2r2 and k = 2sz . We look for solutions
Z
which are well behaved at the origin and £ vanishes as some positive power
of x for small argument. It would appear that eg. (24) represents an example

of classical boundary layer phenomenon, but note in eg. (23) A does not

accompany a higher derivative, only a higher power of the first derivative.
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For the parameter k > 1 we may express the solution as

x —
xl/kex/k + = J (% )l/k e(x Xo) /k
o o)

f = F
o

~
(o]

(25a)

@ n+l
x1/k ex/k + ex/k Z (—l)n (x/k)
o ni{n + 1 - 1/k)

Fo
where FO is an arbitrary constant and may be taken as zero. Let us observe
for k > 1 the functional dependence is on the scale r/\ , is exponentially
divergent at large radii and describes diamagnetic behavior. The paramag-
netic behavior of the force-free solution is destroyed for 2K2A2 >1 . The
power series appearing in eqg. (25a) is effectively the incomplete gamma
function. When k = 1 we obtain a solution in terms of the exponential
inteéral which diverges logarithmically at.the origin. When k = 2 we ob-
tain the error function, and so on.

Obviously in order to retain the character of the force-free solution
we are required to limit k < 1 , that is 2K212 < 1 . Discarding the contri-
bution of the homogeneous part proportionallto FO r We write when k < 1

dx

f = = f (5.)l/k oel® - X}/ 9
x o k (25b)
- x s & au = x o~¥u = (1/K) in(1 + kw)
o (1 + ku) o

Since (1 + ku)_l/k becomes e " in the limit k wvanishes, it is apparent
from the above that the force-free solution is recovered in this limit.
Furthermore, it can be readily shown that for k < 1 there is a convergent

expansion in powers of k which yields

Bzo (2K2A2)K2r2
% " T, 37 Bt TGt el
l + «kr (1 + k' &™)

where the above may be written formally as



2 d n
£f = - g kW [2z(1 - z) Iz 17 =z
(25¢)
_ X
i = 1 + x

We observe the functional behavior is on the scale «kr modified by the
presence of finite A .

Since in the helical drift model as given by egs. (21) the current
flowing in some cross-section of radius r is simply proportional to
BZo - BZ and therefore to the quantity -f , the role of finite A for
Kzlz << %— is to actually increase I(r) from its force-free valuelza. The
influence of the beam, however, vanishes at large enough values of «kr .
In what follows these effects will be discussed somewhat more precisely.
For future purposes it is helpful to note that the results of eqg. (25c) could
have been obtained directly from eq. (24) by expansion of f in powers of

k and iteration.

C. Helical Drift Equilibria

Just as in the discussion of sec. III inclusion of a term

alo

6(pz - Yocho - AZ) in the distribution insured axial drift, so the in-

A -
A

Qo
oo

clusion of a similar term 6(pz + KPgy ~ yoch" - Kr Ae) will
guarantee the distribution to provide helical drifts in accordance with
egs. (21). We choose to reexamine the monoenergetic distribution studied by
~Kan and Lai13 in a similar context. Whereas the former authors restricted
their investigation to configurations in which externally generated fields
were absent, we do not do so. The criticism that certain unphysical features
may result from delta function distributions should not affect our search for
scaling relations between beam and field parameters.

Details of the model under discussion may be found in reference 13. We
recall our earlier remark on pressure tensor anisotropy and note in this
case

P -(1+22)P = P + P
rr I 4 66 88 zz
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similar anisotropic behavior may be expected in more general equilibria,
though we have not attempted to prove it is a necessary consequence of para-
magnetic configurations.

Quantities of interest may be obtained in terms of the reduced magnetic

field component bz = BZ/BZO which satisfies the equation

1 2 2342 2 2
— (1 + o= + -
apl oy (I +a7p) ™ p' ] (1 +a"p)b, -1, (26)
1
and the notation is r = Ap , Az = Yomc2/41rnoe2 gy = (1L - 82) = '
2 : : : . .
B™ = QLZ + 8"2 and o = kA . The magnetic skin depth is given in terms of

beam energy and density on axis while B represents streaming velocity on
axis. As in the case of the Longmire sheath there is a sharp beam edge at

r = a , outside of which the fields are given by vacuum solutions Bz = Bz(a) F

Be = (a/r)Be(a)

The beam edge may be found from the pressure relation

2
2 B a
> = —_— = ==
<BZ >3 @ p N (27a)
1l +«k a
where
22 3
(L +op)
< > = e e < 27b
BZ(D) bO s z ( )
2,2
= B_ /(4
bO Zo/( ﬁnoyomc )
2 2. -3
It will be recalled that in this model the beam density varies as (1 + «“r") 2-,

while other quantities of interest follow from eqs. (21).
The boundary conditions on bz may be obtained by allowing ap to
approach zero and it follows that

bz -+ 1+ (B"/bo)uoll(p)

b’ -+ (B,/b JopI (p)
Z (@] o

<g_(0)> = B,
z

in the vicinity of the axis. One may also infer from the above that in the

limit of vanishing o we recover the Longmire sheath results, as is to be
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expected.
An approximate solution to eq. (26) may be constructed by observing that

the transformation

b, = 1+ 22 ¢
1+ z0y
(28a)
2 .2
I e aps o= (% 302
allows the original equation to be written as
1 2 1
;—[y¢']‘ - (k7 + )¢ = ay
y (28L)
9 2 2
k = l+—"£—%
4 +ay

Since k 1is a slowly varying function of y and is of modulus unity, we

treat it as a constant and obtain to this degree of approximation

2
1 1 1
1+ 50y (o} k 1+ 50y

The first two terms above may be viewed as the modified force-free soluticn,
while the last term is the contribution from a Longmire sheath-like BB
term. The nature of our approximation inherently assumes that « is small.
From eq. (28c) it is apparent that for (B"/bo) > 0 , the beam terms
are diamagnetic in lowest order of @ . Consequently, we must choose the
current on axis to flow parallel to the local axial field in order to pre-
serve the paramagnetic near-force-free character. In what follows we shall

treat B, negative and bO positive.

To within our order of approximation we can write

2
b' (o) = - T (22 Gur oyt )+ ke 4 2
(L + ap) k o k o k
(284)
ap )
[ 22 Io(ky) t
1+ ap
and to lowest order in o we find with the aid of eqg. (27b)
B ayI; (ky) .
= 'S = . 2
<g_> s [kI_(ky) 51 (25e)

2
(1 + a“p%)* 1+ 32y
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We may now combine eqs. (27) with the results of egs. (28) to solve for

the beam edge and related quantities; thus

8 uyIl(ky)
_— = [ho(ky) - > 2 ] _
|8u| l + %a Y y ya
(29a)
2 2 223
Ry, = 2[(1L + k a")° - 1]

Alternatively we may introduce the vacuum axial field bzv = bz(a/A) via

eg. (28c)
b 2
B = {kIO(ky) = i [1 - —12115%—5 - bzv]} _ . (29b)
IBHI IBHI i % %a Y Y ya
The beam current, in turn, is
Yy b
= (BEy OO0 -
Iz - (r ) 20 L bzv)
- ec : —y '
= G} v 8] I—55 1w (29¢)
1+ 30y
2,2
o k
+ L w8, D1
1+ 30y a ’

In the limit that o wvanishes it reduces to the Hammer and Rostoker7 result
quoted in our eq. (l12). Kan and Lail3 have shown for the specific case
bzv = 0 that the helical drift model leads to larger beam currents than the
corresponding simple axial drift model. It may be inferred from egs. (29)
that there is no upper bound in principle on the current except for practical
limitations. The contribution of the force-free character of the equilibrium
to the current is approximately proportional to the parameter b0 , which in
turn is proportional within numerical factors to a|8"|(Iz/IA) . This intrin-
sically paramagnetic contribution reduces the dependence of IZ on (@L/B")
which was evident in the Longmire sheath model.

There is the practical question of how such equilibria may be prepared

in the laboratory. Purely selfconstricted helical equilibria in which vacuum

fields are absent seem somewhat artificial and may be difficult to achieve.



On the other hand, with an appropriate choice of parameters it should be

possible to produce configurations in which the axial field reverses within

the beam, that is, equilibria in which bZv < 0 . This much is evident from
eg. (29b). In practical terms, if ¢ measures the degree of field reversal
t = -
so that Bzv BZO/E , then
I
2K z
B =
| zvl c (l + g)
Ka .
= 5z L* B

where in the second form B 1s measured in gauss, a in cm. and Iz in
amperes. The above suggests that beams with net currents on the order of
lO5 amps should be accompanied by vacuum fields on the order of 103 to lO4
gauss on the premise the beam radius is several cm. and «a/(l1 + &) is of
order unity.

It has been shown14 in connection with a related plasma problem that
equilibria with reversed field configurations have desirable stability
properties. This finding may possibly extend to beams. The calculations
leading up to egs. (29) have been crude in parts and a more accurate evalu-
ation of the reversed field case may be in order. By compariscn with
Christofilos' well-known Astron concept, the specific case discussed above
can lead to a high order of field reversal.

In conclusion we find that the presence of externally generated mag-
netic fields leads to a rich variety of beam egquilibria with currents limited
only by practical considerations. Relaxing the constraints of a simple z-
pinch configuration allows one in principle to exceed the Alfven-Lawson limit
to an arbitrary extent. Equilibria which resemble force-free configurations
can be constructed with finite beam energy density. The force-free behavior
is limited to the region where the beam current is parallel to the axial field.
For practical purposes it may be desirable to construct configurations with

field reversal occurring inside the beams in the vicinity of its edge and
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this, in turn, relies on the non force-free character of the beam.

In a number of applications one is interested in toroidal beam configu-
rations rather than the elementary cylindrical cases treated here. The
generalization isrstraightforward but not simple. Continuing to use cylind-
rical coordinates to describe the torus with 6 the minor and z the major
axes, toroidal equilibria in general require a vertical field which may be
obtained from an Ae = Ae (r,z) . Thus, while axisymmetry is retained, =z
is no longer an ignorable coordinate and specific examples of equilibria
constructed here cannot be taken over bodily to the toroidal situation.

Nevertheless, we would expect in a large aspect ratio expansion of the torus

problem many of our results to retain qualitative validity.
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Fig.1 Radial variation of the current according to eq. (15).

Fig.2 Comparison of current distribution as given by 1 - eqg. (12), 2 - eq. (15),
and 3 - eq. (11). Each curve is normalized to the same dimensionless value I/IA = 1.4 .
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