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ABSTRACT

In the neoclassical theory of transport process in a toroidal
plasma with long mean free path, the value of the poloidal rotatiomn
is determined by ambipolarity. This paper investigates the time-
dependent phase during which this rotation develops. Diffusion arises
from resonant particles, for which ¥, = Er/B6 . The time a particle
spends in resonance, and hence its radial displacement, is now deter-
mined by the rate of change of Er’ rather than collisional scattering.
The time for the rotation to develop is found to be short compared
with typical experimental durations. The contribution to the poloidal
rotation of mass flow parallel to the magnetic field is small compared

with that of the perpendicular electric drift.
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1. INTRODUCTION

5 1- : ;
Neoclassical theory( 5)studle_s the transport processes in an

equilibrium plasma, with long mean free path, confined by a toroidal
magnetic field. This transport results from the charged particle
drifts due to the curvature and gradients of the confining field.
Quasi-neutrality demands that the net ion and electron fluxes across
any magnetic surface be equal. This imposes a condition on the
rotation in the poloidal direction. When the equilibrium is assumed
to be time-independent, the usual condition is that the poloidal
guiding centre rotation velocity Vg + C)Gi” = = Uni' Here Vg is the
electric rotation perpendicular to the magnetic field, Vi is the
mean ion parallel flow, Uni = (dpi/dr)/neB is the ion diamagnetic
drift velocity, and © = BB/B@ is the ratio of poloidal and toroidal
components of magnetic field. '

The initial poloidal rotation in any experiment will depend on
the detailed method of plasma production, but generally will not
satisfy the ambipolar condition for a time-independent plasma. Thus
the plasma equilibrium must pass through a time-dependent phase during
which the poloidal flow builds up. Nearly all neoclassical theory
is restricted to the final stationary state where these flows are
fully developed. The only previous attempt (3) to include the time-
dependent phase, by including the polarisation drift but ignoring all
other time-dependent effects, suffers from obvious inconsistencies.
When predicting the time-evolution of the density and temperature
profiles by numerical solution of the time-dependent transport equations,
it has been assumed that the transport coefficients at any time are
those predicted by neoclassical theory for a stationary discharge, i.e.
this assumes that the poloidal rotatiom adjusts itself virtually
instantaneously to remain in equilibrium with the changing profiles.

This paper investigates the time-dependent phase consistently.
The growth of diffusion-driven current is not considered, since the
inductance associated with the self-field of this current raises
problems not inherent in the mass flows. Sec.2 describes the model
used and some assumptions. Sec.3 studies the basic problem of ion
orbits in a toroidal field when the radial electric field increases

with time. These orbit equations are used to find the velocity

distribution function in Sec.4, where quasi-neutrality is invoked
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to determine the poloidal electric field self-consistently. Sec.5
integrates the ion flux over a magnetic surface to determine the
diffusion. Applying the ambipolar condition in Sec.6 gives the
rate of growth of electric rotation needed to maintain equal ion
and electron fluxes. The growth of the parallel ion flow is
evaluated in Sec.7. Sec.8 compares the results with those of
earlier analyses, and Sec.9 discusses the implications for typical
confinement experiments. The analysis in the main text assumes
BVE/Bt to be positive. The modifications when BVE/Bt is negative
are given in Appendix A. Appendix B discusses limits on the

validity of various approximations made in the analysis.

2. THE MODEL

We consider the simplest example of an axisymmetric toroidal
magnetic field B = (RO/R)BO[O,CXr),l]. The usual (r,?,¢) coordinates
are used, where ¢ measures angular distance along the magnetic axis,
and (r,0) are polar coordinates in a plane perpendicular to the
magnetic axis and centred on this axis. Ro is the radius of the
magnetic axis and R = Ro(l + € cos 0), where € = r/RO, is the distance
from the axis of symmetry. The magnetic field lines lie on surfaces
r = constant. The safety factor q = €/®, which is the inverse of the
rotational transform/2w, will be assumed of order unity. Thus

B, = O(EBO), and the field strength B = B0 [1-€ cos O + 0(€?2)],.

’ The electrostatic field may be separated into its mean value
over a magnetic surface éo(r,t) and the variation about this mean
value o(r,0,t) = @c(r,t)cos g + @S(r,t) sin 8 + 0(e?). Since the
equilibrium is axisymmetric, there is no ¢ variation. It is the
radial variation in mean potential which produces the electric
rotation vE(t) = (B@b/Br)/B, which is mainly in the poloidal direction.
We will assume the initial velocity distribution f = fo(r,v“,vlz)
to be independent of A. When a specific form must be taken, it is
assumed to be a displaced Maxwellian with mean velocity Guj for the
jth species. Its density no(r), but not its temperature T, is
allowed to vary radially. The initial radial potential profile could
be regarded as arbitrary. However, for analytic convenience it will
be taken as zero and the potential treated as increasing linearly with
time, giving VE(r,t) = vé(r)t. As will be seen later, the diffusion

is dominated by those particles passing through resonance. Since the



behaviour of particles as they pass through resonance is governed by
the instantaneous rate of increase in Vs and is only weakly dependent
on past history, the above approximation is reasomable.

When analysing the single particle motion in such a field, and
the time evolution of the velocity distribution functionm, vé will
be treated as a parameter as yet unspecified. To obtain the equation
determining vé we must go to second order in €, where we find the net
particle flux across a magnetic surface. If it is assumed that there

is no other source of diffusion for either ions or electrons, then

v! is determined by the ambipolar conditiom.

E
3. SINGLE PARTICLE MOTION
The motion of a charged particle in toroidal magnetic field with
a static radial electric field has been studied extensively 5). We

will now consider the motion when the radial electric field is time-

dependent. The equations for the ion guiding centre motion are

(3)(5)

well known
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The last term in Eqn.(2) is the inertial correction to the guiding
centre drift. The v terms are the gradient and curvature drifts
resulting from the toroidal nature of the magnetic field.

The orbit equations may be solved as a power series in €. The
range of validity of this expansion is discussed in Appendix B.

To zero order in €, the magnetic drift and the poloidal variation in

_ potential both vanish, giving
ro=r - vp/y (4)
(5)
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where v (t)+ @v v G2
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It is more meaningful to redefine O, as the poloidal angle of the ion

1
at the instant when VE(t)+ C)v“ =0, i.e., £ = 0. Correct to first

order in e the solution of Eqn.(2) and (3) may be written

T =T iE - - fﬁ m |3 [c(e) + %] sin O, + [S(E) + %] Cos 6
o T, 8 ") | ¥ € 2l sin gy € + % 1

VE
5 [EFT
rB Ve
Ve T Ve T Y Ofr - A

<

[c(e)+ %] Cos O

=

- [S(e)+%] sin 91} (6)

v

=

] - €v, cos 9 (7)
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i
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c(e) = J’ Cos [E g{l de, S(e) =j sin [E g{l de
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are the Fresnel Integrals. The integration constants in Eqn.(6) & (7)

where

are chosen so that r, and L. correspond to the radial position and
parallel velocity of the particle at early times, i.e. £ - ©. The
above equations, and the following analysis, assumes vl > 0. The

E

modifications when vé < 0 are discussed in Appendix A. Substituting
the asymptotic forms for C(f)and S(g) into Eqn.(6) gives the limiting

expression for large (€)

VE(t) B T " 3(0)
r(t) - B, = (VE - C)v”) vy cos & - —== (8)

i
% o o
u(e) [3—711;']22 [VB - é] sin [6‘1 + -E:l+ % cos [81 + g-l}
E

where U(E) = 1 when £ > 0 and U(f) = O when £ < 0, and O is given in terms

of t by Eqn.(5). The orbit of a typical particle whose L < 0 is illustrated
in Fig.l. Provided vé is not too large, £ is initially large and negative.
The oscillation described by the first term on the right-hand-side of Eqn.(8)
is equivalent to the familiar displacement of the particle drift surface

from the magnetic surface r = r,- This is superimposed on the slow steady
increases with time the displacement from

E
the magnetic surface grows larger. The time during which |VE + C)vnl e

inward drift, - vé /Qi. As v

J;f;g 5 LaBay ]g[ < 1, will be referred to as the resonant phase for the
particle, 1Its duration is of order 2 J%f};;. During this phase the
poloidal angle of the particle is localised within a quadrant, and it suffers

a radial displacement of order VﬁJ}T/Vé. The sign of the resonant displacement

-4 -



is a function of 91 + m/4, i.e., its mean poloidal angle during the
resonant phase. After it passes through resonance the particle
trajectory may again be described by Eqn.(8). The particle now
oscillates around a new magnetic surface which differs from the
original surface by the resonant displacement.

We will now briefly examine limitations on the validity of the
above solution in real plasmas. In the conventional neoclassical
theory of the plateau regime, the time a particle spends in resonance
is limited by collisional scattering. Collisional scattering will
still occur in the time dependent problem. Resonance occurs as the
poloidal rotation velocity, (v + C}v“)/r, passes through zero and

persists so long as |9 -0 I < ﬁ/Z The expected increase in vp * Ov

| %

1]

due to small angle COlllSlon varies as C C)v2|t t , where v is the

ion collision frequency for 90° scatterlng, c. is the ion thermal velocity,
and t, is the time at which v_+&v = 0. This produces a mean displacement

1 E
|3/2/r.

i
in azimuth of 6 - 91 = 2 CiOv2 It—t1 Hence the time for collisions

(3)

to scatter a particle out of resonance is of order

<[ =2 r
Tc—vcize‘)z ; (9)

Collisional scattering during resonance can be neglected if ¥ » Tps
where Tg = [2wr/vE']% is the time during which a particle passes

through resonance due to change in Vo i.e. if

rv! % %
E » <£\ = (TRQ_> . (10)
020 2 c,® i

Here qR/)Lmfp is the ratio of connection length to mean free path which
is so important in neoclassical theory(l_s). If the reverse inequality

to Eqn.(10) is satisfied, then the change in radial electric field
can be neglected.

When qR/)mep < e

is less rapid than that caused by variation in magnetic field strength

3/2, the change in v, due to collisional scattering

along a field line. 1In the time-independent equilibrium this gives rise
to the banana regime(l’S). The magnetic field variatiom is, of course,
included in the evaluation of v - v ~in Eqn.(7). However, constant

v is no longer a valid zero-order approximation to the exact orbit
when particle trapping occurs. The change in ¥ of a resonant particle

due to the magnetic mirror effect may be treated as small only if the



L
particle trapping time, 7. = r/€° cicx is long compared with 7_, if

T E’
!
rv
- (11)
€.2 82
i
When Rq/X < 53/2, and v, violates the above inequality but satisfies

mfp E

Eqn.(10), then particle trapping occurs but the time a particle remains

trapped is determined by the change in v_ rather than by collisional

E
scattering out of the trapped velocity band. The analysis presented

here can readily be modified to include this case.

4, THE VELOCITY DISTRIBUTION FUNCTION

The evolution of the velocity distribution function £(r,8, v, vl,t)
may readily be derlved from the single particle orbits by 1nvok1ng the
constancy of f along a particle trajectory. Here r,0 are the guiding
centre coordinates and ¥, ¥ [ZpB/M]% is the perpendicular velocity

relative to the guiding centre motion.

f(r,G,vH,vf,t) = fo(ro,v ,v2 )

ne’ Lo
Bfo Bfo Bf
= 2 - - — =T FIRS .- P YR . -7 2 2
fo(r’vll’vi) (x ro) or (vn uo) av Bv (vi VJ.O) + 0(e?)
VE
2 == v - s =
f(r v"v)+ (Ui+®v”i @v”) (% roty ) fo
1 i
Bfo Mv Ve Bfo
L N ) 2
+ 6(\m Bv" 2T fo Cos 6 + 9, 5T + 0(e?) (12)
where U_, = —— L is the ion diamagnetic velocity. Use has been made
ni eBn dr
of the relation between v - v —and r - r_ given in Eqn.(7). The

change in the perpendicular energy of a particle follows immediately
from conservation of magnetic moment, p .

vf - Vfo =2u(B - Bo)/M = - vfe(Cos 6 - Cos 60) + 0(e?),
When combined with Eqn.(5) and (6) for r—rd%vE/Qi, Eqn.(12) gives f
explicitly as a function of t, the particle coordinates and velocity,
and the poloidal electrostatic potential. v,

E
unspecified parameter whose value will later be determined self-

may be regarded as an

consistently by the ambipolar conditionm.
The second form of Eqn.(l2) assumes the initial ion velocity distri-

bution to be a displaced Maxwellian. In order to reduce the analytic



detail, the mean parallel velocity will be put zero in the following
expressions. TIts inclusion is quite straightforward. So long as
v,
in _
the poloidal velocity vp + G Vit
The poloidal variation in electrostatic potential results from

& Ci’ its most important effect is to change Ve in most terms into

the differing electron and ion density perturbations produced by the
magnetic drift. It may be determined self-consistently by applying
the quasi-neutrality condition to the poloidal density variation.
The ion density variation is obtained by integrating Eqn.(12) over

velocity. The dependence of v_ on vf and vﬁ must, of course, be

B
taken account of in this integration, as well as the dependence of

61 on v, through £. When sin 0, and Cos 8, are expanded using

91 =0 - 7m£2/2, the density variation separates naturally into components

proportional to siné€ and Cos 0.
n, ed ed
El -1 ='££§ [ﬁ -F, =2-F 2| sin®

(13)

— +F —=| Cos 0

= i - £
E. Uni [Sso-+ Cc0 + % (C0 + so)] JnrvE [Ss1 + Cey + % (c1 + sl)]

= = % = - d & -
F U [Sc0 Cso + g(cO so)] N [Sc1 Cs1 + % (gl Sl)]

- ni E
(14)
G, = (1 - 2n d—TD F (n,a), G =(1-2n £i——)F (n,a) - 2 c.0 (15)
+ dy/ "+ 000 Pl dn/ " -7 ;’E_ i
m
@ - sn(g-a)?
8s_(n,a) =f (g-a)"e 2 S(g) sin (% Ez) dg
—_ED
m
o) - =n(g-a)?
Ce_(n,a) =f (e-a)"e . c(g) Cos (g Ez) dg
-0 .
- ,
@ - -n(g-a)?
Scn(n,a) =f (g-a)"e * S(¢g) Cos (g gz) de (16)
: - % n(g-a)?
Csn(n,a) = J (g-a)"e C(g)sin(g Ez) dE.
-



a
© T
- 5 n(g-a)?

cn(n,a) = (E.—cr)ne 2 Cos (g gz) de

-
!
B 2rvE B VE
n = ) ) 5 @ = —"'-——" ;2‘ .
CiG') [m:vE]

The exponential factor in the integrals comes from the Maxwellian
form assumed for fo’ while the powers of (f-a) arise from the dependence
of f onv = (wrvé)% (¢-2)/©. When performing the n differentiation to
obtain Qh__ from'F+. P the'J}Tvé factor which appears explicitly in
Eqn.(14) is treated as a constant.

We now need the poloidal variation in electron density. The
condition that the resonant motion of electrons be dominated by

collisional scattering rather than change in v may be obtained by

E
analogy from Eqn.(10) for ioms, i.e.,

rv' %
E () (17
CgDZ mfp

The electron and ion mean free paths are usually comparable, while the
left hand side of the inequality is smaller for the electron by the mass
ratio. It will be assumed that inequalities (10) and (17) are both
satisfied, i.e., resonant ions are dominated by change in Vg while
resonant electrons are dominated by collisional scattering. If Eqn.(17)
is not satisfied, the electron behaviour can be derived from the ion
results simply by changing the mass and sign of charge, but this
situation is not relevant to present experiments.

Since the change in Ve has negligible effect on the resonant
electron motion, the electron behaviour is correctly described by the
neoclassical analysis for a stationary electric field. If the electromns
are in the plateau regime, i.e. 63/2 < qR/AmfP < 1, the electron

density variation may be obtained from Eqn.(13) of Reference 3,

- 1==1[® Cos 0+® sinf -b (& Cos O - ® sin B)] + eb sin 6
Te c s e s c e

::!Im.‘:i

o

(18)



where 3
T

Cj()

= + VE)

(u

b. .
nj

J
Provided the radial electric field is not close to the final stationmary

ambipolar value, v_ = - (Uni = C)G“i), the electron Landau term is

E

negligibly small compared to the ion Landau term. 1In order to reduce
analytic detail, the electron Landau term will be neglected, so that

the electron density follows the Boltzmann distribution, ne/nO -1= eS/Te.

Equating the electron and ion densities'gives

G
B
Hence
ed
€T,
1
ed
€T
where

e@c etI)s CiG) efbc
Foar, Y5 o, NG
i i T e
ed ed C.0O ed
P c_ g s _ i s
+ ETi - eTi J% eTe
B Ci()
=|c_ (F_ +—=—)+6 F,
L T
B CiC)
=G+ F'+_)—G"F+_|

D2 = (F +

The G & F functions vary with time through their dependence on

a = t[vé/wr]%. Equations (6), (12), (21) and (22) now completely

determine f as a function of time, with vé

as yet undetermined.

5

NaT

C.0

1
1

T2T

2
) + Ei , T =

DIFFUSION FLUX

(19)
(20)
£ (21)
DZ
1 (22)
DZ
T
_e
T, 7
i

occurring as a parameter

The diffusion is obtained by integrating the local guiding

centre flux over a magnetic surface, r

element is dS

1
2B
(e ]

T

14

rdf Ro(l + € Cos O)dyp

e

27 0 @ ~
0d eM

J dﬂf dvII f def ,:8_9. + . (v”

o -0 o

[a9] 20

1 f dv f rdv?

27t B I 1
o o o

2
f(r,0,v,t) (1 + € Cos &)
27
eM ;
—t (vﬁ + % vf).l de (f—fo) sin 0 (24)
)

constant.

2

The surface

v2
+ Ei)sin 6 +

4
erE
Q.
1

(23)



- a - 3y
2”50 4o n i + 0(e€?)

20 rB s Q.
o i

4
1 -[ZW 5% €n nOVE

The second factor of (1 + € Cos ) in Egn.(23) comes from the B_1

dependence of the guiding centre velocity. All first order terms
vanish when integrated over &,leaving products of first order terms.
The neglect of electron Landau terms, discussed in the preceding
section, leads to a Boltzmann density distribution for the electroms,
i.e., n; =n = no(l + e&VTe). Consequently the second integral
vanishes. The first integral is evaluated similarly to the density

integral in the preceding section, using Eqn.(6) and (12) for £ - £

One readily obtains

L
2.2
T €2p.n ed ) .
= 10 — d_ 2 47
L=-=2re [( ) 2€Ti) (l - )t A e | Ty

!
_%s 1o md) F - Tzci@) Lo (25)
2€Ti < dn - 2 Q.

i
where p; = Ci/Qi is the ion Larmor radius. This can be simplified

somewhat using Eqn.(20) to give

,J_Tr Ez pi no d dz Ci@ 1 e®s
| 1 -2n—+ 4n?2 —,| F,_+ 2T
i 4r © 1 an " amz) v T3 T €T,

5 oF oF ) 4n C; (S tan
¥ im0 gs—+ @ -] + . (26
€T, \ ¢© an s on 1r3/2 2
Substituting for & and ¢  from Equations (21) and (22) gives

JT €2 ping d 1
e 2 =
I ir©® 1+ an® Gra) By + 5z

8F+ 2 4m Ci®3
e 2 —_— Eem e
4n F, 5 f - 373 (27)
T €
where Cj_® . BF_
H=— 2 + = + 2n —
J_ﬁ on

We will now evaluate the electron diffusion. As discussed in the
preceding section, in experimental conditions of interest the diffusion
of resonant electrons is limited by collisional scattering. We can thus
use the earlier analysis for a constant radial electric field. Using

Equations (18) and (19) of Ref. 3 for the vﬁ and vi moments of the

- 10 -



electron distribution function and Eqn.(18) above, one readily

obtains

e ” :

- n T, (vg+ u.+o ve”) ed_ o2
L. = €2+ e ™+ — (82 + 82)]|.
e eBr Ce® Te 2Te s C

28)
Terms of order (VE/CeO)2 have been omitted from Eqn.(28) as

negligible. Substituting for L and o from Equations (21) and (22)

gives
1 P ne
™ etn T, (vp+U _+O7) . c,®
r = —_
& e ) 1+ ) 3G_ F + I + G+F+
e il
1 2 2
(62 + 62| . (29)
272D2 & -
The factor outside the square bracket is the plateau diffusion rate
for the time independent cases obtained by Galeev and Sagdeev(z).
(The expression given in their original paper 2 is a factor 4 too

large). The terms multiplied by D_2 arise from the poloidal electric
field which is necessary to equalise the poloidal variation in ion

and electron densities.

6. THE AMBIPOLAR CONDITION

Quasi-neutrality requires that the electron and ion density be

very nearly equal. We have already invoked this in solving the first
order equations, when the poloidal variation in ion and electron
densities were equated. In order that the mean densities also remain
equal, the net diffusion fluxes across any magnetic surface must be

equal.

In the time-independent case, the component terms in Ii are larger

L
than those in I', by a factor (MTi/mTe)z. Hence ambipolarity requires that the

ion terms nearly cancel. The situation is similar in the time-dependent case.
For example, for n small, F+ = Uni + Ve =T Ciﬁ)/ﬂ% as may be verified
later from Equations (30) - (35). We may thus determine vé to accuracy
(m/M)% from the condition I} = 0. To progress further we must evaluate

the functions F defined in Equation (14). The s, and c_ integrals

can be evaluated by expressing as a complete error integral with complex

argument, and 5. and B derived by integrating by parts.

— 11 =



- a? L L 2.2
So(n’a) - _1——17_ EEP (___C_Y__TI. g) i [(1+ n2)* + n]l? sin (g o el )
(1 + n2)* 1+ n? (1+n2

(30)

+[(l+n2)%—n]}é cos g_c_r_z_ri) %
(1+n2)

2 L L 2.2
co(rl,a) & _1..; exp (_ _;[__E’__T‘L___) % 1 +02V%4+ nl™® cos (% aln )
(L+n2)* (1+72) 1+ n2

(31)

1 L 22

-[(1+1n2)*-1]? sin -;Ia L

1+ n?
(n,@) = - ——3 (s ) (32)

81\ 1 " TI+n? S0 1%
B o

cl(n,a) = - mz (CO+T[ So). (33)

The integrals of Fresnel integrals can be evaluated as a power series

in a?nn/2 = (VE/CiO)2 , which we will write as 2. The earlier time-
independent analysis L shows the stationary ambipolar electric rotatiom
to be vy = - (Uni + C)V”i) when p, ¢ r_, where p o = Ci/Qi()ls the
Larmor radius in the poloidal field and r the density scale length,

For this case v < Unilci®= piQIZrn Eg)always small. W1_1en Pig > Ty

the stationary ambipolar rotation is Vg & (2.5 C, - Vi“)®. In

this case the assumption % < 1 ceases to be valid during the final phase
of the build-up. These integrals are found as follows

a

£
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-0

20 e8]
T 2 T 2
2man exp | - 7 ne dx dE exp |- 5 ng
o o

2
i B l+g—(ang,‘2+ cosg(gz-xz)

|

o
[N
—
wQ
*|=
g3 w
| —
~| o
| —|
=

I

3
U\QM
Ka)
—
= | =
I ]
.:JM;J
~—
T

@]

—~~
2

3
p—
)
0]

b

ko)

1

N

=3

o]

»n
S—

= 12 =



INTE

Cs - Sc
o o

n&z)t

(g2 - x%)

[as] @
27 an t-:xp(—%tm2 fdxf de exp |-
o

X

M

72
1+6—(c€11§)2+ sin

;éafn;i o 2 1+5n2 T
— |1+ 2 72— ]+ o(y") | exp - 2 na?). (35
(1+m2) 6 l+n Z

The other integrals can be obtained most readily by differentiation, e.g.,

SN

a .24
5 (Sso + Cco), Ss + Ce = - c @ (Ssn + Ccn).

1
S8y + Cey = n+2 2

1 1 m

Using these results, the following expressions are obtained for
I‘i in the limits n €« 1 and n » 1.

i
wzezpino o Ci®3
Iy =- Lr © Ugi * Vg Ty €2 +4Uniy

T

%

+ (l+T)(Uni+vE) + “(1+T)(Ci®+2 Uni"y)ﬁr + nbi(Uni + 3vE)}

X -1
2 212 _ 20 _ 2o 3h2
X (1+71){(l+7)2 + 7T b} -2n72b, -nnT bi(Uni+3vE)/Ci@X1+T) } ]

(36)

c,®
i (37)

2 -

T ~- E}E €7 P T I"ni §+ (1+71)2 +
i 2 r® 3 (87 XX+l (2mz €2
where X = T(?T/zn)’]ﬁ Uni/CiB. Terms of order 42 have been omitted, since
v ¢ 1 is assumed in evaluating the integrals. 1In Eqn.(37), =n » (Ci®/Uni)2
has been assumed, as well as @ » 1. 1In the limit =0, Eqn.(36) agrees
exactly with the corresponding result for the time-independent analysis,
i.e., Eqn.(20) of Ref.(3) with zi = 42 = 0,

When Uni/Ci@ = pi6/2rn ¢ 1, then bi ¢ 1 and the ambipolar condition

1"i =~ 0 is satisfied by Eqn.(36) when

(v . +v.) -1
- f ni E 202
n~ -2N7 —c® L+ =5 . (38)
Expressed in terms of basic parameters this is
L 7o (Y (), 2 ) -
C.®@ ot 2 rr U_. q* '
i n ni
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When pie/Zrn > 1, Eqn. (36) has no zeros within its range of validity
n < 1l. Eqn.(37) gives the following zero of I} in the range n > 1

g. \% 2/3 2 p
_| 5ie (e ¥ (@72 3 . 1 ® e (1+7
n _[rn (@\) (2] (1+T)24'4€] 1f(1+7)2<p> < Zr <® 3/

-
(40)
|3 Pie [e) - Y5 |23 . Pio € (147)
-[z:r— (@'(’] if 5> ®8 3/7 ¢ WA
n n -

When (CVE)2(1+T)_2<piB/2rn ¢ 1, a zero of I} occurs at ,m = 0(1l) in
addition to the zeros given by Equation (38) and (40).

Equations (39) - (41) gives the rate at which the electric rotation
builds up towards its stationary ambipolar value. The diffusion rate
during this build-up phase is found by substituting the appropriate
value for m in Eqn.(29) for I;. When pi9/2rn ¢ 1 the terms propor-
tional to D—2 in Eqn.(29) are of order (piﬂ/rn)2° Hence diffusion
starts at 7/(1+ 7) times the stationary ambipolar rate of earlier
analysis, and approaches the stationary rate as Vg - Uni' When
ple/Zrn > (€/©) (l+—T)/T3/2, the square bracket in Eqn.(29) approximately
equals 1 + 2 (1L+7)/7. This behaviour is reminiscent of that found in the
time-independent analysis(B). Here the effect of poloidal electric
field was also found to be negligible so long as pielrn < 1l. For

sufficiently large values of pie/rn, poloidal electric field produced

an enhancement over Galeev-Sagdeev diffusion by a factor [T2+(2+7)2]/2T.

7. GROWTH OF PARALLEL FLOW

The rate of change of the mean ion flow along the magnetic field is

9 Vi d
i g 2
5t 5t [ f f dv fardvl v“f]
dv on

! de I df 1 "o
n 27 fdv“f‘.-rdvl l:dt E+v, & n_ 9t Vil f]' L42)

The last two terms in the integrand express the convection of momentum

I

(6)

associated with the diffusion. As has been pointed out by Kovrizhnykh
because the diffusing particles all have the same parallel velocity,

v, = - VE/CL they carry away a E2§allel momentum - I‘VE/Cl Since this
effect has already been studied , we shall now consider only the first

term in the integrand.

- 14 -




Evaluation of the parallel ion acceleration due to interaction
with the magnetic and electrostatic fields, by substituting for
dv“/dt and f from Eqn.(3), (6) and (12) is straightforward. Since
the effect of electrostatic field on f 1is negligible when Pig < r
and since, as will be seen later, the acceleration turns out to be relatively
unimportant, the poloidal electrostatic field will be ignored for brevity.

One then obtains

v i
Minrete % 52
= _ A 2 0° R
o e [{Uni (Uni 4 VE)nan + 2vE mn an} {Cc04—5504-% (_04-50)}
1 U.vw 20U . v
_(wrvé)2{1+-'ﬂ1 E <1+LE) na_} {Cc + Ss +%(c1+sl)}]
c2 0?2 c2 @2 on 1 1
1 i
‘,-,-%EZCi T!C]_@
= 2r [Uni + VE - 1 ifn«l (43)
27
g Fo \% EZCi
~ 7 \m' T Fat vy Tm» i - (44)

The effect of a mean ion parallel velocity was omitted in earlier
sections to reduce analytic detail. Is this consistent with the above
result which shows the growth of such a velocity? Inclusion of Giu in
the earlier analysis does not introduce any basically new effect,
provided Giu « Ci' Its main effect on the final expressions is to
change vp to vp + C)Gi“. We now consider how the growth of Giu affects
the evolution towards the stationary ambipolar state. In this state
Vg + C)Gi“ must equal - Uni or 2.5 CiCL depending on whether pie/rn
is ¢ or > 1. We can now evaluate the relative magnitudes of the two
components of the acquired poloidal velocity. Comparing Equations (39)
and (43), and Equations (41) and (44) gives

avi|| avE

9t | 9t

~ - €2 if p, <, (45)

~-@ 1ifp,>r . (46)

Hence we can neglect the growth of the parallel contribution to the

poloidal velocity when considering the build-up towards steady rotation.
We shall now examine whether the same is true of the other source

of parallel flow, i.e. due to momentum carried out by resonant particles.

For Vg = vét and times short compared with the confinement time

= 1.5 -



Tc = n/(dn/dt), one finds from the expressions given in Reference 6
that the parallel velocity increases as Gin = vétZ/ZTcCl During the
initial build up of Er the relative magnitude of the two components
of poloidal rotation is C)Gi”/vE ~ t/ZTC. As we shall see in Sec.9,
the build-up time for Eris much less than (P Hence the growth of
Vi due to momentum transport is also negligible during the initial
growth of rotatiom.

We now consider what happens after the initial growth of Er' As
pointed out by Kovrizhnykh(ﬁ), the momentum transport by diffusing
ions produces a steady growth of Giu during the life of the plasma.
In order to maintain ambipolar rotatiom, i.e., v, + ®v, = - Un' or

E in i

2.5 CiCL Ve must decrease with time. Is this change in Vg sufficiently

rapid that the time an ion spends in resonance is still determined by
the change in Vs rather than collisions? If diffusion proceeds at
the neoclassical rate for the plateau regime, the rate of change of Ve
1

gives m = Ez(pie/rn)ﬁ(m/M)z. From Eqn.(l0) collisions are dominant
if n ¢ (Rq/hmfp) . Provided piB/rn is not too large, this is likely

to be satisfied.

8. COMPARISON WITH FARLIER ANALYSES

Reference (3) included the polarisation flux - (nO/Qi) dvE/dt

was neglected

E
when solving the kinetic equation for f. As was pointed out(3), this

in the ion diffusion. However, the time dependence of v

is not generally valid for velocities close to resonance, i.e., for

the very particles responsible for the diffusion. However, it did

provide a time-dependent term to balance the difference between ion

and electron diffusion fluxes during build-up. The result deducedfor vé

may be obtained from Eqn.(39) by dropping the unity in the bracket(1-+2/q2)._

Since usually q =3, the earlier estimate is of an order of magnitude too large
A qualitatively similar growth of rotation is predicted for the

collision-dominated plasma. Early treatments of the pure-resistive and

resistivé-viscous plasma(7_8) included the polarisation current while

neglecting time dependent terms in the first order equations. This

corresponds closely to the early analysis for the kinetic range referred

to above. It is interesting to observe that when the resistive case was

(9_10), including all time dependent terms, the

later treated consistently
rotational growth rate when Pig € T, was found to be reduced by just

the same factor (1 + q2/2) compared to the earlier estimates. When

- 16 -



(9)

P > Zrn a fundamental change was found in the mechanism determining

v. . The iom polarisation flux, which is a relatively small term when

E
P;0 ¢ T, mow becomes a dominant one. This behaviour is similar to
that found here for the kineticregime as piO/rn changes from a small

to a large quantity,

9. APPLICATION TO EXPERIMENTS

We now consider how long it takes for the rotation to build up to
its stationary ambipolar value. When Pig < rn, the stationary rotation

is Wy B, Uni' Eqn.(39) gives the order of magnitude of this build-up

time Tb to be

1 BvE ~
t
n

~ -

=‘I\N"
I—I

c A
i %
— = g2 U(ﬂ\ . (47)
i qR

-llr—-

b Upy O
Outside the collision-dominated range Amfp > qR, and so the build-up
time is always less than the ion collision time. Thus the rotation
should have adequate time to reach its stationary value within the
duration of a typical Tokamak discharge.

The time-independent neoclassical diffusion in stellarators has
been shown to be approximately the same as in an analogous Tokamak,
provided the helical component is not too strong or the collision
frequency too low(3). The same correspondence should apply to the
time-dependent phase. The condition typical of stellarators is
Pig » T and the stationary ambipolar rotation is Ve ™ ZzD CiCL
Eqn.(41) gives the order of magnitude of the build-up time to be

3 %
Lo v s e G o,
2o Ci(3 ot 5t Ty B 5 qR S\r 4 ’

b

Thus the build-up time should again be shorter than an ion collision

time.

10. CONCLUSIONS
The diffusion process during the build-up of electric rotation

v, towards its stationary ambipolar value differs significantly from

E
that in the stationary state. The time an ion spends in resomnance is

now limited by BVE/Bt rather than collisional scattering. As a
consequence the magnitude of the radial displacement during resonance
is less and the distortion of the velocity distribution from Maxwellian

is quite different. 1In spite of this, the ion diffusion comes out to

= 1IF



(2)

be rather similar to the Galeev-Sagdeev flux for the plateau regime 3
provided,BvE/Bt is not too large. It differs by the addition of terms
proportional to BvE/Bt. For larger values of BVE/Bt, the form of the
ion diffusion is quite different.

In conditions of experimental interest the electrons are not
directly affected by the time dependence of Vg Their diffusion
may be influenced indirectly through the poloidal electrostatic field
which couples them to the ions. This effect is negligible when

« r_, and even when Pig > T, the effect is not large. Equating

Pig n’
ion and electron diffusion fluxes determines BVE/Bt. The time taken

by the rotatic.. to build-up to its stationary value may be seen to

be always less than the ion-ion collision time. Thus the assumption
made in the numerical simulation of Tokamaks using neoclassical

transport equations,that the rotation maintains itself at the station-
ary value corresponding to the instantaneous value of the discharge
parameters, should not lead to significant errors.

Since the ion diffusion process during build-up is not affected
by collisions, most of the foregoing analysis is equally valid at
very low collision frequencies. Due to the variation in rotatiom,
ions will not remain in resonance long enough to complete a banana orbit,
so the usual distinction between banana and plateau regimes disappears.
The expressions obtained for BVE/Bt are still valid. The only major
difference is that the ambipolar diffusion rate during build-up is
now given by the electron diffusion rate for the banana regime.

It follows that ambipolar rotation would still develop in the
hypothetical case of a completely collisionless plasma, even though
the diffusion vanishes. This result is physically plausible. Those
ions for which v =0 initially would certainly suffer a net radial
displacement due to their magnetic drift. Quasi-neutrality requires
a radial electric field to develop so that the net resonant ion flux
is balanced by a small inward polarisation drift of the entire ion
distribution. The resonant velocity is thus shifted to R = vE/Ch
and so a new group of ions suffer a net radial displacement. This

process would continue until, when v_ reached Uni’ the net flux of

E
resonant ions vanishes.
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Appendix A
Analysis for BVE/Bt 0

The foregoing analysis assumed BVE/Bt to be positive, The
value of avE/Bt determined from the ambipolar condition I; = I; are
consistent with this assumption, since Uni has the sign of dn/dr,
i.e., negative for a confined plasma. We should, however, check
whether the corresponding expressions for negative BVE/Bt permit
other time-dependent ambipolar solutions.

The analysis for v, < O follows identical lines to that for

E

vé > 0. Only the key results will be quoted. Defining

: L
s [vE(t) -+ C)V”] [ﬂrlvé|]2, the particle orbit is given by

0(% - 5. _(m/2)e?

% _| = i [c(g) -%]sin O, - [8 %] 0.
Ve T TR } | £ zlsin 0y - (€)- cos 04

i
v! )

3|m<: =

i
e m__]‘a{
= =% -%]si
+ IB\-T;ET [C(t)-%] cos 81 + [S(&)-%]sin 61} .
Equations (25) - (27) for the diffusion are still valid if F and F_

are redefined over negative vé as

F

1
L= U, Dale  +s) - (Ss + Ce )1 - [7rr|v1'3|]2 [5(c; + s9) - (Ssy + Cey)]

L
= - - % T “ ! 2 - - % -
F_=U, [Sc0 Ce, ~ % (r:0 so)] [nr|vE|] [Scy - Csy z(Cl sl)]
where s , ¢, Ss_, Cc_, etc are still defined in terms of @ and m by
n’ n n n =5

Eq.(15), but now @ = VE[wr|vé|] 2 and n = 2r|vé|/Ci92.

The small n expression for IE differs from Eqn.(36) in that the
sign of all terms proportional to m is changed. 1In other words, when
1 is expressed in terms of vé,the same expression is valid for

v! < 0 and Vé > 0. The large n expression for I} now differs from

Ein.(37) in that the denominator 2X2 + 2X + 1 is replaced by 2X? - 2X +1
and the sign of the term proportional to m is changed. It may readily
be seen that there are no zeros of I} within the range of validity of
either expression. We conclude that it is not possible to satisfy

the ambipolar condition with vé negative.
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Appendix B

Limits of Validity

Comparing the effect of collisional scattering and changing Ve in
determining the time spent in resonance led to Eqn.(10) as a condition
for the neglect of collisions. The distribution function for particles
which have already passed through resonance includes rapidly oscillatory
function of v, This may be seen from Equations (6) and (12), remembering
that 91 =& + (VE + C)v”)z/eré. The smoothing effect of collisions on
these oscillations may be determined by including a Fokker-Planck collisional
term and solving the resulting equation as a power series in the collision
frequency. Because the contribution of the oscillations to the diffusion
integral is largely self-cancellatory, their smoothing-out does not greatly

affect the diffusion. The effect on the collisionless diffusion expression

may be shown to be small if

rv. 5/ p. %
LY w

cz @2 E
1

th'mfp n

We now consider the validity of the € expansion used in solving
Equations (1) - (3) for the particle trajectories. The approximation
which seems likely to break down first is that v in the right-hand-
sides may be treated as constant when integrating the equations for the
first order corrections to 6(t), r, and v, . A non-linear treatment
shows that those ions which pass through resonance while in the upper
half plane (0 ¢ 81 ¢ m) spend a slightly longer time in resonance and
consequently suffer a larger radial displacement. This is because
for these particles dv”/dt is negative during resonance and consequéntly
v, + C)v” changes more slowly. The change in v during resonance also

E
leads to a smearing out of the trajectories, because v ~¥irn depends on’

I
%.and so ions with the same v, can overtake each other, This tends to
smooth out the oscillatory part of f mentioned above. The first of
the above non-linear effects may be evaluated as follows. Equations (1)

and (3) may be integrated including the time dependence of L to give

vi®

2
25
%(%ﬁ) =Vé9+?< J‘z _va“>c056—-§I—f ® + const. (B2)

If the object is to estimate the effect, rather than evaluate it completely,
the & term can be omitted. When Pig i r it is expected to have negligible

effect anyway. The term VE v” makes a contribution of order (VE/Ci@l)2
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for particles near resonance, since W, B VE/CL and will be dropped.
The exact solution is then an elliptic integral. Since we are
primarily interested in the resonance phase; 0 will instead be expanded
in powers of 9-—61, where 61 is the poloidal angle when the ion is

exactly in resonance, i.e., df/dt = 0. The orbit solution is then
= I _ . - 2
0 91 - (VE/Zr) (1-8 sin 81) (t tl) (B3)

where B = €/n.

Eqn. (B3) may now be used instead of Eqn.(5) as the zero order
equation for @ when integrating the orbit equations for r-r, and
L S This approximation becomes less good as the particle moves
further from resonance, but the diffusion is dominated by the resonant
displacement. The sole effect is to replace v, by (1 -8 sin Ei)vé.

E
The variable £ in the orbit equations is now defined in terms of t by

£ = (vi/m)® (1-B sin 6% (£-t)),

while v“(t) is determined in terms of v  and g by the orbit equation.
In addition to factors (1 -8 sin 91)2, the diffusion integral now

contains additional terms coming from the transformation from v_ to £.

These only introduce corrections of order 32 to the earlier res:lt for
the ion diffusion. Thus the e expansion of the orbit equations is valid
as long as n ¢ e.

Finally we consider the expansion of the distribution as a Taylor
series in r ~EB and L . in Eqn.(12). The validity of such an
expansion requires r -r, < r and v -v & < c As may readily be
seen from Eqn.(6) and (7), this is equivalent to n < ez(pie/r)2 and

n { €% .
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Fig.l.

Displacement of the guiding centre from

a magnetic surface vs time.
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