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ABSTRACT

Consideration is given to the types of MHD instability expected in
the diffuse toroidal pinch d;scharges observed in the Sceptre experiments.
In the central region where there is little or no magnetic shear but an
appreciable negative pressure gradient, the instability will be either a
pure interchange mode, or a quasi interchange mode with properties very
similar to the pure interchange. In the outer region where there is some
magnetic shear, a kink instability is expected. The wave velocity which
will be imparted to the interchange mode due to the finite Larmor radius
effects is computed with all the first order effects included. In the
few cases where sufficient experimental data is available, there is agree-
ment in sign and magnitude with the observed velocities for fTluctuations
in the discharge core. There is insufficient experimental data for the
outer region, but the wave velocity imparted to the kink instability due
to the Hall effect only is shown to be sensitive to the orientation of k
with respect to B. This explains why the observed wave velocity is

often of opposite sign in the outer region.
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1. INTRODUCTION

In an earlier paper (WARE, 1961a) it was shown that if the Hall effect is
retained in the plasma electric conduction equation and the electron temperature
is small compared with the ion temperature, the magnetic field will be trapped
to the mean velocity of the electrons and not to the mass velocity of the plasma.
Qualitative arguments were put forward to show that this would lead to the propa-
gation of magnetohydrodynamic instabilities as waves and a simple formula for the
velocity of such waves was derived. The preceding three papers (ALLEN, 1964;
WILLIAMS, 1964; ALLEN et al, 1964) give details of experiments carried out on
the Sceptre discharges to detect and study such waves. Preliminary experimental
results have already been published (ALLEN, 1960; WILLIAMS, 1961) and it has
been shown (WARE, 1963) that the wave velocity formula predicts both the correct
direction and the right order of magnitude for most of the cases, as it does for

the helical instabilities observed in other pinch discharges.

The Hall effect term is one of several transverse magnetic effects in the
plasma equations whose magnitudes relative to the other terms can be shown to
contain the factor pi/L, where pj is the ion Larmor radius and L is the
characteristic length associated with gradients in the discharge, (provided wL
is of the order of the ion thermal velocity and collision frequencies are negli-
gible). The other terms are :-—

(a) the electron pressure gradient e.m.f. in the electric conduction
equation;

(b) the viscosity term in the momentum balance equation due to the

transport of momentum perpendicular to the magnetic field; and

(c) the heat conduction term in the thermal energy equation due to the
transport of heat perpendicular to the magnetic field.

In recent years several workers have derived the stability of plasmas with one or
more of these terms included but not all of them. Although in all cases these
extra terms lead to a real part of w, and therefore to wave motion, interest has

been directed primarily at the stabilizing effect of this wave motion (ROSENBLUTH
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et al, 1962; LEHNERT, 1962; TAYLER, 1963; ROBERTS and TAYLOR, 1962; RUDAKOV ,
1962; MIKHATLOVSKII, 1962), or to the new instability modes resulting from the
extra terms (TSERKOVNIKOV, 1957; KADOMTSEV, 1959; RUDAKOV and SAGDEEV, 1959 and
1962). An exception is the recent paper by bmww et al (1963), in which the wave
velocities predicted for a very low density plasma contzined in a mirror magnetic

field are shown to be in reasonable agreement with the experimental results,

In this paper we first consider the types of magnetohydrodynamic instability
predicted by theory for the diffuse pinch discharges observed in Sceptres IIT and
IV (Section 2). For this purpose we utilize the results of another paper by the
author (WARE, to be published) in which approximate growth rates are obtained for
the diffuse pinch instabilities, following the procedure adopted by NEWCOMB (1961)
for the corresponding gravitational instabilities, The significant feature of
these calculations is that the compressibility of the plasma is not neglected and,
as a result, a fourth-order dispersion relation is obtained involving two modes

of instability.

The expefimental results show that the discharge has two regions which often
behave independently as far as instabilities are concerned; there is a central
core and an outer annular region. In the core, which has little or no magnetic
shear but appreciable pressure gradient, the expected instability is either an
interchange or a quasi-interchange mode. The observed fluctuations agree with
the properties of these modes. The fluctuations observed in the outer region are
consistent with a kink instability whose helical pitch coincides with the magnetic
pitch in the vicinity of the boundary between the two regions and whose displace-
ment amplitude is zero within this radius, In those cases where the fluctuations
are regular in time and of approximately constant amplitude, the results can be
explained by a helical equilibrium configuration produced in the outer region by

the kink instability,

In Section 3.1 the wave velocity is obtained for an interchange instability

in a constant magnetic pitch discharge with all the finite Larmor radius effects
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included except the electron pressure gradient e.m.f. The latter is neglected
because the electron temperature is assumed to be small compared with the ion
temperature, as suggested by the experimental results for the Sceptre discharges;
In Section 3.2 the wave velocity is obtained for the quasi-interchange and kink
instabilities for the case where the Hall effect is the only significant finite
Larmor radius effect. Although there are conditions under which this will be the
dominant effect, primarily the other terms are omitted for mathematical simplicity,
and because the lack of experimental data for the outer region prevents a quantita-

tive comparison between theory and experiment.

In the various cases, the dependence of wave velocity on the discharge para-
meters is found to be more complex than in the simple formula derived qualitatively
from field trapping. In the few cases where the experimental parameters are Known,
the theoretical wave velocities agree well in both sign and magnitude with the

observed velocities (Section 4).

2, MAGNETOHYDRODYNAMIC STABILITY

Earlier experimental results (ALLEN and LILEY, 1959) indicated that there are
two distinct regions (WARE, 1961b) in the Sceptre discharges. There is an inner
central core with diameter roughly half the tube diameter and within which the A
magnetic pitch is either constant or, varies only slowly with radius. The nega-
tive pressure gradient in this region is of the order of but somewhat larger than
that for marginal interchange stability (WARE, 1961b) which is

- YpBg/27tr(Bz/44t + YP)

vy dB
(an alternative form is B Tﬁ%)' The second region is the outer annular part of
z

the discharge where the magnetic pitch decreases fairly rapidly with radius to a
small value near the wall. (The percentage magnetic field fluctuations are larger

in this region (ALLEN et al, 1962) and reliable pressure gradients cannot be
deduced. )

The fact that markedly different velocities (often with different sign) are

observed for the fluctuations in these two regions is evidence for different
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instability modes occurring simultaneously in the two regions. Because of this
and the different properties of the two regions it is appropriate to consider their

stability separately.

2,1 The Discharge Core
In the case of weakly or moderately pinched discharges (Be < Bz) with little

or no magnetic shear, it can be shown from the energy principle that instability

occurs for only small values of the wave vector component ki (= k.B/B) such that

Iknl « Using this approximation and neglecting finite Larmor radius effects,

first order normal mode analysis of the standard MHD equations,

dv

d
rlMd—t=_]xE-Vp,E+_\:x§=0,'&%+‘f‘pv-x=0 een (1)

and Maxwell's equations leads to the dispersion relation (WARE, to be published)
aw® +bw® +c =0 —_— ]
where the symbols in equations (1) have their usual meaning and where

a = p*(B*/4n+ Yp)

2 2 2 2
283 [ >@+YpBGHOC,,363H .
B2 P dr 2rr (4n)?r

7 k2 B2 k Bg k B2
C_Tp_u_[:z____f)(J_Q =yp - — E’_‘:
B* dr k 4nr 4 \g2

1
where k = (k”'Z + (m2/r))? and W is the intergrand of the energy principle

o
I

after the usual minimisation for Eg and E&;. Plasma displacements of the form

E exp i (wt - mb - k,z) have been assumed and V+Z has been retained. The
1 9%
Er ar

able approximation for m > 1, since for small or no shear one expects

common practice of assuming «k has been followed. This is a reason-

l gr/(agr/ar)lfé r,/2 and since 2rm/k, is approximately equal to the magnetic
pitch which is observed to be of the order 2r, for the core, (rg is the tube
radius) . It is only a rough approximation for m = 1. (Electromagnetic units

are used throughout this paper.)

d
Provided there is an appreciable difference between - -El% and

YpBg/21tr(B9/4n + Yp) there will be one large and one small root for o? , namely



2 2
W = -2 = ebs | I, P % (k“ Lk :[] eee (4)
* a  rpB® LAY 2nr(B2/4m+Yp) k 4nr

dp (k Bz)
o2 ~_£=Tpkﬁ< B /4 ) ar -~ % \k Zar (5)
(0] b P B2/4g'c+‘Yp g_E+ .Yp Bg )

dr  2nr(B?/4n+ Yp)

For negative pressure gradients in excess of YpBg/éwr(Bz/hﬂ + Yp), as
observed experimentally in the discharge core, only the wsg9 mode is unstable,
NEWCGMB, 1961) has given the corresponding gravitational instability mode the name
'quasi-interchange', This is an appropriate name since the growth rate differs
from the growth rate for a pure interchange (constant magnetic pitch and k,; = 0)
only by small terms containing k. Sim;larly, the values of V-E and the fluc-
tuations in pressure and magnetic field (Bp,ﬁg) are approximately the same as

those for a pure interchange. The latter are given by

2
1dp T By ] )
pdr 2xr(B?/4n + Yp)

6B, _ B 5p
3D 0 Er‘ﬁ/ﬂ[

There is some bending of the lines of force but BB*/B and &Br/B are propor-
tional to k,; and are small. From equation (6) SBH/B will also be small for
either low B or for dp/dr close to the marginal stability value, For the
Sceptre experiments with B~ 0,5, and the pressure gradient twice that for margi-
nal stability (this is an upper limit, see WARE, 1961b), &B,/B for (6) is only

Er dp
p dr

=

The second mode w,, is unstable only in the range 0>—-—-r >= YB”/21t ﬁ + 'rp)
As the growth rate tends to zero for this mode, its properties approach those of
the kink mode obtained from the energy principle for k, # 0, namely VZE -+ 0 and
g, becomes the dominant component of £, In the other direction, as the growth

Lard

rate increases, this mode merges continuously into the quasi-interchange mode.

Thus the only instabilities predicted by MHD theory for the discharge core

with the observed pressure gradient, are pure interchanges, (if the magnetic shear



is zero and k, = 0), or quasi-interchanges whose properties are very similar to
a pure interchange. (An extra condition for the pure interchange to be possible

is that the magnetic pitch should be a submultiple of the torus circumference.)

2.2 The Quter Region of the Discharge

In the outer region, since the magnetic pitch varies appreciably with radius,
terms involving k” and %EF will no longer be negligible, The terms involving
ag,¢%r- and aegr/ara are no longer small and it is not possible to obtain a
dispersion relation without solving for the radial eigen function. The differen-
tial equation involved has not been solved for non-zero w except for a very
simple field configuration (TAYLER, 1957) with the added assumption V:g =0. It
has however, been solved by several workers for the cases where w = 0 (where
V:g = 0 is strictly true) so that a considerable amount of information is known
about the form of the plasma perturbations at marginal stability. In the case
of diffuse pinch configurations, solutions have been obtained by KADOMTSEV (1963)
and WHITEMAN, 1962). Both workers have extended their analysis to include non-

linear terms, showing the existence of new neighbouring helical equilibria,

One class of these equilibria (Class A) can be achieved by small displace-
ments of a perfectly conducting plasma from the cylindrical configuration, so
that an MHD instability of the type considered in section 2.1 would lead to an
equilibrium of this form, The other class (Class B) involves a new topology of
the magnetic field and can be achieved by small plasma displacements only if finite
conductivity is assumed. The tearing mode type of resistive instability (REBUT,
1962; FURTH et al, 1963) would lead to this type of helical equilibrium. Since
the regular magnetic fluctuations observed in the outer discharge region in
Sceptre III have both a helical (m = 1) character in space and a periodic nature
with approximately constant amplitude in time, the results are consistent with a
new helical equilibrium as pointed out by KADOMTSEV (1963). The rotation of the
helical configuration must be due to a wave motion since mass motion was shown
experimentally to be absent in Sceptre IV and in Sceptre III, where mass motion

was observed, it was small in the outer region.
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Of the two types of helical equilibria, in the case of Class A, if the pitch
of the helix exceeds the greatest magnetic pitch (2nr Bz/Be) present in the dis-
charge, a perturbation to the magnetic field will occur at all radii, a change of
phase occurring only at the centre, Such fluctuations were observed in a few

cases, (see Fig.9 in ALLEN, 1964).

If, on the other hand, the pitch of the helical distortion falls within the
range of the magnetic pitch values, the plasma displacement will pass through zero
at the radius where the equality occurs. The most unstable mode will often have
zero displacement within this radius (WHITEMAN, 1962). In one set of experiments
(ALLEN, 1960) the magnetic pitch varied from 26 cmat r =10 cm to 75 cm at
r =6 cm and the mean pitch of the fluctuations was 67 cm, so that an equality
would often occur near r = 6 cm. The absence of fluctuations within this radius
is therefore consistent with MHD theory. In the case of the Class B equilibria
(Tearing mode instability), the pefturbations in the magnetic field occur over the
whole tube with a change in phase at the radius where the pitch is the same for
the magnetic field and the helical distortion. Such a change in phase was not

observed.

From these arguments, the regular fluctuations can be identified with helical
equilibria generated by the m = 1 MHD instability. In the case of the irregular
fluctuations observed in the outer region, no corresponding attempt can be made to
identify their nature because of the lack of information concerning their spatial

variation.

3. THE WAVE VELOCITIES CAUSED BY FINITE LARMOR RADIUS EFFECTS

3.1 The Discharge Core

It was seen in the previous section that the types of instability expected
for the discharge core are either pure- or quasi-interchanges. Since, to first
order, these two modes have similar properties, in order to simplify the algebra,

the finite Larmor radius terms will be considered only for the pure interchange



mode. Including these higher order terms, but assuming Te « Tj = T, the plasma

equations (1) are replaced by
dv

M == )\j‘xE-V.P:V'E vee (7)

E+vxB= E% ixB ceu (B)

%%J,Yv-g:_é%v.g eer (9)

Hmere a=- 2 wrp) cer (10)

o
P is the non-isotropic part of the pressure tensor and k' is Boltzmann's
constant. This is a consistent set of equations in which all the terms of order

pi/L have been retained. (See for example HERDAN and LILEY, 1960.)

Considering the same normal modes as in section 2 with k, = O and constant

0
magnetic pitch, the non-zero components of P are given by

Q - p BVJ_ )
P Z00; (ar = ikv,
av
9 . P r .
PPJ__BJ.F_ZCQCi<aP +"‘ka.> vee (11)
where a right handed set of axes r,.,n has been chosen. The symbol 1 repre-

sents the direction of B and . the direction of B x 'g The wave vector k is
chosen to be in the positive direction of , (i.e. for Bg and B, positive, m
is positive and k, negative). Strictly these formulae for E are correct for
only cartesian coordinates, but because it is not possible to make accurate quanti-
tative camparisons between theory and experiment, it was not thought worthwhile to
evaluate the corrections to these terms due to the curvature of the helical co-
ordinate system used. wej 4is the ion cyelotron frequency, and in equations (10)
and (11) it has been assumed large compared with both the ion collision frequency

and w.

Taking the curl of equations (7) and (8), the equations (7) - (11) together



with Maxwell's equations reduce to

nMw EEE B0y & (=25 wp [ K.) V] = 0 (12)
©* &~ Zar UB Wei P LK, - KglE| + V-E] = e (12
5 k
5B . wk £, kp _
-B—+KBZEP+V'§— We i * heBw (quﬂﬂ]) V-E = 0 ees (14)

5p 5 _kp 5p dp 8B
D T Kp Ept VgL neBwI:(KP"KBZ)('p_+ KpEp+ V+E) - Kp (_p-"F)]=0 - o {16)

where 8B = 8B, (8Bp = 6B, = 0) and where the reciprocal lengths K_ are given

= L4 [+
by
=1da
Ka_adr
and are related as follows
Kp:Kn+KT ’ KBZ=K-B—B
r
2B?
B —8 _ e _B
5 l(.p + KBz + T o, KB 5 KBZ ; Kp .

The assumptions which have been made in deriving equations (12) - (15) are that
the magnitude of 3 gp/ar and gr/r are both small compared with kgr, and that,
K, is of the order 1/r. By equating the determinant of these equations to zero

the dispersion relation is found to be

w? + a;0® + aw + ag = 0 .. (16)
where o : 5 o
ay =E[(2 +7kp -3 KBz = m(xp—mn):l
a; = % [vkg - k5]
2rrp [ (B /4n) + Yp)
. =_;Iq_a_[_ « _Tp By Key (Kn_KBz):’
° T neB| "% TP T [ (8%/4m) + o]

where terms of second order in pi/L have been neglected. The terms a, and a,

are of first order in pi/L compared with zero order in a,.



The assumption is now made that Kp and YKB are sufficiently different for
Z
(Kp - YKg ) to be of the same order of magnitude as KBZ' In which case the
A
first and third terms in equation (16) are dominant and its approximate factors

take the form

w* +Aw+A =0 eea(17a)
(w+D) =0 «++(17b)
where
3 5 S
Kg (2K z K - EKB)
Ay = [}I L Rl ey (Kp - YKy) + . 5D 2
(B*/4x ) + ¥p = KBz - Kp)
Ay = a, ... (18)
Do - YKBZ(Kn - KBZ}:|

R | D
eB YKn -K)
( 8, Kp

Equation (17a) is the interchange mode and (17b) is the entropy wave of
KADOMTSEV (1959). The entropy wave is stable in this case because of the large
inequality in Te and Ti (see WESSON, 1963) and an important feature
of this mode is that 0&p/p and 26B/BB are of the order as (p3/L?)(8T/T) =
(pﬁ/la)(Sn/n). Although the observed fluctuations in B in the discharge core
are small, nevertheless 25B/BB is of the same order as the observed &n/n.
Hence the observed fluctuations cannot be identified with entropy waves and this

mode will not be considered further.

The wave velocity for the interchange mode in the direction of k is given

v, = Re(w)/k

- A /2K

and the apparent wave velocity in the positive 2z direction is therefore

3 5
(K- =K K.B)
Z P 2Pp 3 n_6
V. = (1 YK ) + ] een (19)
w 2Bk [ P (B2/47c}+'Ypr “n)* Xp, — EKB-KP
Z
_ _ z _9lj a (9
If Ky =3 and Kp-yKBZ then V' = 5, (- K,) or neby (- 57 ..(19a)
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where a is a function of x, y and B. Table 1 gives o for values of x, y

and B in the ranges of interest here, It is seen that o is insensitive to

B in the range of O to 0.5, but varies rapidly with x and y. (It should be

noted that equations (18) and (19) are no lonéer valid approximations for y = %.)
Table 1

Example Values of a

¥ = gﬁ y=2 y =§ y = I?O
x =-§i+; \ 0 0.5 0 0.5 0 0.5
- +3.25 | +3.30 | +0.19 | +0.24 | -0.23 | - 0.20
x =% ~0.25 | -0.35 | -0.65 | -0.75 | - 0.75 | - 0.85
X =1 2,75 | -2,9 | - 1.48 | - 1.72 | - 1.25 | - 1.49

For certain conditions o is close to the value -2 deduced qualitatively
from the trapping of magnetic fluctuations to the mean electron velocity (WARE,

1961a), but for other conditions a can be markedly different from -2.

The wave velocity predicted by equation (19) will in general be a function.of
radius. This cannot occur in practice and it is likely that the terms involving
the radial gradients of 5, which have been neglected, will make the real part of
w independent of radius, as they do the imaginary part. The resultant wave

velocity will be some average value of the right hand side of (19).

3.2 The Outer Region

For the outer region of the Sceptre discharges, less is known about the
plasma conditions (pressure gradient, density, etc.) than for the core and all that
will be attempted is to show that when k, # O, temms arise which can change the
sign of the wave velocity. It will be assumed that the non-linear terms in the

plasma equations are small compared with the linear terms and that the higher

order terms cause the observed equilibria only because the difference between the

= M =



linear destabilising and stabilising terms is small, In which case, only linear

terms need be considered to obtain the wave velocity.

For simplicity, of the various finite Larmor radius effects, only the Hall
effect will be included. There is a range of magnetic field values for which
this is the only important transverse magnetic effect namely Wej Tj € 1 « Wea Ta s
where the <'s are the mean collision times but the prime reason is to simplify
the problem, The full treatment with k, # O would involve not only the other
transverse magnetic effects but also heat conduction and viscosity parallel to the

magnetic field. Finally it will be assumed, in addition to Te « T; , that

1l dn_ 1 dp
n dr ~ Yp dr .- (20)

so that V x (ﬁg Vpi) is zero to first order. Only the contribution to the Hall

effect resulting from the plasma acceieration is therefore retained.

With the same large k approximation as before, the equations reduce to

2 2 ikzm

2m .
w?p [:kz Ep + P V-E + W E, |=

2
(BB g g

2k, BE mB
m I r d 0
(R 8Bg-k 6B ) - ———— (—r—-+ szz>

4nr 4nr 4mr dr
k? B? k2 ik k¥ wB?E
1] 1] 1
_____4 E["+ ) asa (2])
* Wei
8B =V a(zaB) -2 y,» een (22)
e ~ ~ wcj, ~

<2kzk_l_ Byg Bk, B'~’w>< . Wk, B)
(2 = wop +
r k24‘7t1" 4 wCi mCi

Vg = e e e . .oe (23)
g | AR TR [ o2 WK Jy B”
Yp( 4 Wi il Wej an *YP
wkj B
Ei <m2p + +> =ik, Yp V& ees (24)
ci ~

and these lead to the dispersion relation

{2 =



w' + ajw® +

where, to the first two orders in Kk,

apw® + alw + a} =0 «os (25)

~in each case, the coefficients are given by

: 282 5
' j k(=2 2 4mk B
o = Sdy P Wy 2\ dqr 4 "8
e ne B + Yp ne neB +\ B2 i 47 r2k ne
4r e
2 2 2
a’—E——i g 2YpB, _o k, Bg By
Ta pktr\dr B2 kénr
P %r(a + Yp
5 2 2
al, = a’ (k—LJ-‘- - z_kz -____Yp EE + _Z.EE _|_|_J X
a = %2 ne rk2 B® +Yp dr 4rr ne
4m
2 —Bi 2 Kk Bz
& = Yp kj ( 4n )I:Z kz dp + 0 < _Ui)]
P \BZ, yp/L k?r OF k 4nr®
It is assumed that k,, although significant is still small compared with k, so
that higher order terms in k, can be neglected. Provided dp/dr # - 2Tp'Bg/
4nr(B®/4n + Yp) the dispersion relation can be factorised to give the roots
corresponding to those obtained in section 2.1.
2
4 k 4n z 6 Il_4nr
B B A NT 4xr B B2
ne \ 22 2
4ﬂ+'Y'P (4,,"" Yp dp 233
Tp dr 4rr
.0 (26)
k Y 2B,”
- = 2 0 +w;, =0
ne \ B2 _ yp/ 4nrB 1o
47 .
dp  2Bg .
2 +w k“'j" (d_E * 4’}—H.e"> + k.l.JJ. + w2 =0 (27)
“a 2 ne B2 ne 20~
<a+ 'Yp)SE 236
ar * Zar

Yp

where wio and wﬁo are given by equa

tions (4) and (5). The apparent wave
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velocities in the 2z direction will be 1/(2 k,) times the coefficients of the w,
and w, terms respectively (N.B. k; is a negative quantity for positive Bg and

B,).

dp o B? s R -
If =>-2% 86/441:1- (a + ¥p), (which is likely to be the case in the outer
region of the discharge), then the second mode (w,) will be the unstable mode. If
the pressure gradient is negative, so that i, < 0, the wave velocity for this

mode will be positive or negative in the 2z direction depending on whether

2B2 dp
() N e )2 =
k, /\[3,T/\ 282 (BE ) <
dp

7\
Yp dr
Both inequalities are possible. The change over can occur at a value of Kk,

appreciably less than k, , since the other two factors in (28) are likely to be
larger than unity. If, however, the pressure gradient is positive (j i 2 0) the

wave velocity will be always positive for positive k; and k,. In the special

case wher gy 'é 11 d with b 25 2 B2
e gr 1S small compare with both pre and 2 Yp Be/47:r (a + Yp) the
wave velocity reduces to
V‘f = (k. j)/2 nek ees (29)

This is half the value deduced qualitatively from field trapping arguments (WARE,

1962).

In the case of the quasi-interchange mode (w,) the wave velocity will be

positive or negative depending on whether

K B J, B
Eﬂ(é[z-é—z- = - . } 21 ves (30)
3] 2
) (ﬁ**")@+ﬁq
Yp dr  4nr

and again in this case a change of sign can occur for a moderate value of k.

It must be remembered, however, that the other higher order effects will
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often be of comparable importance to the acceleration part of the Hall effect, and,
in fact, these terms can themselves lead to a change in sign of the wave velocity,

as was seen in section 3.1.

4. COMPARISON BETWEEN THEORY AND EXPERIMENT

4.1 The Wave Velocity

In the discharge core, since the expected instability will have either zero
or only a small value of k,, the appropriate formula for the wave velocity is
equation (19) or (19a). It has already been seen (WARE, 1962; WILLIANMS, 1964)
that the order of magnitude of Tikp/’e By is 2 x 106 cm sec-]. This compares
well with the observed range of wave velocities in Sceptre IV namely - 2 x 106

to - 4,5 x 106 cm sec—l. In Sceptre III the velocity was again negative but

only a few «x 105 cm sec_l. In this case, however, mass velocities in the gz

direction froi + 10° to + 2 x 10° en sec™ were observed (HUGHES and KAUFMAN,
1959) so the wave velocity to be compared with equations (19) is - 106 to

-2 x 106 cm sec_]. In both cases therefore there is agreement in magnitude.

The next question is the sign and magnitude of q. In the case of Sceptre
IV, the Doppler broadening measurements (ALLEN et al, 1962) indicate little or nﬁ
gradient of ion temperature. Hence in Table 1 the value of x is approximately
unity, and if Kp (unknown) is assumed to be in the range given by 2 é{yié 10/3,
then o will be in the range - 1.5 to - 2.75. This is the right sign and

magnitude to give good agreement with experiment,

In the case of Sceptre III, there is evidence (ALLEN et al, 1962) for a
significant ion temperature gradient in the discharge, but there are no actual
measurements of either Ky or Kn The pressure gradient is known in this case
(ALLEN and LILEY, 1959) and, despite the uncertainty in the integration constant
for p, the value of K, must lie in the range given by 2 <y < 10/3. From

Table 1 it can be seen that most of the possible values of a are negative, The
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ion temperature gradient would have to account for more than half the pressure

gradient to give a positive value of a.

For the outer region no attempt at quantitative comparison between theory
and experiment can be made since little is known of the plasma conditions in this
region. An example of the range of values of k, for this region can be seen by
taking a particular set of expsrimental results (ALLEN, 1960), where the magnetic
pitch was observed to vary from 75 cm on the inside of the region to 26 cm on the
outside. the mean pitch of the instability being 67 cm. The value of k“/ki will
therefore vary from zero at the point near the inner edge where the two pitches
coincide to 0.45 at the outside, both k, and k, being positive. Since j” is
likely to be considerably greater than j; in this region, the upper inequality
will hold in (28) for the outer part of the region corresponding to a positive
Wave velocity. Towards the inner part of the region the lower inequality in (28)
would probably apply, but there is'some evidence (ALLEN and LILEY, 1959) that Jy
is positive (dp/dr > 0) over the inner part of the region in Sceptre III. Average
current densities are unreliable for this region because of the large magnetic
fluctuations but if J, > 0, this would lead to a positive wave velocity indepen-
dent of condition (28). Thus the observed positive wave velocity for the outer_

region in Sceptre III is consistent with the theory.

The equally probably positive and negative velocities observed for this
region in Sceptre IV would be consistent with theory if there is a negative
pressure gradient and if the average value of k, for the region varies from one
discharge to another (due to a different k) so tﬁat both inequalities are equally

probable in (28).

4.2 The Electron Temperature Fluctuations

It was observed by WILLIAMS, (1964) that for the instability fluctuation in
the core §8Tg/Te « 6n/n.  That this result is consistent with an interchange
instability in a discharge with the observed electron temperature gradient can be

seen as follows.

- 16 -



Equation (14) can be rewritten in the form

5B,
§ = " Eer Kp, - V-, (31).

where Ee is the displacement experienced by the electron component of the plasma,
Since it has already been seen from equation (6) that 5B,/B « & K, and since
Epn Kp G . KBz » the term involving &B,/B in (31) can be neglected and

VeEe = Egp KBZ d

Hence in the electron thermal energy relation corresponding to equation (9)

.%__g =S Ve, = o B [ -EKJ (32)
Te = er KTE 3 ~e er KTe 3 BZ e

where the q, term can be neglected since Te « T; .

The magnetic pitch in the discharge core is observed to be either constant or
approximately constant with respect to radius (WARE, 1961b). Since the currents
parallel to be B are produced by a constant E, with Ee = 0, the approximately
constant pitch requires (WARE, 1963) KO_" = KBZ where o is the electrical con-
ductivity parallel to 5 » S0 that provided the amount of impurity in the discharge

3
is small and g, ~ "l‘g

2
K [ K
Te 378,
Hence from (32)

5T

e
- « £ K
Te r "By

and is therefore small compared with &p/p or b&n/n.

4.3 The Wave Velocities in Hydrogen and Deuterium

The theoretical wave velocity for the discharge core (equation 19) does not
depend explicitly on the ion mass of the gas used. The observation of a higher
velocity in hydrogen compared with deuterium is consistent with theory only if
either the pressure gradient is greater in hydrogen or if the value of x (Table 1)
is greater. The latter is unlikely since for Sceptre IV KTi is already small
for deuterium, An attempt to compare the two pressure gradients using magnetic

probes was inconclusive because the magnetic fluctuations are large (~ 20%) even

= A7 =



in the discharge core in the case of Sceptre IV (ALLEN, et al, 1962). (Sceptre III

was dismantled by then.)
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