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ABSTRACT

The two dimensional guiding centre plasma and a system of interact-
ing line vortices in an ideal fluid are examples of Hamiltonian systems
with bounded phase space. The statistical mechanics of such systems is
investigated. An interesting feature is that they can exist in negative
temperature states which show observable intrinsic characteristics, such

as the formation of clusters of particles.
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INTRODUCTION

There has recently been considerable interest (Taylor & McNamara 1971;
Vahala & Montgomery 1971; Dawson, Okuda & Carlile 1971; Montgomery 1972
a,b,c; Taylor 1972 a,b; Montgomery & Tappert 1972; Taylor & Thompson 1973;
Okuda & Dawson 1973; Christiansen & Taylor 1973; Lee & Lin 1973) in the two
dimensional guiding centre model of a plasma. This model is one in which
long filaments of charge are aligned parallel to a uniform magnetic field
B and move under theif mutual electric field E with the 'guiding centre'

velocity (E X B)/B%. The equations of motion are

oo _1em B 1em 415
i dt B 3y, i dt B ox,

where ei/ﬂ is the charge per unit length of the filament and H is the

coulomb interaction energy
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A scale transformation makes these equations identical with those for
the motion of interacting ﬁarallel line vortices in an incompressible
non-viscous fluid (Onsager 1949; Lin 1943); the charge e, is replaced by
the strength (circulation) of the ith vortex.

The two dimensional plasma and the vortex fluid are thus described
by the same dynamical equations. An interesting feature of this dynamics
is that the force acting on a "particle" determines its velocity rather
than its acceleration. This may be regarded as being brought about by
the absence of any kinetic energy term in the Hamiltonian. Moreover,
sincelxi, y; are essentially the conjugate coordinates these systems
also have the property that their phase space is bounded - it cannot exceed

VZN, where V is the volume (area) of the system and 2N the number of part-

icles. From the viewpoint of statistical mechanics this limitation is the
most important property and we shall refer to systems such as the plasma or
vortex models as limited phzse space systems.

In this paper the equilibrium statistical mechanics of these systems is
investigated; in addition to its possible interest for real plasmas or fluids
this is of interest for the interpretation of recent computer simulations of
plasmas and fluids (Montgomery 1972 b; Dawson et.al. 1971; Joyce & Montgomery

1973; Christiansen & Taylor 1973). 1Tt will turn out that, because of the



long range of the coulomb force, the interaction (2) does not lead to conven-
tional thermodynamic limits as the volume increases. The micro-canonical and
canonical ensembles are therefore not equivalent for systems with the interac-
tion potential (2) and concepts such as temperature and pressure require

careful consideration. In order to bring out these points we shall also

consider a modified form of interaction potential in which the long range effects

are absent and for which conventional thermodynamic limits do exist.

The first application of statistical arguments to the vortex fluid
system was by Onsager (1949). He noted that because of the limitation
on the total phase space, negative "temperatures'" would occur when the
energy of the system exceeded some critical value. Recently Taylor (1972a)
determined the approximate value of this critical energy. Further investi-
gations have since been made by Joyce and Montgomery (1973), in conjunction
with numerical simulations, who observed that a form of condensation
may occur in the negative temperature regime.

A second unusual feature of systems with the coulomb interaction (2)
was first noted by Salzberg and Prager (1963). They observed that for
such systems one may derive an exact equation of state which formally
predicts negative pressures below some critical temperature Tc'

In our investigation of these phenomena we shall take as our model

a system of N positive particles (or vortices) of strength e, = e and an
equal number of negative particles of strength e, = -e in a finite two
dimensional 'volume' V. The mean density of either species is thus n = N/V.
We shall put £ = 1 for convenience so that e%/f = e? is to be regarded as

an energy.

THE CHOICE OF ENSEMBLE

In the standard manner, the equilibrium properties of our system are
assumed to be given by regarding it as a member of an ensemble with an
appropriate distribution. If the temperature were specified, by contact
with a heat bath, the appropriate distribution would be the Gibbs canonical
distribution exp (—H(xi,yi)/kT). However the concept of a heat-bath is not
appropriate in the present context as we do not have readily available
negative temperature heat baths, either in reality or in computer simula-
tions. Instead we shall consider a completely isolated system for which

the apprcpriate distribution is the micro-canonical distribution
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p(xi,yi) ~ 6(E-—H(xi,yi)).

In the microcanonical distribution the energy is specified exactly;

in the canonical distribution the energy fluctuates about the mean value.
For normal systems these fluctuations are negligible when the number of
particles is large and the two ensembles are equivalent but as we have
already indicated this is not the case for systems with the coulomb
potential (2).

With the microcanonical ensemble it is convenient to introduce two
structure functions; @(E) the volume of phase space whose energy is less

than E, and the statistical weight
do
oE,V,N) = G = [ 6(F-ux,,y,))de
Then the entropy is
S(E,V,N) = log (E,V,N)

and all other thermodynamic quantities may be derived from this. When the
thermodynamic limit exists the temperature T and the pressure P have their

conventional significance and are given by

1 (as)
1128 (3)
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when no such limit exists these equations will be taken to define tempera-

and

ture and pressure.

EQUATION OF STATE
An exact equation of state can be derived for a two dimensional
system with coulomb forces. We first introduce an explicit representa-

tion of the 6-function so that

X f '
0 =f§; exp I\l){ (E + Z eiej log rij \\ I dEi (5)

where I denotes that terms i = j are excluded from the summation. Then,
following Salzberg and Prager (1963), we make a scale transformation
1

r - r'v? so that
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Q= dr exp (1%. (E + z 2 log V + E eiej log r ij)) il d£i
where the ri integrations are now independent of the volume V. Since

r
there is an equal number of positive and negative particles Eeiej = -Ne?

and

2N ‘ ; / '
_ Vv /. iANe? . i y
Q= T dx eXPK,.lhE -5 logV)ﬁxp i E eiej log rij ) I dr 3

Direct differentiation now formally yields the equation of state

PV = 2NT(1 - e2/2T) (6)

where P,T are defined by (3) and (4). This is identical with the equation
derived by Salzberg and Prager from the conventional partition function.
A striking feature of (6) is that the pressure becomes negative for
temperatures less than TC = e2/2, However further investigation shows
that the regime below ZTC is unattainable. This is a consequence of the
behaviour of (5) for small rij and reflects a physical condensation of
the system into neutral pairs (Hauge & Hemmer 1971); it does not affect
the rest of our investigation which is concerned with long range phenomena.
We shall, however, discuss in detail another negative pressure regime,

namely that in which the temperature is also negative. This regime is

attainable. There is again a form of condensation but in this case it is
long range, involving many particles rather than pairs. As mentioned
earlier , the existence of this negative temperature regime was noted by
Onsager (1949) whose argument runs as follows. The total phase space is
bounded and @(E) - VW asE-+ o ; consequently ¢'(E) must have a maximum

at some finite value Em of E. The temperature

T = ¢"(E)/D' (E)

must therefore be negative when E > Em'

ENTROPY
The exact equation of state gives no information on the relation
between entropy and energy. This can be found only by introducing
approximate methods, based on the fact that the number of particles is
large.
We first introduce the fourier transforms Py 9 of the density of

positive and negative charges respectively



= B i = = i
pE = 5 Z exp (lk~'£i) qE = 5 Z exp (lk~'£j) (7)
+

where the allowed values of k are such that kx.L = 27 (integer) etc.
We define
P = (- q) and m = (py + q) ,

then the interaction energy is

=2wv2(|k| ey L. (8)

The essential step (Edwards 1958; Taylor & McNamara 1971) is to employ a
set of the [pk,nk] as variables of integration in place of the {r L |

For large N the Jaccbian of the transformation is

2N V2 2
J=v " NaZ XP ( - ez o l? + [y |2 > : (9)

[This expression may be verified by recalling that the Jacobian can be

interpreted as the density in (pk,nk) space when there is a uniform
density in {Ei’zj] space. This (pk,nk) distribution can be found from

the moments of P and ny of which the only non-zero ones are

< [pﬁm] > =< lnﬁm] >=m! (Ne2/y2)"

when N is large. Alternatively, again interpreting it as the distribution
of (pk,nk) when the [Ei’zj] are uncorrelated, one may regard (9) as an
application of the central-limit theorem.]

As the Jacobian and the energy involve only [pkl we set P = rkexpi.ﬁk.
The integrations over Ok and over g play no significant role in the calcula-

tion and the statistical weight (5) becomes;

v2 -y2 )
H, 2 .
f dx k 2Ne exp <2Ne2 T } exp iAE

. 4Ne? 1
. exp { 27iAV E (rkf -2 ). 7 }. (10)
k

The integrations over T then give



2N

e dA exp iAE

exp (ia2A/k?)
(11)

2
1]

% (1+ ia?x/k?)

where @? = 4me?. The integrand is singular whenever A = ik?2/a2.

Equation (11) may also be written in the more convenient form

2N
v . E ioZd ia?)
§ & dx expl iAE - (log (1 + 2 ) - iz >£ . (12)

k

At this point one would like to take the limit N - @, V = o, N/V constant,
treating S and E as extensive variables (proportional to volume) as in

thermodynamics. This would lead to a thermodynamic relation of the type

S /E Vi >’

TR

and make the temperature

()" -G8

and intensive variable. Howeﬁer, due to the long range nature of the
coulomb force mo such thermodynamic limit exists for models with coulomb
forces. We will take up the coulomb model again later but in order to
remain within the framework of conventional thermodynamics we shall first

introduce a modification of the model.

THE FINITE RANGE MODEL

The modification is merely to replace the long range coulomb potential
by a finite range one. Specifically we replace the coulomb potential 1/k?
by the potential 1/(k2? + a?). 1In coordinate space this replaces log Ty by
Ko(a rij)’ with K0 a Bessel function of imaginary argument. The parameter
a-l is the characteristic range of the potential. It is important to
realise that the introduction of this modified ﬁorce does not alter the
special properties of our system associated with limited phase volume.

With the modified form of interaction the statistical weight is

2N i |
) V_ ’ ia? ) j ia? X \
Q= 5= dA exp a iXE - E <}°8<\1 i (k2 4+ a%) 4/ (k? & a2)</ ‘

(13)

In the limit V = » the summation over k may be replaced by an integral



fkdk,

I\)l<:
3

v .
;_’(27[)2‘/‘ dk=

and performing this integration,

Q=Y _ _a? v/Pexp —%i ?ize + (1 + iz) log (1 4 iz) - iz | dz
(14)
where € = E/Ne?2, and z = 4me?\/a2,
As V - @ the integration over z can be carried out by the steepest
descent method. The saddle point is at iz = (exp(-€)-1) and the final

result of the integration is

_ Vaz E -E
S(E,V,N) = = 1 - NeZ - eXP <§E?U) + 2N log V, (15)

which is indeed of the thermodynamic form. Corrections to (15) are of
order 1/a2V so that the steepest descent evaluation is accurate in the
limit V > @, All thermodynamic quantities may be obtained from this
expression,

The equation of state corresponding to eq.(15) is

a?T b4ome? _ e?
P log<1+a2T>V—2N L= g (16)

which differs from equation (6) for a coulomb system because of the
introduction of the finite range force. This difference can be
regarded as a change in the pressure by an amount which - 0 as a2 - 0.

The temperature is given in terms of the energy of the system by

1 a2 :E__) ,
T ~ Lime? exp(maz -E (1

which is one of our most interesting results. It shows that the

temperature is negative whenever the energy is positive, i.e., the

critical energy Em for the onset of negative temperatures is exactly
Em = 0. For large values of the energy, the temperature tends to a
limiting negative value - a2?/4me? and the accessible range of negative

temperatures is therefore - = < T < - a2/47me?.

Negative Temperature Phenomena in the Finite Range Model

Many of the unusual properties of negative temperature systems
arise when they interact with other, positive temperature, systems,

In such interaction heat flows from the negative temperature component



to the positive temperature one. In this way the entropy of both Systéms
is increased. However, one reason for interest in the present model is
that some features associated with negative temperature are observable
within the isolated system itself. To illustrate these we examine the
spectrum of charge density fluctuations.

The spectrum of charge fluctuations is given (c.f. equation 10) by
2N
v dx ]T V2 -y2
2 = — == 2 A o, S Y y2
% lgg?l ® =55 f27r ol 9 (owez ©*P <2Ne2 rk)

. 4nle? 1
exp}- 2ri A V Z(rk2 - v?_e J: Z+ad) } (18)

and after integrating over T, 2 ;

exp iAE

-1

2Ne? ia
<ol > =53 f (1+£2+a2>
i) i) _
. exp ;l}\.E Z(log( (k2+a2)>_ (k2+a2)> s (19)

In the limit of large V we again replace the summation over k by integration

and evaluate the integral over X by the method of steepest descents. Then

2Ne? 22 + a?
2 =
Ipﬂ | > V2 717 + a? exp (-e)] (20a)
or, in terms of the temperature,
< p 2 2Ne? 4ome? -1
pﬂ > = V2 1 IZ+al)T (20b)

Equation (20) shows that when € = 0 (T = ©) the spectrum is flat,
as for a random distribution of charges (Taylor & Thompson 1973). When
€ < 0 (positive temperature) the spectrum is depressed at small k, i.e.
long wave fluctuations are reduced. This is similar to the Debye shielding
effect in normal coulomb plasmas. On the other hand when € > O (negative
temperature) the spectrum is enhanced at small k and long wave fluctuations
are increased.

This enhancement of long wavelength fluctuations in the negative
temperature regime corresponds to a form of "anti-shielding" in which each
particle is surrounded by a cloud of similar particles. A picture of this

cloud is provided by the charge correlation function

-8 -



<p(r) p(r+s)>=LC< ,pé! > exp (ik.s)
which can be written

2Ne?

<p(r) p(r+s)> = 6(s) + g—; (l—exp(-G))Ko(saexp(-6/2)) .
(21)

The second term in this correlation function arises from the charge cloud

which, on average, accompanies each particle. The radius of the cloud

is ~ a_1 exp (€/2). If € < 0 the cloud is of opposite sign to the particle

and shields its effect. However if € > O the cloud is of the same sign as

the particle and enhances its effect. By integrating (21) we can obtain

the total effective charge in the shielding or reinforcing cloud; this is
qs = (exp(e) - L)e. (22)

In the negative temperature regime (¢ >70) the charge fluctuations

in the system can be regarded as due to the formation of large 'clumps'
or 'clusters' of charge, each cluster containing ~ (exp(e) - 1) particles
and growing in size as the energy increases.

For a limited phase system with short range forces, then, there is
a proper thermodynamic entropy (15) and a temperature which is negative
whenever the energy exceeds zero. This negative temperature regime is
characterised by a greatly enhanced level of macroscopic fluctuations
and a tendency for like particles to form clumps or clusters. We now
return to the coulomb model to investigate to what extent similar phenomena

occur in that model despite the absence of a proper thermodynamic limit.

THE COULOMB SYSTEM
For the coulomb case the statistical weight (12), writing

k? = (472/V)k? where k is independent of volume, becom-s

2N _ -1
_ Vv dz iz } <. . 1 )
2= Nez _/‘217."-(1 Tz /) XP \izet iz L5 /. (23a)

The entropy thus has the form

§ =2N log V- log Ne? + log (g(E/N))

and so does not tend to an extensive limit as E,V,N - = with E/N and V/N

finite. Consequently the temperature defined by

1 _ Qﬁ\' I
T-QE) S8’ (E/N)



is not an intensive quantity in this limit. Indeed the temperature
will depend on the shape of the container!

To investigate (23a), it is useful to write it as

v (4 iz iz
Q=ﬁg—fﬂexp{iz€-z<log<l+m)- T——#c_-"-)} (23b)
K
and to replace the sum over k by an integral, (but the error in this
approximation is no longer asymptotically small as V - «; indeed the
error is independent of V). Then
=.§?;. g—iexp{ize+7rb2l:<l+%> log <1+-§'T%> —-:';—E—E]} (24)

where b is the lower cut-off in the k integration. It is appropriate and

Q

convenient to take 7b2 = 1, when the entropy becomes

S =1log Q = 2N log V + log (g(e)), (25)

where
gle) Efg—frexp(ize+(l+iz)log(l+iz)-iz)- (26)

The exponent inthis integral, like that in (14), has a saddle point at
(L+1iz) = exp (-¢€) but the steepest descent method is no longer auto-
matically validated by a large parameter V. Nevertheless on deforming
the contour appropriately one finds that the steepest descent approxima-
tion toequation (26) is accurate when € is large and negative. In this
regime

log (g) =1 - % € - exp (-¢) (27)

and the entropy 1is

_ 3E -E
§ =2 log V - 50=5 - exp<‘ﬁgi-> . (28)

The temperature (SS/BE)-I is therefore given by

1 1 -E 3
T " Ne? [exp<m> ] ] hee)

which is negative when E > E = - (log 3/2) Ne? = - 0.405 Ne?,
Another expression for g(e€) can be obtained by noting that the
integrand in (26) has a branch point at z = + i. We therefore introduce

a cut from i to i » along the imaginary axis and the contour of integra-

- 10 -



tion may then be deformed to lie along the edges of the cut. Observing

that arg z differs by 27 on the two edges of the cut, and writing

1+ iz = ix,
0

gle) = 2 exp (l—e)f (Sin 7 x) exp (x - x log x - ex)dx. (30)
)

This integral is convenient for numerical evaluation of g, and therefore
of the entropy. Such numerical evaluation shows that the saddle point
approximation‘(27) is accurate to better than 3% when € < 0. 1In
particular the value for the threshold of negative temperatures obtained
numerically is Em = - 0.393 Ne? which agrees remarkably well with that
from the saddle point approximation.

When € is positive the saddle point approximation is not valid,
It is then more convenient to return to (23a) and consider the residue
from each of the poles at z = imk? after closing the contour in the
upper half plane. When [e|»1 the dominant contribution is that from

the pole nearest the real axis, whose contribution is of the form

p-1
€ exp (-ve)

where p is the degeneracy of the mode of longest wavelength and Y is a
number of order unity depending on the shape of the container. As

€ - x, therefore, the entropy becomes

YE E
Sz-@+(p-l) lﬂg('ﬂj): (31)

and the temperature tends to

The range of accessible negative temperatures for the coulomb system is
therefore - ® < T < = Y/Ne2.

We see from these results that, despite the absence of the usual
thermodynamic limit, the coulomb System has many features similar to those
of the short range model. 1In particular when the energy exceeds the
threshold E, = - 0.4 Ne? the entropy is a decreasing function of the
energy, i.e. the "temperature" is negative. It is also interesting that
the steepest descent method is valid for a coulomb system when ¢ « - 1.
For in this case the micro-canonical and canonical ensembles must lead to

similar results. According to (29) the requirement that e « -1 is

equivalent to

- 11 -



Ne2 '
o »+ 1

5

which can be interpreted as a requirement that the Debye length (T/ne?)

be much less than the dimensions of the system.

Nepative Temperature Phenomena in the Coulomb System

As for the short range model we first calculate the fluctuation spectrum

o |pﬁ| > which is given by

-1
2 2 T
<|{312{|>=2N‘;“ .%f k2y ” {(1+122> }
' (k2V + 47iz) L

. . L
exp (12 €e+iz L e > dz - {32)

This expression can be evaluated by similar approximations to those used
for Q itself. In the regime € « - 1, (positive temperatures) the ste-

epest descent method can be used and leads to

| -1 5 )~
< log| > = [1+§% (exp(-€) - 1] = <1+——"4$§ ) e

which is the conventional value, showing suppression of long wave
fluctuations by Debye shielding.

In the strongly negative temperature regime € » 1 the integral in
equation (32) can be evaluated directly by residues, with the dominant
contribution again coming from the pole nearest the real axis. For the
longest wave length mode the order of the dominant pole in the integral
(32) exceeds the order of the (same) dominant pole in Q by unity and

2Ne?

V2 (34a)

< le*| > =

However for all other wavelengths the order of the dominant pole is the
same in the integral and in 0 itself. Consequently for all modes other

than the leongest one,

2
< |p2] > = 232 . (34b)

In the coulomb system therefore, a single mode (or group of equivalent
modes if the longest wavelength is degenerate) is enhanced above all
others when the temperature is negative, the rest of the spectrum being

flat as for random particles,
Although this enhancement of the longest mode again corresponds to

a tendency for like particles to cluster together, the size of the

- 12 -



clusters is not now an intrinsic property of the system but is fixed by the
size and shape of the container. The clustering will simply produce a
modulation in the charge density corresponding to the longest mode, or group
of modes. The amplitude of this modulation is ~ e%(Ne%/V) = (E%/V) and so

increases rather slowly with the energy of the system.

CONCLUSIONS

We have investigated the statistical mechanics of two dimensional
limited phase space systems, of which the guiding centre plasma and the
vortex fluid are the prototypes, with two forms of interaction between
particles - the long range coulomb force and a short range force.

With the short-range-force an asymptotic limit exists as V - « and
leads to an extensive entropy (15) from which all thermodynamic quantities
can be obtained. The temperature, given by (17), exhibits the character-
istic feature of limited phase space systems, namely that their temperature
becomes negative when their energy is sufficiently large. In fact for the
short range case this critical energy is Em = 0,

These negative temperature states are of special interest in the present
model because, in addition to thermodynamic properties shared by any negative
temperature system, they exhibit observable internal characteristics attribu-
table to the negative temperature. These are a high level of macroscopic
fluctuations and the (related) tendency to form macroscopic clusters of
similar particles. The size of each cluster and the number of particles in
it both increase with the energy of the system in a manner which we have
calculated.

With the coulomb potential we do not find the usual thermodynamic limit
as the volume tends to infinity and the entropy is not an extensive function
of the energy per particle. Nevertheless, in the limits E/Ne? « - 1 and
» + 1 explicit expressions have been derived for the entropy. The "temperature"
(BS/BE)_l, although not an intensive variable, is again negative when the
energy of the system exceeds a threshold value. This threshold is no longer
exactly Em = 0; we have estimated it to be Em =~ - 0.4 Ne?,

The characteristics of the negative temperature state for the coulomb
model are different to those of the short range model. There are enhanced
fluctuations but the single longest wavelength mode (or group of degenerate
modes) is preferentially excited. Consequently although clustering again
occurs it is now controlled by the size and shape of the system. One expects

only a single positive and a single negative cluster such as will produce



a modulation in the charge density of amplitude (E%/V). This corresponds
roughly to all the "surplus" energy above the threshold value Em appearing
in this macroscopic mode (Joyce & Montgomery 1973).

This clustering behaviour was first noted by Joyce & Montgomery
and illustrated by them with numerical simulations of the coulomb system
in a rectangular box. Similar numerical simulations carried out by
J.P. Christiansen and one of us (J.B.T) are shown in figs. 1-4. 1In these
simulations the motion of éeveral thousand particles interacting through
the coulomb force were followed by the VORTEX code (Christiansen 1970;
Christiansen & Taylor 1973). The system is periodic in both directions and
the electric field is calculated at each time step by a fast fourier trans-
form method on a 64 X 64 mesh. Imitially, positive and negative particles
are distributed on alternate squares of a chequered pattern (fig.l) and the
energy of the system is selected by changing the size (but not the number)
of the squares. The particles are then followed for as long as limitations
of computer time and accuracy will allow.

A typical final state of the system for an energy of € = 5 is that of
fig. 2 ; this shows little if any clustering. For a larger energy, € = 18,
there are clear signs of cluster formation (fig.3) and for an energy e = 36
the cluster formation is dominant (fig.4). It is obvious from these figures,
and those of Joyce and Montgomery, that clustering is a clearly observable
phenomena, at least in the coulomb system. We hope that a more detailed
examination of these and other numerical simulations, and their comparison

with the theory presented here, will be given elsewhere.
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