CLM -P 354

CLM-P354

BE e s

Seten)
This document is intended for pﬁ i rnal, and is e |
available on the understanding that{ extracts &m@{@,@
published prior to publication of the original the consen it}:

author.

UKAEA RESEARCH GROUP

Preprint

AN INTRODUCTION TO THE OLYMPUS SYSTEM

K V ROBERTS

- CULHAM LABORATORY
Abingdon Berkshire

1973

Enquiries about copyright and reproduction should be addressed to the
Librarian, UKAEA, Culham Laboratory, Abingdon, Berkshire, England

CLM-P354

AN INTRODUCTION TO THE OLYMPUS SYSTEM

K V Roberts

(Submitted for publication in Computer Physics Communications)

ABSTRACT

A standard methodology has been established for the design, construc-
tion and operation of Fortran programs to solve initial-value and
other problems. The following two papers describe the OLYMPUS library
package which is used in implementing this methodology on the ICL 4/70
at Culham, together with an illustrative example of a laser fusion
code called MEDUSA 1 which has been developed in this way. Subsequent
papers will describe how OLYMPUS can be installed on IBM and CDC
machines. This article provides a brief introduction to the OLYMPUS

system and explains why it has been adopted.

UKAEA Research Group
Culham Laboratory
Abingdon

Berks.

November 1973

INTRODUCTION

An earlier article [1] in this journal discussed the problem of publish-
ing scientific Fortran programs. It suggested a number of general principles
which, if followed, would make it easier to transfer such programs from one
user or one computer system to another, and would enable them to be readily

adapted to solve problems that were not envisaged at the time when they were

first written.

_ These principles have now been incorporated into a programming system
called OLYMPUS [2,3], which is used by the Computational Physics Group at the
UKAEA Culham Laboratory to support the design, construction and operation of
all new Foftran programs. So far as possible all programs are built according
to a common plan, which makes them more intelligible as well as speeding up
most aspects of the programming process. The OLYMPUS system was originally
developed for physical initial-value codes which solve partial-differential

equations of the general form

df _
et G(f) =0 (1)

subject to appropriate initial and boundary conditions, where £ 1is the
solution vector and G 1is a linear or non-linear operator. Many interesting
problems in hydrodynamics, plasma physics, astrophysics and other areas of
classical physics can be expressed in this form, and it seemed worthwhile to
establish a common programming strategy for dealing with them. Once the
OLYMPUS system had been developed, however, it was found to be equally useful
with only minor changes for a much larger class of computing work, including
programs which have no connection with physics at all, for example the auto-

matic documentation and flowcharting codes discussed in ref.[1].

OLYMPUS employs a standard set of files which are installed on-line in a
system or user library. These files include a main program, subprograms,
COMMON blocks, procedure files and so on. The following paper [2] describes
the package which is used to build and test the system on the ICL 4/70 used
at Culham, while refs. [4 & 5] describe the corresponding packages which are
used for the IBM 360/370 series and the CDC 6000/7000 series respectively.

It is intended that OLYMPUS itself should organize most of the system-
dependent features such as channel numbers, word and byte lengths, character
codes etc., so that once it has been installed and tested on a new computer
system the actual transfer of any program in the 'Olympian' family is
relatively straightforward. Ref.[6] in this issue describes one such program,

MEDUSA 1, a l-dimensional Lagrangian laser fusion code. Other members of the

1 -

family will be published in Computer Physics Communications in due course.

We have found it useful to standardize many of the stages in the design,
construction, testing, documentation and operation of Fortran programs.
Several aspects of the OLYMPUS system are listed in Table 1 and are briefly
~described in the sections which follow. A more detailed discussion and
justification is given elsewhere EZ,BJ. Preferably this article should be

read in conjunction with a listing of an Olympian code, e.g. MEDUSA 1 [6].

TABLE 1

Aspects of the OLYMPUS System

1. Architecture 6. Utility Subprograms

2. CRONUS Dummy Program 7. Program Development

3. Notation and Layout 8. Control

4. Documentétion 9. System-Independence

5. Diagnostics 10. HESTIA Housekeeping Programs.

1. ARCHITECTURE

We think of each program as consisting of two main parts:

INSTRUCTIONS
DATA

The instructions are organized into a main program together with a set of
subprograms, while the data is organized into labelled COMMON blocks. It
may be convenient to picture these COMMON blocks as operands and the sub-
programs as operators which act on them. So far as possible each subprogram
and each block should have a well-defined purpose, and we find it useful to
adopt the broad classification indicated in Table 2. The decimal numbering
scheme used in OLYMPUS will be explained in §3, but meanwhile we note that
the subprograms are divided into classes, while the labelled COMMON blocks
are divided into groups. Only one copy of each labelled block is used
throughout the entire program; it is stored on-line as a private file and

inserted where required by means of a preprocessor control statement such as
// SUBSTITUTE COMPHY (2)

This makes the source code shorter and the data structure easier to understand.

-2 -

TABLE 2

Program Architecture

INSTRUCTIONS
0 Control
1 Prologue
2 Calculation
Classes of 3 Output
Subprogrems 4 Epilogue
5 Diagnostics
U Utilities
DATA
1 General Olympus Data
2 Physical Problem
Groups of 3 Numerical Scheme
Lnbeldded 4 Housekeeping
GRBION. Blorls 5 I/O and Diagnostics
6 Text Manipulation

2. THE CRONUS DUMMY PROGRAM

A standard library program called CRONUS is installed on-line in object
module or load module form as part of the OLYMPUS system. It contains the
subprograms and COMMON blocks indicated in Table 3 and is described in detail
in the following paper [2]. CRONUS does not itself perform any computation,

but it sets the basic structure for all programs in the OLYMPUS family.

This is achieved in the following way. Subroutine COTROL {0.3) is a
standard control subprogram which is used for all Olympian programs and which
calls lower-level subprograms with the names shown in columns 1-4 of Table 3.
In CRONUS these are simply dummies which perform no actual work; in any 'real'
Olympian program they are replaced by programmer-supplied versions with the
same names and decimal numbers which automatically supplant the dummy 1ibrary
versions. Thus the programmer would supply a subroutine STEPON (2.1) which
organizes the calculation step and calls in other subprograms (2.2),(2.3) to

do the actual work; a subroutine OUTPUT(K) (3.1) to organize the output, and

50 On.

TABLE 3

Structure of the CRONUS Dummy Program

SUBPROGRAMS
0] 1 2 3 4 5
Subprogra
0 (MAIN)
1 BASIC LABRUN STEPON OUTPUT TESEND REPORT
2 MODIFY CLEAR ENDRUN CLIST
3 COTROL PRESET ARRAYS
4 EXPERT DATA
5 AUXVAL
6 INITAL
7 RESUME
8 START

[c1.1] coMBAS
(c1.9] coMpDP

Class 1 which deals with initialization and restart has been planned
with some care, since although in many non-Olympian programs these aspects can
cause considerable trouble to both programmer and reader alike, we have found

that in practice they can largely be standardized and to some extent even con-

structed automatically.

The Group 1 COMMON blocks [c1.1] - [Cl.9] are intended to be standard

COMMON BLOCKS

Basic System Parameters

Development and Diagnostic Parameters

library versions which are available to all programs.

been established, containing the variables defined in ref.[2]; others will

deal with fundamental physical constants, character codes, and other general-

purpose information.

So far only two have

3. NOTATION AND LAYOUT

Standardization of the notation and layout makes the program listing
neater and easier to read, and once a new programmer has mastered the rules
he can in practice develop and debug codes more quickly, partly because he
is relieved from the need to make ad hoc decisions and partly because he and
‘his colleagues can readily find their way about the listing and hence locate

‘errors.

Table 4 indicates some of the elements that have now been standardized.
TABLE &4

Notation and Layout

(a) DECIMAL NUMBERING SCHEME

Subprograms, é:8. £2.10 STEPON

Common blocks, e.g. [C3.2] COMTIM

Division of subprograms into sections and subsections
Statement numbers correlated with sections

Line numbers correlated with sections.

(b) NOTATION FOR VARIABLES AND ARRAYS

Common/internal
Real/integer/logical
Variable/formal parameter/index

Initial letters are used
to distinguish between

(c) LAYOUT

Standard columns
Spacers and ruled lines

(d) SYMBOLIC NOTATION

Channel numbers Table sizes
Character codes Constants
Dimensions

(e) STANDARDIZATION

Control variables File names
Subprograms Fundamental constants
Common blocks

Decimal numbering has been found particularly useful, giving the program
roughly the same structure as that of a well-planned mathematical textbook.
In addition to the numbering of subprograms and COMMON blocks we also divide
an individual subprogram into sections and subsections, and correlate these

with Fortran statement numbers (and also line numbers, when working on-line),

The initial-letter conventions defined in Table 5 allow the reader to see at
a glance which variables and arrays are in COMMON and which are local, thus

avoiding possible mistakes when introducing extensions to the program. The

TABLE 5

Initial letters and Array Names

INTEGER
REAL P

AL, COMPLEX (and HOLLERITH) LOGICAL
Subprogram
dummy arguments P K KL
Common variable
and array names A-H,0,Q-Y L,M,N LL,ML,NL
Local variable
and array names Z I IL
Loop indexes J

methodical use of symbolic rather than arithmetical notation enables parameters
to be readily updated should the need arise as well as making their meaning

clearer.

4. DOCUMENTATION

It is not difficult to make a program intelligible if the need for this
is foreseen from the outset, but documentation of an existing program is likely
to involve much more effort, particularly if it is not properly structured so
that awkward features have to be explained to the reader. Table 6 lists some
standard documentation tools. FEach numbered section or subsection (§3) is
preceded by an explanatory heading, and other comments are used to explain the
purpose of individual details of the code. Headings, comments and statements
begin in different standard columns in order to distinguish them more clearly.
Indexes of variables, arrays and subprograms are contained in standard files
in alphanumeric or decimal order and printed as required. A useful technique
is to cross-reference the listing and a program commentary or write-up so that

the two can be read together. This can be seen in the MEDUSA 1 code (6], where

TABLE 6

Documentation Techniques

Headings

Gomments

Indexes

Program commentary

References, equation numbers, cross-references

Program map

Automatic Documentation

Clarifier
Flowcharter
Selective printing of given statement types.

the listing refers to the equation numbers in the write-up while the write-up
refers to the subprogram numbersin the code. Another example of similar docu-
mentation Eechniques used for IBM 360/370 Assembler Language is available in
ref.[7] .

Automatic documentation tools [1] are being developed for use with

OLYMPUS and other programs and will be published in due course.

5. DIAGNOSTICS

A fairly elaborate set of diagnostic tools has been developed in order to
enable programs to be checked out as quickly as possible and preferably on-
line. Each program is 'instrumented' while it is being written, using a set
of standard utility routines discussed in §6, and then the diagnostics can be
switched on and off either by including coded data in a NAMELIST input deck
or by inserting a few extra statements in the program. Facilities are avail-

able (Table 7) to output messages, to trace the flow of the program, to print

TABLE 7

Diagnostic Techniques

Messages from program

Flow tracing

Print variable and array names and values
Print selected COMMON blocks

Time sections of program.

the names and values of individual real, integer, logical or Hollerith vari-
ables or arrays, to print out COMMON blocks in alphanumeric order, to time
sections of the program [8], and to switch individual subprograms off if they

are found to contain catastrophic errors.

6. UTILITY SUBPROGRAMS

A set of library subprograms called CYCLOPS enables certain standard
facilities to be made available to all programs. A typical example is
SUBROUTINE MESAGE (KMESS) which prints a 48-character message on the current
output channel. This is done by including a single card in the deck, thus
relieving the programmer of the need to handle Format statements which may
differ from one machine to the next and can lead to errors. Ref.[2] lists
all the CYCLOPS subprograms which are available so far, while Table 8 also

mentions others that are available at Culham or are in preparation.

TABLE 38

Utility Subprograms

A. CYCLOPS
1. Output
2. Array manipulation
3. Clock
4. Diagnostics

B. Other Utilities
5. Timing
6. Dump and restart
7. Assembler-language facilities in Fortran
8. Character handling
9. Graphics.

7. PROGRAM DEVELOPMENT

The OLYMPUS system enables programs to be developed and tested in a
methodical way, either working off-line with cards or on-line using a multi-
access system. Table 9 indicates some of the techniques that are commonly

used. It is recommended that the data structure should be checked out first,

TABLE 9

Program Development Techniques

1 Use CRONUS as test-bed

2. Use prefabricated elements where possible
3. Compilations and small tests on-line
4

OLYMPUS provides standard diagnostics which
can be switched on and off

5. Check individual modules first, with small
array sizes and few timesteps

6. Begin by establishing and checking the
data structure

7. CYCLOPS routines provide temporary output

Automatic Tools

8. Construction of procedure files

9. Generation of standard sections of program
10. Updating COMMON blocks
11. Editing.

using CRONUS as a test-bed with its dummy STEPON (2.1) and the diagnostic
routines for temporary output. Once the data initialization has been checked,
the program can be run for one or two timesteps. All these initial tests can
be carried out with small array sizes in order to limit the output, partic-
ularly when working on-line. Output routines can of course be checked out

independently of the rest of the program, again using CRONUS as a test-bed.

Facilities are being introduced for carrying out some of the routine

development work automatically.

8. CONTROL

Many large physics programs are in a continual state of development,
since ad hoc modifications have to be introduced to enable particular numerical
expefiments to be carried out. Unless precautions are taken this can lead to
'untidy coding and to multiple copies of on-line source and object files. Some
thought has therefore been given to the way in which Olympian calculations

should be controlled and ad hoc modifications made (Table 10).

TABLE 10

Control of Calculations

. Standard main program (0.0) and COTROL (0.3)
Default values set in PRESET (1.3)

NAMELIST data input in DATA (1.4

Function subprograms with parameters in COMMON

EXPERT (0.4) for ad hoc modificationms.

v W =

Firstly, all programs share the same main program (0.0} and the same
master control subprogram COTROL (0.3 which are available on-line in object

module form.

Secondly, all COMMON variables which can be independently set are
assigned default values in subprogram PRESET {1.3), so that the user only has

to define those values which he wishes to alter.

Thirdly, we employ NAMELIST data input in subprogram DATA (1.4), since
this enables the user to specify the alterations in a convenient symbolic,
free-format notation. An Olympian program will usually run with no data input
at all, other than the 4 standard cards which label the run [2]. An alter-
native method is to define the data by means of Fortran statements and then
to recompile subprogram DATA each time, but this is awkward on the ICL 4/70
because of the time taken to compose (link-edit) the program after one or

more of the subprograms has been recompiled.

Fourthly, we define any arbitrary functions (e.g. initial values) by
means of function subprograms or statement functions containing adjustable
parameters which are placed in COMMON. If a user wishes to alter the form

of the function he recompiles that small section of the program; otherwise

- 10 -

he inserts the appropriate parameter changes in the NAMELIST data input.

Finally, ad hoc additions or modifications to sections of the code are
made using a subprogram called EXPERT {0.4), which is called from many points
throughout the program with 3 parameters KCLASS, KSUB, KPOINT which define the
location for which the call was made. The user can then provide his own ver-
sion of EXPERT which contains the additional or modified code, the transfer of
data being made via COMMON. An advantage of this scheme is that all the
changes are defined in the compilation listing of EXPERT which should of
course be laid out neatly, while the original program remains unchanged in
object-module form. This enables several people to use a program at the same
time for independent calculations without interfering with one another.
Subprogram EXPERT also controls the diagnostics and may be useful for other

purposes.

9. SYSTEM-INDE PENDENCE

Table 11 indicates the techniques that are used in order to enable programs
to be transferred readily from one computer system to another. The OLYMPUS
package installs the system on a new computer and tests it out. It is avail-
able for IBM [4] and CDC [5] machines, although some changes may need to be
made in the control cards for particular installations; these are fairly com-
plex since several job steps must be scheduled one after another and library
files require to be created and preserved. For other types of machine it may
be necessary to change some of the Format statements which depend on word-

length and to adjust channel numbers.

TABLE 11

Techniques for achieving system-independence

1. Modify OLYMPUS package and install in system
or private library.

2. Most Olympian problem programs will then run
without modification.

3. Standard Fortran is used where possible.

System-independent features are handled
symbolically to allow rapid changes.

5. A standard set of tests is supplied with the
OLYMPUS package and with each individual
program.

- 11 -

Once the package has been installed, most Olympian programs should com-
pile and run straightaway provided that their control cards are changed in
the appropriate fashion. To facilitate this, Standard Fortran is employed
wherever possible, and system-dependent features such as channel number,
wordlengths and character codes are handled symbolically where possible. A
"standard set of tests is supplied with each program to check that any modifi-

cations that are necessary have been carried out correctly.

Some programs will require the use of subprograms written in assembler
language for efficiency; so far as practicable the intention is to make these
part of the OLYMPUS system, so that equivalent versions are available for

each type of machine.

10. HESTIA HOUSEKEEPING PROGRAMS

A considerable degree of automation becomes possible once coding tech-
niques have been standardized, and this is the function of the HESTIA series
of housekeeping programs which is currently being developed. Typical examples
are FORIBM and FORCDC which convert ICL 4/70 programs to IBM and CDC form
respectively and punch them out with all necessary control cards. We hope to

publish some of the programs in this series in due course.

- 12 -

References

[1]

[2]

[3]

(4]

[5]

(6]

(7]

(8]

o]

'The Publication of Scientific Fortran Programs', K V Roberts,
Computer Physics Communications 1, 1 (1969).

'0OLYMPUS, A Standard Control and Utility Package for Initial-Value
Fortran Programs', J P Christiansen and K V Roberts. CLM-P373,
November 1973. To be published in Computer Physics Communications.

"OLYMPUS System Part I: Design and Construction of Fortran Programs',
K V Roberts and J P Christiansen (1973), to be published as a Culham
Laboratory Report, available from HMSO.

'"OLYMPUS and Preprocessor Package for an IBM 370/165', M H Hughes,
P Roberts and K V Roberts, Computer Physics Communications (to be
submitted).

'OLYMPUS package for a CDC 6500', M H Hughes, Computer Physics
Communications (to be submitted for publication).

'"MEDUSA, A One-dimensional Laser Fusion Code', J P Christiansen,
DE T F Ashby and K V Roberts. CLM-P374, November 1973. To be
published in Computer Physics Communications.

'Data Organization for 3-dimensional Calculations on the IBM 360/91
using High Speed Drum Transfers', G Kuo-Petravic, M Petravic and
K V Roberts, Culham Laboratory Report CLM-R118, available from HMSO.

'TIMER - A Software Instrumentation Routine for Making Timing
Measurements', M H Hughes and A P V Roberts, Computer Physics
Communications (submitted for publication).

'Standard Fortran Programming Manual', Computer Standards Series,
National Computing Centre Ltd., Manchester, England (1970).

- 13 -

. i
“?“;

P D
Loyt

e

