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ABSTRACT

It is shown that an appropriate choice of variables can greatly simplify the
discussion of equilibrium and stability of low-pressure plasma in arbitrary mirror
fields. One specifies by o, the line of force on which a particle is moving
and also specifies its adiabatic invariants p,.J; the energy of the particle is
then determined as a function K(u,J,a.f) which plays the role of a Hamiltonian.

Any equilibrium distribution can then be written in the form F ip,J K(a,pB,u,J)!

and it is shown that a sufficient criterion for such distributions to be stable
against interchanges is (%% < 0 . Necessary and sufficient criteria are also

derived. When approached in this way, the exact form of the Field configuration
only enters the problem through the determination of the function K, which may
be easily calculated, In general a comprehensive view of plasma behaviour, con-
venient for the discussion of equilibrium, confinement and stability, can be
obtained from the structure of the K(a,i,ut,J) = constant contours. An example
of the application of this approach to a Ioffe stabilised mirror is described;

this confirms the existence of stable plasma equilibria in this field configuration.
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1. INTRODUCTION

In an earlier paper(l), henceforth referred to as I, the equilibrium and stability of
certain special plasma distributions in combined mirror-cusp fields were discussed., These
fields are such that ]B] possesses a (non-zero) minimum and the distributions are those
in which the pressure tensor g depends only on [B]. In the present work a general
method is described for the analysis of equilibrium and stability in any form of low-pB
adiabatic mirror machine, including hybrid mirror-cusp systems such as Ioffe's stabilised
mirrorfz), the stuffed cusp, the systems discussed by Furth(s) and by Andreoletti(4) and
similar devices, Some of these devices do not possess the high degree of symmetry of the
elementary mirror but it will be shown that if the proper variables are employed it is
nevertheless possible to express the conditions for equilibrium and for stability in forms

which are both simple and general ,

In considering these problems it has been Customary to consider a confined plasma
(i.e. one localized in a limited region) and to apply criteria for equilibrium (often
automatically ensured by symmetry) and for stability, However, in I it was more con-
venient to use a description in which equilibrium and stability could be discussed rirst
and only later did one discuss confinement. In other words instead of taking a confined
(localized) distribution and applying a stability criterion one considered stable distribu-
tions, with g expressed as a function of ]Bl, and then applied a confinement criterion.
The advantage of this approach is that the actual form of the magnetic field only enters
the problem through the confinement criterion, and furthermore it enters in a very simple
way (e.g. in I, it reduced to the question 'do the surfaces |B| = constant form a closed
nested set?' In the present paper we adopt a similar viewpoint but we will now employ the

'particle-drift' description of a low-p plasma instead of a fluid description.

In section 2 these particle drifts are discussed, The instantaneous drift velocity
is well known but a more relevant concept is the average drift motion over several oscilla-
tions between mirrors. The equations for this average motion can be put in a simple form
if the appropriate ce-ordinates are used(s); this is because the adiabatic invariants
B = mvi/h and J =.% vyds are constant during the drift motion, The key to the problem
is to note that if one specifies the line of force on which the particle is moving (by co-
ordinates «,fi) and also specifies its H, J then its energy is determined. This allows
one to regard the energy of a particle, not as an independent variable but as a known
function of p, J, a, 8. Then this function K(w, J, a, B) plays the role of a

Hamiltonian(S), and the equations for the average drift motion are:



&= - g %%(GSB!P!J) , eee (141)
E = & % %E(G’B,P’J) . sen (1-2)

As a consequence of this canonical form for the drift motion, any equilibrium distri-

bution can be expressed in the form

Feq[P!J:a;ﬂ’] = F[H!J,K(G!B]H!J)] 3 vee (1.3)

where again one is not regarding K as a variable but as a known function of a, B, p, J.

The question of stability is considered in section 4 where it is shown that once the
equilibrium has been expressed in the special form (1.3) one can obtain a simple criterion
for stability against interchanges (i.e. motions in which flux tubes are interchanged and
the magnetic field is unaltered - these are the most important of the possible instabili-

ties at low-p). In fact the system is stable against interchanges if
2 F(u,J,K) < O (1.4)
aK H] ? - " .

Equation (1.3) states that, for each , J, an equilibrium distribution is constant
along contours K(a,p)= constant, so that confinement (i.e. localization) of a distribution
is easily discussed in terms of the topology of these K contours. For example if F is
non-zero for a particular K = K, then the K, contour and its associated flux surface
must be closed within the region of interest. A more significant observation is that in a
confined plasma F must decrease toward the periphery and if it is also to satisfy the
criterion (1.4) it must decrease with increasing K; for this to be possible K itseif
must increase toward the periphery, i.e. K(a,p) must possess a minimum. It is important,
therefore, to note that this requirement is fulfilled in magnetic fields in which }B]
increases toward the periphery. Such fields have a large class of stable equilibrium

distributions, among which are the special disctributions found in I.

It is apparent that the function K(a,B,u,J) 1is of supreme importance in understand-
ing the behaviour of low-f plasma in arbitrary adiabatic mirror systems and in searching
for systems possessing stable confined equilibria. Once it is known a complete descrip-
tion of particle drifts, of equilibrium and of confinement is available, and so is a
partial description of stability which encompasses the most important types of possible
motion. It is only in the determination of this function K that the specific form of
the magnetic field enters the problem and it does so in such a way that the determination

of K is not difficult. An example of the application of the present approach to a



Toffe-type stabilised mirror is described in section 5.

2. _CANONICAL EQUATIONS FOR AVERAGE GUIDING CENTER DRIFT

When the Larmor radius is small compared to the scale of the variations in magnetic
field the motion of a particle can be regarded as a rapid gyration about a guiding center.
In the course of this motion the magnetic moment u o= mvi/B is a constant and as a result
the particle is confined, between magnetic mirrors, to the region where uB<E-eg

(where E is the particle energy and ¢ the electrostatic potential),

In this event the guiding center itself oscillates rapidly along a line of force be-
tween the two mirror points and at the same time it 'drifts' more slowly across the field.

The instantaneous drift velocity is well known, being given by

cn VB @m . oD
\'d=-B_KLVLP+PT+EV'-'a_S} , e 1261 )
where n is the unit vector along B. It is assumed that the potential and field gradients
are such that vy « v,.  However, in view of the rapid oscillation along the line of force

this instantaneous drift velocity is of less significance than the average guiding center
drift over a period of the oscillatjbn between mirrors. The equations for this average
drift can be put in a partcularly simple (canonical) form which was first given by Northrop
and Teller(s). They considered the drift process in detail and actually constructed the
average of (2.1) over the period of an oscillation between mirrors - a lengthy procedure

Here the canonical equations will be derived directly, without recourse to (2.1), by a

canonical transfommation.

The simplicity of the final form of the drift equations 1s-made possible by using a
representation of the magnetic field which allows the field lines to be used as one element
of a co-ordinate grid#, One writes

B =Va x V¢,
then clearly a, p are constant along a field line so that a, f can be regarded as the
co-ordinates of that field line. More specifically,if we consider any surface § cut by

field lines and draw on this surface the lines g = constant, { = constant then these lines

* In incompressible hydrodynamics a similar representation to this is sometimes
used and has been referred to as a Clebsch Transformation. In their present con-
text the a,p co-ordinates were introduced by H. Grad and H. Rubin. Proceedings

second U.N. Conference, Geneva, 1958, paper 383.



form a co-ordinate grid on which the lines of force are located by the a, P value of

their intersection with 8.

The scale of the co-ordinate o, f can be chosen so that the flux through any part

AS of the surface S is numerically equal to

o

U da dg .

AS
In terms of this representation of the field the vector potential can be written

A= aVp .

Once the field lines have been specified by the o, co-ordinate system, any point
P in space can be located by co-ordinates (a, B, X), where a,p are the co-ordinates of
the field line on which P 1lies and X is the magnetic potential along that field line

from P to the reference surface S, i.e.

P.

x:] B.ds .
S
We now return to the problem of describing the average guiding center motion. As the

magnetic moment of the particle is constant the guiding center moves as if it were a parti-
cle of charge e, mass m, and magnetic moment pn. The Lagrangian for such a particle
is

L ==mv? + % VA - ep - pB see (242)

o=

and the total energy is

mv® + ep + pB . eee (2.3)

o=

We now express the Lagrangian in the (a, By X) co-ordinate system and use the corres-

ponding aVf representation of QA, then

L=c+ Zzé + E af - epla,p,X) - pBla,B,X) , eee (2.4)

where e is the kinetic energy associated with the transverse drift and is negligible
compared to the other terms in(2.4) when the drift velocity is small compared to the actual
particle velocity. The conjugate momenta to a, B, X are then

) _ Ea =
pa— ’DB_C’ Py =

... (2.5)

U:I!E_

V]
-

and we note that there is, in fact, no momentum conjugate to a; instead %? is itself
conjugate to PB. The Hamiltonian function is then

H= 2 02+ epla,px) + uBla ) e (2.6)



In order to obtain the equations of motion for the average drift we should solve the
equations of motion in the X direction and then average the transverse (&,é) equations
over this motion as was done by Northrop and Teller. However we can obtain the same
result directly if we eliminate X from the Hamiltonian by an appropriate canonical trans-

formation to Action-Angle variables. To do this we introduce as a co-ordinate the Action

conjugate to X i.e.

J = f py & =‘% [2m(H - eq - MB)]!‘é ds , ves (2,7)

where the integral is along a particular a,f field line and is over one period of the

oscillation between mirrors.

This equation implicitly defines H as a function of the new variables a,p,J,u and
also preserves the form of Hamilton's equations of motion. When the Hamiltonian (Energy)
is expressed in terms of «q,B,J,u through (2.7) we will denote it by K. Then recalling

that %? is conjugate to PR and that K(a,ﬁ,J,p) is now the Hamiltonian function, we can

write
& oo "_3.5(0*9[3:*],!-1) ’ as e (2.8)
“="¢e OB
: - . £ Ql((a’ﬁanu) ’ vee (2.9)
pi = e Jda
Jeb . ... (2.10)

It is important to note that these simple equations are only true when the motion is
expressed in the a,3 co-ordinate system and when K is expressed in terms of a,B,u,J

by means of (2.7), i.e.

J =j-[’ [2m E K - etP(CL,ﬂ,S) = pB(a,ﬁ,S)g]]2 ds .

3. EQUILIBRIUM DISTRIBUTION

Once the equations of motion have been put into the canonical form the construction of
the equilibrium distribution is obvious. Let F[a,B,J,p,t] be the particle density in

(a,B,J,u) space, then

9F _ 3(Fa)  a(Fp)
= 5E ~Bn * 35 . eos (341)

and, using the values of a,ﬁ given by (2.8),(2.9), a stationary state exists if and only

if
K OoF 3K aF _ .
3 da " oa 9B -9 > cee (3.2)



that is if F is a function of «,p only through the quantity K(a,B,J,u). Any equili-
brium can therefore be written

Feq = Fiu,J,K(a,@,u,0)} . was, 0850

As p, J, K are all constants of the motion this merely says that the equilibrium
distribution is a function of the constants of the motion - a well known result. It should

be remembered that Fip,J,Kl is defined so that
Fiu,J, K(a,B8,J,u)} du dJ da dp , vee (3.4)
is the number of particles in the element du dJ da df and not as if
Flu,J,K} du dJ dK , ve. (3.5)

were the number in du dJ dK. The difference arises because of the existence of the sur-
faces of constant (u,J,K). The function F is constant over such a surface so that one
of the space co-ordinates does not really enter into the specification of F. (This is
the general analogue of the fact that for equilibrium distributions in an axisymmetric

system the azimuthal angle is redundant.)

4., STABILITY

In a lov-f system in which the magnetic field is the vacuum field due to external
conductors, 'interchanges' of flux tubes are the most important form of instability.
Indeed these are the only quasi-hydrodynamic,i.e. adiabatic, instabilities possible at low-
B. It is an important result of this paper, therefore, that a very simple criterion can

now be cbtained for the stability of equilibria such as (3.3) against these interchanges.

We will suppose that the equilibrium is stationary and that there is no electric field

in the equilibrium state. Then K is defined as a function of J,u,a,B, by
%
J=0¢ [2m(K - uB(a,B,s))]* ds . ees (4.1)

An 'interchange' motion is one in which particles initially on the same flux tube
remain on the same flux tube. It results from the "E x B" drift associated with an
electric field transverse to the magnetic field, We will consider a possible interchange
in which particles on a flux tube (a;, By) are interchanged with those on an equivalent
flux tube (ag ,ﬁg). In this motion the invariants p and J of each particle are

conserved, but its energy may alter.

The total energy of the particles on the two flux tubes concerned before the inter-

change was



W, = {/.d‘u dJ ! F(1) K(1) + F(2) K(2): cee (4.2)

where
F(1) = F\ Had, K(P-rJJU'isB.l)j ’ can (4.3)
and

K(1) = K(p,J,04,B1) , eee (4.4)

and K(2) and F(2) are similarly defined.

After the interchange the particles which were on a1,P:s have moved to a,,B; and so

have energy K(2) and vice-versa. The energy after the interchange is therefore
W =J'; dg dJ ; F(1) K(2) + F(2) k(1) . eee (4.9)
The change in energy resulting from the interchange is thus
(We - W;) = —Jf du dJ ([F(2) - F(1)] [K(2) - K(1)]} . ee.(4.6)

It will be noted that we have so far made no restriction that the change [F(2) - F(1)]
need be small but we now make the usual assumption that the displacements are infinitesimal
and calculate the energy'change to second order in displacement. If the displacement of

the flux tubes is measured by 5a, 58 we have

ey - _ | 3F o OF o ) K . oK ‘
5°W = J-dp.dJ(aaSa.+aF35p><aa5a+a 5{3). eee (4.7)

However, since F depends on a, B only through K this becomes

62w=__]¢d‘1<§_§5°‘+g_§5‘3>2<§>J' cor (4.8)

It is now apparent that 5?W must be positive for all ba, &6p if

therefore a criterion which is sufficient for stability against 'interchanges' is
<§-§> <0, veo (4.9)
pJ
for all Hy, J, K.

Criteria which are both necessary and sufficient can be obtained in terms of the

appropriate averages of %E.. Thus if

_ 3k \?*/ aF
7\0‘(1=‘[d|.1 dJ<6—c'"> \ﬁ() 5 eee (4.10)

o 7 o=



. 2
- 9K oF
Kﬁﬁ-—j dy dJ ( 6B> ( ax) , e (4.11)

o = [ e (E)(E)(E)

then a necessary and sufficient set of conditions is
2
A >0, A, >0, [laﬁ] 3 SR cee (B12)

aa PP ac  BP T

and

=l

The simple condition (4.9) demands that F should decrease with increasing K while
confinement of plasma requires that F should decrease toward the periphery of the system
so that (4.9) and confinement are compatible only if K has the general form of a
'potential-well' in the o, p space, that is if K(a,B) possesses a minimum within the
region of interest. If the magnetic field itself possesses a minimum then K(a,B) will
possess a minimum for a wide range of p, J so that many classes of stable equilibria can
be constructed in these 'minimum-B' fields. Among these are the equilibria discussed in

I which do indeed satisfy (4.9).
It must again be emphasised that the simplicity of the result (4.9) arises solely from
the correct choice of variables - it is only correct when F is expressed in the form
F.:. pad, K(p,J,0,B) 3

It would not be correct if, lor example, one had expressed F in the more usual variables

(p,K,x) employed by Rosenbluth and Rostoker(e) and by Kruskal and Oberman(7).

5. EXAMPLE OF METHOD

The actual form of the magnetic field has not been mentivned in the theory given above.
This is because it enters the problem only in the determination of K and as K is defined
by the single integral (4.1) it is not difficult to compute K once the field is given.
The calculation of K for several fields of interest has been carried out on the A.W.R.E.

I.B.M., 7030, (Stretch) computer by F.M. Larkin and an example is illustrated below.
First we note that we can reduce K(a,p,u,J) to a function of three variables only:
Jg K 1=
= = f}:?m {— - B(a,B,s) Ji} ds , s U5l )
|_1_’2 M
K . g
so that ; is a function of o, and ;E only.

The arrangement of the calculation is roughly as follows; given the magnetic field

one selects a convenient surface S on which to locate the o, co-ordinate system and



thereby to label each line by the a, B value of its point of intersection with S. Then
for each of a number of representative field lines (i.e. of a,pB points) the quantity (ﬁ%)
is computed for some value of (E) by integration along the appropriate field line to the
mirror points. By interpolation in the surface S one then obtains the contours

& K(a, B, $% ) = constant for a number of values of (:%) . The results are plotted auto-

matically on a Benson-Lehner Model-J graph plotter. A typical calculation takes 10-15

minutes of computer time.

In the example shown the field is an eleméntany form of the configuration used in
Ioffe's stabilized mirror experiments and is produced by two circular coils and four infi-
nite straight conductors, (Fig.1). The coils are of radius R and separation 2R and
carry a current I/2. The straight conductors are distant R/2 from the common axis of
the two circular coils and adjacent conductors carry a current I in opposite directions.

The field is thus a superposition of an orthodox mirror and an ¢ = 2 multipole cusp.

The a,f plane for this calculation was chosen to be the mid-plane of the system,
perpendicular to the common axis of the circular coils, then because of the symmetry of
the conductors the K(a,ﬁ,J,y) contours have eight-fold symmetry. Only one quadrant of
the a,p plane is shown. The fiéures cover the central area out to a radius of about

% and the contours are labelled with the values of E in arbitrary units,

One may interpret these diagrams somewhat as one interprets contour heights on a
geographic map., For example one may note such items as the following:
(i) As the K surfaces are also particle drift surfaces one sees immediateiy
where the particles drift, but also from equations (1.1, 1.2) one gets a picture
of the speed of drift from the separation between contours (just as one pictures
the gradient from the separation between height contours on a map).
(ii) As the K surfaces are surfaces of constant Fequil. they can also be
visualised as density contours for this function. These points are elementary
and do not utilize the theory given in this paper, However one can also see
some more important points concerning stability.
(iii) Thus the example shown has a minimum in K at the center of the system so
that confined distributions stable against interchange by (4.9) can be set up
in this region of the field. However one also sees that the region of such
stable confinement is small (remember the diagram shows only the central part

of the system out to about one third of a coil radius. )



(iv) There are also other closed K-contours centered about a point X on the 45°
axis (this is the axis passing through one of the straight conductors) so that
other confined equilibria exist in this region. However, as the point X corres-
ponds to a maximum rather than a minimum in K, such equilibria cannot satisfy the

criterion (4.,9).

The existence of a minimum in K, which ensures the existence of stable confined
equilibria is a general feature of fields in which IB[ itself possesses a minimum as
in the present example. It also occurs in the mirror configurations of Furth(s) and

(4)

Andreoletti , but it does not usually occur for simple mirrors though it may presumably

do so for some very special values of (3%) :
n

6. CONCLUSIONS

It is clear from the above example that the discussion of equilibrium, stability and
confinement of low-3 plasma in adiabatic mirror traps is, indeed, much simplified if the
problem is approached in the way described in this paper. Far reaching results can often
be obtained with little effort. The method involves using the field lines themselves as
co-ordinates (a,B) and expressing the particle distribution function in the phase space
of a,B,r,J where p,J are the two adiabatic invariants, The energy K 1is not treated

as an independent variable but is defined by
J=?[2m K - uB (o.,(s,s)EJI”"* ds . vee (B.1)
(Note that this is the reverse of the usual procedure, in which K is regarded as a
variable and J is defined by (6.1).)
In terms of these variables the equilibrium distribution function is of the form
F=F{p,d, Ka,B,u,J)} oo (6.2)
and a sufficient condition fur stability is

ol
<R>PJ < 0, ve. (6.3)

Necessary and sufficient conditions are given by (4.12).

The confinement (localization) of the distribution is determined by the topology and
location of the K = constant contours which are easily computed. Confined equilibria
satisfying the stability criterion (6.3) can always be found if the K(a,f) function
possesses a minimum in the region of interest. This will be the case if IB] itself

possess a minimum,

- 10 -
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CLM-P 36 Fig.1
Coil arrangement.

CLM-P36 Fig.2
Constant K contours for (-J% ) = 0.616.
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CLM-P 36 Fig. 3
Constant K contours for ( _l%) = 0.464 .
i

CLM-P36 Fig. 4
Constant K contours for (-I%) =0.305.
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