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ABSTRACT

. The shear required to stabilise the electrostatic flute insta-
bility is calculated for a general low [?, axisymmetric, toreoidal
magnetic field geometry. It is found that previous calculations-
underestimated the necessary shear. New destabilising effects,
which are associated with the geodesic curvature, occur for flute
modes with frequencies in the intermediate range (i.e. between elec-

tron and ion bounce frequencies).
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I. INTRODUCTION

Criteria for the shear stabilisation of the electrostatic flute

instability, which occurs when

m
B< m—‘:' (k, a;)* (1)

where 3 is the ratio of plasma pressure to magnetic field pressure,
kL is the wavenumber perpendicular to the magnetic field, a; the ion
larmor radius and mg and m; are, respectively, the electron and ion
masses, have appeared previously in the literature (Mikhailovskaya
and Mikhailovskii, 1965; Rutherford et al, 1969; Jamin, 1971).
Mikhailovskaya and Mikhailovskii (1965) considered a cylindrical
plasma so that the complexi£ies introduced by trapped particles,
geodesic drifts and the double periodicity of toroidal plasmas do
not appear. In addition, the electron temperature was neglected in
this work. The shear required to stabilise the flute instability

as calculated in this way is given by the relation

%
%.<'{ Es ) (2)
s \™

where Lg is the shear length and L a typical distance for variation
in the magnetic field strength.

The stability of the flute in toroidal geometrywas investigated
by Rutherford et al (1969) and Jamin (1971) using a formalism which

This limitation stems from

e

is only valid for small shear ~
an inconsistency in the choice of perturbation. The perturbation

describing the flute mode has short wavelength perpendicular to the
magnetic field and long parallel wavelength, but the requirement of
double toroidal periodicity in the presence of shear, is in conflict

with these properties and care must be exercised. The analysis of



Part I was developed to overcome this difficulty and the present work
is based on that formalism. It is clear from formula (2), however,
that only a modest amount of shear jvfigg.is required to stabilise
the flute and the analysis of references 2 and 3 is valid in this
limit. The improved analysis of Part I does, however, bring to

light the existence of a wider class of flute-like modes in a torus
than has been discussed before and we find that considerable
modifications to the previously quoted shear criterion are possible.

In addition we consider the effect of a very low plasma density n on the

shear criterion, namely when » 1 where B is the magnetic field

4mmin
strength.

The eigen equations for the flute mode are discussed in Section II
using the analysis of Part I for the perturbed charge densities.
Three regimes of frequency w for the flute mode must be considered,
depending on where W lies with respect to the characteristic bounce
(or tramsit) frequencies Wi and Wy of ions and electrons in

their motion along the field lines. These we define as follows

A Whi < Whe < W - high frequency
B W < Whi < Whe - low frequency
C Wh; < W < Wpe - intermediate frequency

In Section III we solve the eigen equations and obtain dispersion
relations which are used to discuss the stability of the flute mode
in these three regimzs. The effect of shear on the residual resonance
instability, remaining when the reactive mode has been stabilised,
is also considered.

II THE FLUTE EIGENFUNCTION EQUATIONS

It is necessary to first define the toroidal magnetic field

geometry. This is an axisymmetric vacuum field with toroidal and



poloidal components

b = = ¢ {
g 3 Bp Vx=V¥ xVe , (3)

- Ic-»
B =E—e
where V¥, X and 6 are orthogonal co-ordinates, V being the
poloidal flux, X the potential for the poloidal field and © the
toroidal azimuthal angle, while R is the distance from the axis of
symmetry (the major toroidal axis) and I, is a constant. The inverse

rotational transform (or safety factor) gq is defined by

B
_ I ) e
Q=57 ¢vdy 5 vs= RB; (4)

Note, that to avoid ambiguity we denoted the safety factor by Q in
Part I, but now we return té the more familiar notation q.

The perturbation describing the flute mode has the form

X
j # s
® (x, 8, ¥, t) = <I>0 exp i [%( ] -'/ dy (v + G)>+ %—) + wt] (5)
which is the most general form satisfying the toroidal periodicities
and with parallel wavenumber k_  such that k“ L ~ 1. Here @b is

a constant and [ is a large integer labelled by the small parameter

a,
€ = E% . S(¥) is a function of V¥ only, and describes the variation
of the mode about some rational surface ¢D . To meet the

condition k”L ~ 1, G must satisfy the condition
G (W, x) =0 (6)

while the constraint imposed by periodicity

L. et o
7 f (v + G) dx = integer

requires

n

} (v +G') dx =0 (7
where a derivative with respect to ¥ is denoted by a prime;

otherwise G (¥, x) may be chosen arbitrarily.



Having defined the magnetic field and the flute perturbation we
may obtain the eigenfunction equations in the three regimes using
the results of Part I.

A, The High Frequency Regime

In the high frequency regime we evaluate both ion and electron
charge densities using expression (57) of Part I and insert them
into Poisson's equation. This equation may be expanded treating the

sk, Vv
electron(\ 1T

} term dominant, thus yielding a flute solution

ib = constant in lowest order (Hastie and Taylor 1971). In next

7
order we integrate é %%
P

order contribution to ®. We obtain the eigenfunction equation

(T v (S el 52

(—Hif—

to annihilate the term containing the next

[aF
o

B. The Low Frequency Regime

In the low frequency regime we use equation (45) of Part I to
evaluate the ion and electron charge densities. Again the dominant
part of Poisson's equation has a flute solution, and in next order

we find the eigenfunction equation

] w.-.. 2 / ’ o UJ.'-‘.'T T
- ( "‘>( 2-\) 1+7 v -(\1 - — )ﬁ;bb (2nd¥) 2 1q'°

w

e miTi / [ dxR? dy ’ | dx
Lok —5—= 5’2 —£=, - = g ey =
( “’>e ° {?Bz I(RBT?Bf)J.C/dBPZ e 9

C. The Intermediate Frequency Regime

[¢]

Finally in the intermediate region we use equation (57) of
Part I for the ion charge density and equation (45) for the electrons

and obtain the eigenfunction equation:



W, n W Wk i 1 # -+t
<w (n > (1 + 7))V - L—J-—-(E'd--i- 1XE) (_VG -V ) -
fow T ; * \ [bd
( jab2(2ﬂ¢)21q2-+K1+—n f X é‘id =0. (10)
r p

Let us first define the quantities appearing in these

T :
. £ .
expressions. 7T =~ 1is the temperature ratio while the diamagnetic
i
£ Tyn' )
frequency w, = e In addition
r
"o gt ‘.i.l
v =V e RBTf %o | (11)
4
V=" - 2mms ' T ¢ X (12)
P

with the usual definition

"o Q._ dx
P
and
1
"By dy
=2 J (14)
o J B dx
J N1 -yB B;
where Bm is the maximum value of B along the given field line.
Finally
miTi Ti
= 2 = —2_ 12
b=-737k d=goak (15)
with
/g8
2 = 2 (g’ _ 2 i I
k (RBP) s Lg) % + 5 (16)
where
_ X ’ ’
g =" +6") ay . (17)

The three equations (8 - 10) have a similar structure. The

leading term in each case is a curvature term which drives the

S .
instability, either V " or v " In case C however there is an
y G



additional part containing a term linear in gﬁ which we shall see
complicates the analysis in that case. After these terms appears a
term quadratic in V¥ (where V¥ is measured from a rational surface).
In cases B and C this term arises directly from the shear q' , but
in Case A it is produced by a k”2 term introduced by G, although
we shall be able to relate this term to the shear for the least
stable mode. The last term in cases A and C is a FLR term but in
case B a little more explanation is necessary. In order to avoid
including a number of insignificant terms, which consistency would
demand if the complete FLR term were retained, we retain only the

S° terms in b, corresponding to ]ﬂP » % , where kW is the
wavenumber in the direction normal to the flux surfaces. 1In addition

at frequencies below w this term contains additional finite

bi’

banana width averaging. Finally, at low densities
4t nm, <1
B2

the Debye term becomes important (Mikhailovskaya and Mikhailovskii,
1965) and we have included this term.

III. THE DISPERSION RELATIONS AND SOLUTIONS

Recalling the form (5) for the perturbation we realise that the
equations (8 - 10) are second order differential equations for the V
dependence of the eigenmode @ (¥, ). By means of the transformation

¥ (¥, x) = exp (-iggd) @ (¥, %) (18)
where g is a certain ¥ average of g, to be defined later,we eliminate
the terms linear in S’ and obtain a Weber equation for ¥ in each case

g_j"z ¥+ [aGw) - o(wvily =0 (19)



where we have defined a normalised frequency w = This equation

E|E

has two types of relevant solutions:
(a) a solution localised about the rational surface ¢0
(b) an outgoing wave solution - ie. waves which carry energy
outwards (Berk and Pearlstein, 1969)
and we will consider both possibilities below.
We shall now obtain the forms for A(w) and o(w) in the three
regimes,

A, High Frequency Regime

It is evident from the result (2) that only a small quantity of

—

j m
shear <~ iﬁé> is required to stabilise the flute mode and so shear
| T, .
\ 1 i
is the dominant effect in determining stability. Thus in the high

frequency case, where the k”2 term plays the role of shear, the
most unstable mode will have a form of G' which minimises the

# 7/ G'B_\2
integral f dx( —-R subject to the comnstraint (7). This is

achieved by the choice

27REB, _q
’ ry _ © B_2 ) B_2 T
P P z
/ B
P
which on substitution in VG” given in equation (11) yields
j{ 352 27RB.q
"o dx (21)
Ve - v j/‘ de2
P

the effective curvature oneobtains from finite resistivity theory.
(Rutherford et al, 1969; Johnson and Greene, 1967). After evaluating
the kf term, which now explicitly depends on shear, and the FLR term,

we obtain A and o:



/ k*%(1 + T) R ¢ 1
alw) = K\w(w + 1) + ogw? v aiT (RBT)zj[ QL%Z (22)
B

b
(W) = - —¥=T_ [ R > - (23)
o 1 +w+aow w2\ a. [(RB 1= dyR?® J
ip B“
~m, T,
where aiT = ; is the ion larmor radius in the toroidal field,
=Ry
-1
sede -n" A2
n
_dx ta, 2
R2B 4 w+l+a w i
¥ gl ~ (g) 8 = - 2 ) (ra e ¢ 4B (25)
dyR? w+1l+aw R T B2
B2
with p Qlﬁf
dy R2 R2B 4
a ; a, = . P (26)
4wnm dv R2 : Vo 4qom, [ dy
* 7 R ZB &
p
both measuring the relative sizes of Débye and FLR terms, and the bar
symbol is defined by -, 3
dy R2A w
(w+1)d b fdeZA
A= : - (27)
(w+l+aw)fde

and finally

Y /n \ ,2 B2 3 dez
sy = E; — ln2q _l___ (28)

First we seek localised eigen-solutions of equation (19)

L ;2—|2
\l
¥ =H (g exp<‘— ¢t ) (29)
n n 2
where Hn is a Hermite function corresponding to the eigenvalue, or
dispersion, equation
3
Alw) = (2n + 1) o“(w) (30)

which becomes, using results (22) and (23)



2

**(1 ) g
( —— -~r>=—(2n+1)—w—'"’— = (3D)

wlw+ 1) + aw? l+w+aw w2

The localisation condition

3
Re (¢%) >0 (32)
must also be satisfied. Clearly, if shear is absent, i.e. SH =0, and
we ignore the Dabye terms,setting o = @, = 0, we obtain the familiar
flute stability criterion
k" <0 ' (33)
e
since k = k” as the shear vanishes. In general, however, there are
two cases to consider (Coppi et al., .1968)
. K (147
(1) E L5 oy (34)

v

corresponding to FIR stabilisation of the flute mode which

we shall not discuss further and the long wavelength limit

g
kK (1+7) %
T

(ii) 1 (35)

which we now investigate,

It is convenient to make the transformation

;='ﬂl+a) " %=‘M1+a)

5 (36)
E = l+7(l+a) -1
Su SH[—T-T—_J Wl )
which simplifies equation (31) in the limit (35) and we find
. . ke 2 %
w=%(r4)i%(ruj(4f -1). (37)
SH
Thus we have stability if
- sk 2
S5, >4k (38)

H
The criterion (32) for a localised mode depends on whether the stability

condition (38) is satisfied and becomes, for the eigenfrequencies (37),



wlants ~ AN

K (78 - 21+ ) K" )y>0 : if unstable
(39)

el 2
Jede

& - E 3
7 SH (SH-4K )} > 0 ; if stable

aladle

wlanls ~ A
riariy

k(T SH— 201+ 7) &

~

We first consider the case T < 1 when the transition from local-

ised to non-localised modes occurs in the stable region of parameter

alasts
e

space. For k < 0 (unstable curvature) the mode is localised for

small values of SH , becomes stable when (38) is satisfied and becomes

a non-localised wave with outgoing energy (as discussed by Berk and

s

Pearlstein,1969) when (39) is violated. For k >0, 1i.e. stable

in the absence of shear, the mode is non-localised at small values of §H
but corresponds to incoming enmergy, i.e. no mode satisfying acceptable
boundary conditions exists in the unstable region.

When 7 > 1 the boundary for localisation of the mode appears
within the unstable range of the shear parameter, and for K**<f 0 increas-
ing shear first produces a transition from a localised to a non-localised
mode, before stabilising when (38) is satisfied. For x > O , the mnon-
localised mode occurs at small values of §H but corresponds to an

incoming energy flux, so that an unstable mode occurs only in the band

defined by
= e 2 -~ Jede 2
2A+7) R g <ok (40)
T H
where it is a localised mode. These results can more readily be

assimilated from Figs. 1, 2, 3 where they appear as the asymptotic values
(for long wavelength) of the stability and localisation boundaries.
These figures are more fully discussed later.

Returning to inequality (38) we observe that the critical shear is
a function of the density n , through o, and that there is a critical
value of n requiring a maximum amount of shear. If 7 <1, this

occurs at « = (L-7)/7, leading to

N



14+7)2 %2
Sy > £__?_l_ K (41)
and for 7>1, atao =0, giving
S >4 et 2
K
. (42)

for the critical shear.
We have dealt at some length with this case since analogous techniques
may be applied in the other two frequency regimes. The significance of

this particular regime is not great since the requirement w > W can

m,
1

m
e

only be satisfied by the solution (37) when T % or TS

BlmE

-

B. The Low Frequency Regime

Here we are led to a dispersion relation similar to equation (31),
: = ok .
but characterised by V rather than V , a modified shear term and
a somewhat different definition of <y as a result of finite bsanana effects
and the omission of some FLR terms, as discussed earlier.
The analysis is entirely analagous to the high frequency case with

the definitions

s
g ___(n?) vt (43)
m, o y2 - r
- i (n ’y? dx L/
By = = (n) (27RB_q") IU’BZBZ —Ie\ijz;] (44)
e p T P .
#1dx R?
~ ot (45)
T AR
p p/

replacing K g 5 sH and @ respectively.

C. The Intermediate Frequency Regime

Finally we discuss the intermediate frequency regime and are led to

the dispersion relation

- 2
i €+H+T)+ £4_ mG _ T-w SI(2 1) 6
LW'(W+1)+O.W2 vtl+a 7 1 +wan " gt Bk (46)

= 11 =



where

G - I'L’ \ " +
and
Ty gt N2 dy
= _— Kl 'y 2
S ‘“e< ~ ) (27R B.d A% BZBTZ (48)

The feature peculiar to the intermediate regime is the freedom
provided by the quantity KG representing the wider class of modes
arising from the choice of the phase function G(V, x). To examine the
significance of this we consider first the shear free situation which
would be applicable if the rotational transform, or safety factor q,
had an extremum at V¥ = WO. Setting SI - 0 in equation (46), and

solving for w, we obtain the stability criterion

(y+ KG)Z + 4(L+a)(1+ 1)k + 4cwcG'y >0, (49)

In the high density limit (@ = 0) it is apparent that a sufficient
condition for stability is k" > 0. The charge separation caused by the
geodesic drift (the KG term) cannot drive an instability, and the most

unstable choice of G’ would make

v+ KG =0 (50)
removing the FLR stabilising term. In general it may not be possible
to satisfy equation (50) exactly, but a reduction of FLR stabilisation
will occur. For very low densities (@ » 1) the stability criterion (49)

becomes
Il’ ] dx dK ’
(——n >{(l+'r) XY -XBPZ +RBy, ¢ 57 G >0 (51)

so that,with a suitable choice for G’, k” > 0 is no longer sufficient
for stability and shear becomes necessary whatever the k” properties of

the equilibrium!

i



The stability diagram in the presence of shear has been constructed
numerically and is shown in Figs. 1 - 3 for the case of a high density

plasma (¢ = 0) in the cylindrical limit for 7T =0, 1, ® respectively.

dede
[This also describes the high frequency case when S = SH and k" =« s
i
the low frequency case when S =S5 and k" =k and the inter-
. . G 14 ++
mediate case with k = 0 when S = S_ and k" =k ]. For a cold electron

I

plasma (7 = 0) the results have been given by Mikhailovskaya and
Mikhailovskii (1965). Shear progressively stabilises, with maximum shear
required for long wavelength modes. For equal ion and electron tempera-
tures, Fig. 2 shows a similar resuit for a k" unstable system, but shows
that a small amount of shear may drive a k” stable system unstable (also
noted by Coppi et al. (1968)). For a hot electron (T = @) plasma in a

k" unstable system, short wavelength modes are more unstable and increasing
shear modifies the localised mode to a non-locaiised mode with outward
energy flow before finally stabilising, while in a k" stable system only
the localised mode is possible. The typical shear required for stability
may be obtained analytically in the long wavelength limit where it is

..E-{..
independent of the sign of k”(or k ) and is given by

.

5 > 4(K++)4 : (52)

Returning to equation (46), we consider the particular case of long
wavelength modes, setting v =0 to obtain the following expression for

the critical shear.

H ., 6
> afiii)frkaﬂt £ [a+ Qo + ) (33)

Maximum shear is required for those modes with the largest values ofIKG[
whieh is still to be regarded as arbitrary. To estimate the maximum

shear we require an upper bound for|KGf,and the most stringent one arises

kv._.
g < 1 assumption. In terms of KG this inequality is

from the

- 13 =



k8] < |w] j{%lﬁ (56)
p

From equation (46) we may calculate the value of w at marginal

stability, the result being

-~

-1
W =-iKG[KG + (1%-T)K++] -

ra =

SI[(1+cy)’r - 1]} {KG2+ (1+a)SI}

(55)
with S given by (53).

g?% as the limiting value of KG, and
P
K++| we obtain for the shear

Finally, taking |KG|~¢W|§

|KG|»

2
; ¢
- l+7 - a1 dy
SI mﬂl+7){(l+7+a7ﬂl+w-k2&+<N0j B;} (56
in the low density limit where laKG|»|K++|,and
[ d
5. = 4]k |j$ ]—% (57)

in the high demnsity limit (@ = 0).

With Kg ~ however, a strong ion resonance occurs between the
wave frequency w and the local geodesic drift frequency wdg' To investi-
gate this we consider values of the shear exceeding the critical values
given by equations (56) and (57). In this strong shear limit there is
an electron mode with w ~ T and an ion mode with w ~ - 1/(1 + a).

To estimate the resomant growth or damping of these modes we write

(following Rutherford and Frieman, 1968) the exact eigenvalue equation,

ie. Poisson's equation, in the form

L{we + R(we =0 (58)

where R contains the ion and electron resonance terms, equations (83)

and (8l) of Rutherford and Frieman, and for the intermediate frequency

- 14 -



range L is constructed from equation (45) and (57) of part I, for
electrons and ions respectively. Note that w and R in this paper

correspond to -w and -R in Rutherford and Frieman. Perturbation

analysis then gives the growth rate v from

A f
Y oL
-~ [d3 S - = 3 rd
w‘/ x<(p waw(p> Jn [d3x o*Ro (59)
where the d3x integration covers all space.
The relevant results are, using the form (29) for the eigenfunction

T ,\
8y . Ok _ &2n Jr % i 2mlq W-T 3T
/dxq”waw“’ T, 2° m T\ v WlAraw+1] "\ 2% )y (60

e

s W -% " 1 dy e?n
3 ot 2 o~ - — — e
j d3x ¥ R; 9 l“’*i| o T<1+W> B2 T (61)
P i
where i
- _T-Ww 27lq e? I
g 1+W(l+a)< © 5 (62)

and we have used the fact that w ~ - w*i ~ - wdg.

In the limit o < 1 the resulting growth rate is given by

[y
~ 7 B 2
B e L .
lo| ~T+7 ew(a + 6w)< = o > (63)

where &w is the shift in w away from - 1/1+a, i.e.

. (64)

RE Gy (1+7)(2mg’)2

Thus, for values of the shear parameter just in excess of the critical
shear required to stabilise the reactive flute mode, the resonant growth
rate decreases as the fourth power of the shear, until 6w ~ @ when the

decreases becomes quadratic. 1In addition electron landau damping further

15 =



decreases the growth rate, though the effect is only significant at

higher frequencies, the electron damping cancelling the ion resonance

3
!
- _w_> (65)

CONCLUSION

if

B

From the foregoing analysis we conclude that cylindrical analysis
leads to a significant underestimate of the shear required to remove the
electrostatic flute mode in a toroidal device of the Levitron type. The
results for the high and low frequency regimes are treated in somewhat
greater detail than in earlier work but do not essentially change the
amount of shear required for stability. In the intermediate range,
however, we find a significant increase in the necessary shear. Three
separate effects combine to bring this about. First, shear is effective
only through passing particles (appearing through the factor I in equa-
tion (48)). Secon&, the geodesic curvature of the magnetic field lines
results in drifts which can cause destabilising charge separation in
addition to that provided by positive v"” and third, a strong resonance
becomes possible between the wave frequency and the local geodesic
drift frequency of the ions. The efféct of the first two features on
the stabilising shear for the reactive mode is summarised in equations
(56) and (57) for low and high densities respectively. The last effect
results in a weak instability with growth rate given in equation (63),
whatever the value of the shear parameter, provided only that inequality

(65) is not satisfied.

- 16 -
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Fig. 1. Stabilising shear as a function of wavelength at high

density when 7 =0 for the cylindrical case.
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Fig. 2. Stabilising shear as a function of wavelength at high
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