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ABSTRACT

Effects of neutral beam injection upon the equilibrium of a toroidal
plasma are considered. The distribution function of energetic ions produced
by the beam in the plasma is calculated for injection both parallel and
perpendicular to the magnetic field taking account of effects due tc the
toroidal geometry. The effect of trapped particles on the current induced
in the plasma by such a beam is calculated, together with the associated
cross field diffusion. Loss mechanisms for the momentum deposited in the
plasma by the neutral beam are considered. Ripples in the toroidal magnetic
field strength are particularly efficient at destroying toroidal momentum
and lead to flow velocities much less than the sound speed for typical

injection parameters.
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1. INTRODUCTION

At the present time there is considerable interest in the use of
high energy neutral beams for heating a toroidal plasma to ignition
temperatures and preliminary experiments on this method of plasma
heating in a Tokamak plasma have just been completed(l). In this
paper we discuss the changes to the normal toroidal equilibrium that
are caused by the use of these large current high energy neutral par-—
ticle sources. For example it has been demonstrated by Ohkawa(z)
that large plasma currents can be produced by neutral beam injection
and in fact this current can be made large enough to operate a
Tokamak in a steady state configuration. Another possible consequence
of injection with one beam parallel to the magnetic axis has been dis-
cussed by Callen and Clarke(3); these authors show, from a considera-
tion of the toroidal momentum balance equation, that the background
plasma will begin to rotate in the toroidal direction with a very high
velocity (many times greater than the sound spged). |

The hot ions are injected as neutrals and then after ionization
they slow down on the background plasma in a time T, say. During
this time energy and momentum are being transferred to the background
ions and electrons. The resulting equilibrium for the hot ion dis-
tribution function is derived in Section II by solving an appropriate
Fokker Planck equation. This kinetic equation which includes the
effects of toroidal geometry, such as particle trapping, is solved
for the cases of injectioﬁ parallel and perpendicular to the field
lines. The results of this section are used in Section IIT where
the plasma current produced by the injected ions is derived; The
current carried by the injected ions is partly cancelled out by the

notion of the plasma electrons which are accelerated by collisions



with these hot ions. In previous calculations of the resulting
current no account was taken of the trapped electrons which have here
an effect_analogous to their modification of the resistivity of a
toroidal plasma. Using the standard techniques of neoclassical theory
the effect of trapped particles is included in the calculation of the
current in Section III. Finally in Section IV the build up of toroi-
dal momentum is discussed. In particular the influence upon the
plasma toroidal velocity of the small ripples in the toroidal magnetic
field caused by the finite coil spacing is evaluated.

II. ENERGETIC ION DISTRIBUTION FUNCTION

The energetic ion distribution function is determined as a solu-
tion of the Fokker Planck equation., Starting with the collision
operator in the Landau form we first make use of the inequality
Ve <€ W <KV where Vi, vV, are the thermal velocities of the plasma
ions and electrons and Vi is the mean velocity of the hot ions. This
inequality will be satisfied in most injection heating schemes, apart
from those in which the electron temperature is very low in comparison
with the hot ion energy. The Fokker Planck equation in the guiding

centre approximation can then be written in the following form for

axisymmetric toroidal geometry with circular magnetic surfaces
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where W and p are the usual constants of energy and magnetic moment
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number and mass of species j. Geometrical effects enter through the
dependence of B on the poloidal angle 8 while it is of course
independent of the axisymmetric toroidal angle ¢ . Finally @O(r) is
defined as the ratio of poloidal and toroidal fields.

Eq. (1) is solved by expanding fh as a series in TB/TS in the

form f = fio* TB/TthS + ..., where B is the bounce period of a

hot ion and o is the slowing down time. The zeroth order equation

1s 3f

which gives fho(u,w,r). The function fho is then determined from

the constraint on the next order solution which is

ho 2 3 3/2 3/2
's Tac ';{W[(W W )fho}
3 v
oy <wc>/2 Bo o) {(1;ﬂ2)<'._'§ll7 afho]
+ — T-I- —_—— TI | BTI + TS S (2)

where s
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2 (W= uB) Y for passing ions
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and a corresponding definition holds for {2}-;{; while n = (1 - uBO/W)é
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and Bo is the field minimum on a magnetic surface,
In a Tokamak where B = B (1 - € cosB)/(L - €) with e = r/R,
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In the opposite limit, n + 1, i.e. in the region in which the hot

v
jons are passing and parallel to the field lines,<~]-3—"> and ;}—>
n

are both independent of n. Eq.(2) has been solved in these two limiting
cases; namely with all the particles trapped (perpendicular injection

n << 1) or all passing (parallel injection n v 1).

For the limit n << 1 the second term of Eq. (2) reduces to
Bessel's operator and the resulting equation is solved by expressing

f as a Dini series
ho

£ _=2a I G n (3)

where the jn are zeros of JO'(jn). The differential equation for

the an(W) is
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The above equation can be solved by use of an integrating factor, and

the solution is
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A typical solution for perpendicular injection is shown in Fig.l(a).

where contours of f are plotted as a function of v, and Vv

ho

at the position of the magnetic surface where the magnetic field is

a minimum (8 = 0). From these contours one can see that there is a



Rimp in the distribution function at high energies and that the dis-
tribution is also anisotropic in this region. The stability of such
distributioms and also of the corresponding ones for parallel injection

(5)

has been discussed in a paper by Cordey and Houghton and also by

Stix(G).
For the limiting case n v 1 when the particles are passing the

second term of Eq.(2) reduces to Legendre's operator and the equation

is then solved by expressing fh0 as a series of Legendre polynomials

(=]

b = _nEO an(W) P () . (5)

The equation for the E%SW) is similar to Eq.(4) and a typical
solution is shown in Fig.l(b). Once again there is a hump in the
_&istribution at high energies and the distribution is anisotropic.
From the contours of Fig.l(b) one can calculate other parameters of
interest such as the mean parallel velocity of the hot ions u .
This is needed in the next section for the derivation of the plasma

current,

III. THE PLASMA CURRENT

In this section the plasma current which is generated by the
high energy ion beam will be calculated. Several possible models
could be considered and to fix ideas we shall discuss the scheme
proposed by Ohkawa(z). In this scheme, to avoid increasing the
toroidal momentum_of the plasma, a low energy, high current beam is
injected in the opposite direction to the high energyrbeam. (In
general however, there will be a build up of toroidal momentum in
neutral injection systems and the problem of its decay will be
discussed in the next section.) |

Assuming that the met ion momentum remains zero the mean velo-

city of the background ions uss is given by:-



u; = mnu /(o) (6)

where n = and u are the density and mean velocity of the energetic

h

jons respectively. The total ion component of the current is then

z,
1y =en, u B (l"::zl>' N

h

In order to obtain the electron contribution however, we must solve
the electron Fokker Planck equation. This equation is expanded in
the small larmor radius approximation, ordering time derivatives on
the diffusion scale. In zero order we also ignore the effects of the
energetic ions and conclude that the electron distribution function
is a Maxwellian Fme' In first order we have the equation:-—
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= Cei(fe(l)) + cee(fe(l)) +C (F_) .
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The electron-ion collision term in the above equation Cei is well
represented by the Lorentz form, corrected for the ion mass motion,
while for the electron—electron collisions we use a model operator
whiéh possesses a pitch angle scattering term and a compensating

(7)

momentum conserving contribution, given by Kovrizhnykh " “. This form

(8)

has been shown by Rosenbluth et al. to give the same results for
neoclassical transport theory as the full Fokker Planck form; it
leads to approximately 20 per cent errors in calculating the Spitzer
resistivity. The collision term Ceh between electrons with energe-
tic ions is obfained by substituting the expression for fh given by
the Egs.(5) or (6) into the Rosenbluth potentials. Then for emergetic
"ion energies such that W > Wc one finds that the transfer of

momentum is predominantly to the electrons and the expression for

Ceh may be written in the following form:-



Conifet = - 7 W (9)

where £ 1is the angle between the injection line and the field lines
and will be taken as zero for parallel or = for antiparallel injec-
tion in the followiﬁg calculation,

Eq.(8) is linear in the effects of radial gradients and the ion
beam, so we may ignore these gradient terms, merely adding at the
end the results for the toroidal current and radial diffusion driven
by the ion beam to the results of earlier authors for the transport
induced by radial gradients(g). Limiting our calculations to the
banana regime of collision frequencies we solve Eq.(8) by convéntional
techniques. After lengthy calculation we obtain an electron current
which when added to the ion current Eq.(7) yields a total current j

A

Z z Z.
. _"h ] h _7i Th
j=en u Zh {1 7 + 1.46 € < B g A(Zi)} (10)
i i h 1
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(Note u is defined as being positive when injection is parallel
to the magnetic field.)

The numerical coefficient A(Zi) is given by

[ -x

h A h -
AGZ.) = 1 + 2,12 X e e an
1
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3 Vﬁzi h+Z; h+Z,

x

: - .1
where h(x) = (1 - 1/2x) n(x) + dn (x)/dx with n(x) = 2/vV7 f e  tidt
S
and arises from the energy dependence of the collision frequencies;

it may be evaluated numerically and is tabulated in Table i for

several values of Zi.
The leading term in Eq.(10) is essentially that obtained by
Ohkawa and, as he noted, vanishes if Z = Z;. We have an additional

i

contribution due to the electrons trapped in the toroidal magnetic



field, which is significant for realistic tori (e % 1/10), and only
T .

vanishes 1if EE Rl Thus we conclude that provided the mass or

the charge of %he i;n beam differs from that of the plasma ions this

current will not vanish.

If instead of taking ﬁi given by Eq.(6) we had assumed that
the background plasma velocity was zero, and as will be shown in the
next section there are good reasons for assuming that this is the
case, then the expression for the current is the same as is given
in Eq.(10), except that the second term in the inner bracket,
Zimh/thi is omitted. The correction due to the trapped electrons
will give rise to a current for Zh = Zi irrespective of the mass
ratio in this case.

The modification to the current from trapped particles is
reminiscent of the corrections to the conductivity of a toroidal
plasma arising from trapped particles(a). Since the beam plays a
similar role to an applied toroidal electric field one expects the
analogue of the Ware pinch effect. Calculating the diffusion flux

from the solution of Eq.(8) we find the plasma diffusion caused by

the beam 1s

3 72
€ m .
o e 0.53 M i
0 h

where 4 2
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- n e
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e e

As an example of the above effects we consider the ome used by

(2) —_— -
Ohkawa 5 Zi =1, Zh = Z and mh/mi = Z; then after evaluating

A(1) from Eq.(11) we find that the total plasma current given by

Eq.(10) may be written in the form

# =g 1/2y (13)

ey U Z(1 - Z2) (1 -2.54 €

- B -



One can see from this equation that the toroidal correction term

1/2 ; . .
(the 'e /24 term) is very large indeed for small aspect ratio tori

and could reduce the current to a very small value, The diffusion

flux given by Eq.(12) may be written in the form

1/2

2.24 ¢ m u, v
r = e ™h (1—1> (14)
eBe Z

for the above values of Zi, Zh etc. If we compare this with the

(8) we find that they are roughly of

flux due to the density gradient
the same order of magnitude and so the diffusion of the plasma may

be significantly enhanced or reduced depending upon whether the beam
is directed parallel or antiparallel to the field lines. Of course
the expressions for j and T are local ones and if the beam can be
concentrated near the axis of the torus the toroidal effects are
small as € = r/R > 0, but in practice the beam will exist over a
considerable portion of the minor cross-section and the toroidal
modifications will be important.

Iv. SLOWING DOWN OF THE TOROIDAL FLOW BY RTIPPLE VISCOSITY

In general, as well as heating the plasma, the injected ions
increase the toroidal momentum of the background plasma. This can
result in large toroidal plasma flows, particularly if there is only

‘one beam whose direction of injection is parallel to the magnetic
axis, With opposing beam injection (ome beam parallel and one anti-
parallel to the field line), the injected momentum can be reduced’but.
not cancelled everywhere, since the injection process is necessarily

asymmetric., There are several possible mechanisms by which toroidal

momentum can be lost in a torus. Callen and Clarke(B) have shown

that if the only momentum loss is provided by perpendicular viscosity

then the toroidal velocity builds up to a value much larger than the



sound speed. Another possible momentum loss is by convection of
toroidal momentum and an expression for this loss has been given by
Kovrizhnykh(g). This latter mechanism gives a faster loss rate of
momentum than perpendicular viscosity, but the equilibrium toroidal
velocity is still larger than the plasma sound speed for the para-
meters of most heating schemes, |

In this section we show how ripples due to the fiﬁite spacing
of the toroidal field coils can slow down the background plasma. We
first discuss a model magnetic field consisting of a uniform magnetic
field B in the =z direction on which is superimposed a small
ripple field with amplitude %; and wavelength L, the total magne-

tic field being given by

B =8 (L + 1% 68 cos z/L). (15)

The equilibrium ion velocity arises through the competition
between the momentum input and the friction between passing particles
and the trapped ions which camnot be accelerated, and may be calcula-
ted using the techniques of neoclassical theory. The rate of loss of
momentum of a plasma moving through a ripple field haé been indirectly
derived previously in connection with magnetic pumping calculations(lo)
where the heating of the plasma appears as an increase of momentum in

the wave frame. Rather than reproduce these:-calculations we present
the following simple argument. Consider a plasma with number density
n moving with velocity u along a magnetic field given by Eq.(15).
For a particle to be trapped in a ripple well :} < G% at the minimum
of the well. The number of particles scattered into the well per
second equals néé Oﬁiﬁ)' The average velocity of these particles
is & u, so that the rate of loss of momentum by the plasma due to

ripple trapping is:-

- 10



d 1
E% = -1,46 mnvii52 u . (16)

The constant 1.46 which has been inserted in Eq.(16) arises from geo-
metrical effects associated with the magnetic field profile(g) when
one uses a more complete theory based on the analogy with magnetic
pumping. Eq.(16) is only valid in the "weak collisional regime, and
by this we mean that a particle must stay trapped in the well for at
least one bounce period; this condition can be written in the form
Vs < 63/2 vi/L.

Let us now comment on the relation of the simple model magnetic
field structure used above, to a more realistic field possessing
transform (. The plasma is now pumped through the more important
poloidal variation in the magnetic field strength(ll) v EBO, e >> &,
This has the result that an equilibrium parallel velocity u almost
balancing any poloidal rotation due to E-A B drifts arising from a

radial electric field o', will be set up

i
u = e . (17)
n Be

Thos if we know the radial electric field we know the E A B drifts

and u  and hence the toroidal flow velocity u. The radial electric

field is determined by the ambipolar condition. The force mi on the

plasma induces a non-ambipolar contribution to the radial flux

m. nu
T, = § r =0 : (18)

In the presence of the non-axisymmetric ripple the conveﬁﬁional
diffusion due to the density gradient is no longer ambipolar and one
can obtain the radial electric field by equating this non-ambipolar
contribution to that due to the beam. In an axisymmetric situation

the ion banana diffusion flux would be estimated by:-

- 11 -
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where 3' is the radial electric field, and would equal the electron
flux. In the presence of the ripple, ion-ion collisions can contri-
bute to the ion banana diffusion since momentum is no longer conserved,
the effect being proportional to 6% , the region of velocity space
affected by the ripple, as shown by a detaiied analysis. Thus we

4

replace ¢ 7P by 6* Vo in Eq.(19). This non-ambipolar contribu-

tion yields, on equating to the part induced by mu,

i) u
T T - (20)
BB v.. 8 ‘
11
Hence
¢I »
U'-'-'UHZ'B—'—" u'—l- (21)
8 v §2

agreeing with the model result Eq.(16). This argument has supposed

. (
we can neglect localised particle diffusion“lz)

with respect to the
contribution considered.
The complete toroidal momentum balance equation for the plasma

has the form

— = -1,46 Vi éﬁ u + ny uol(n TS) (22)

where the first term on the r.h.s. is the ripple viscosity term and
the second term is the source of momentum from the hot ions,in which
u is the component of the injected hot ion velocity along the field
lines. The solution of the above equation is

0.69 n, ug !
& iRty { 1 - exp(-1.46 vii 8 t) . (23)

As mentioned previously the ripple amplitude & is a function

of r ; an appropriate form for a Tokamak is & = a + Brzlaz, where

s JB =



typical values for o and B are a ~ 3 x 10-3, B ~ 2 % 10_2 (these
particular values are for the DITE Tokamak experiment). From Eq.(23)
we see that the toroidal velocity is largest at r = 0 on the magne-—
tic axis and that this velocity reaches its maximum value
i 3
_ £ . e s =
ok = 0y uol(n T,V @ ) in equilibrium when ¢t >> 1/(1.46 vig §°).

13

For the parameters of DITE (injection current 8 amp, n ~ 3 x 107 and

T n 1 keV) u = 0.025 u_ . This is of the order of a fifth of the
e max )
sound speed which is very small indeed.

CONCLUSION

In this paper we have calculated the energetic ion distribution
in a toroidal plasma produced as a result of high energy neutral
injection. The full toroidal geometry was taken into account and
results for parallel and perpendicular injection were given. The
plasma current produced by the injected ions was then deduced; the
trapﬁing of electrons was found to chanée thevﬁalue of the current.
Finally a new toroidal momentum balance gquation was derived in
which the slowing down of the plasma by ripple viscosity was included.
It was found that even with large current injection schemes the

equilibrium toroidal velocity of the background plasma was quite small.

- 13 -
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TABLE 1

% Az,)
1  1.58
2 1.36
3 1.24
4 1.18
5 1.15
6 18

Variation of Coefficient A(Zi) with

- plasma ion charge number Z;.
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Fig. 1(a) Parallel injection, the source is at

V =2V (W =4W).
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Fig. 1(b) Perpendicular injection, the source is at

\rl = 2VC (wl = awc) .









