





CLM - P 372

THE EFFECT OF FINITE LARMOR RADIUS ON THE
INTERCHANGE INSTABILITY IN A CYLINDRICAL PLASMA

by
T.E. Stringer

(Submitted for publication in Nuclear Fusion)

ABSTRACT

The eigenvalue equation for the interchange instability is
derived from guiding centre equations including finite Larmor radius
corrections. Analytic solutions are found which are valid near the
k.B = 0 surface and away from this surface, Matching these two soly-
tions over their common range of validity determines the eigenvalue
and hence the mode frequency. The growth rate and radial profile of
the mode may readily be evaluated explicitly. The analysis is appli-
cable to the high-f8 pinch, since cylindrical effects dominate over
toroidal. For typical parameters, FLR stabilisation is found to

increase the marginally stable pressure gradient by a factor two

over that given by the Suydam criterion,
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1. TINTRODUCTION

The interchange instability may occur in a magnetically confined
plasma when the field lines are convex to the plasma. In such a system,
if two flux tubes enclosing equal flux are interchanged, together with
their contained plasma, the plasma compressional energy is reduced with-
out changing the magnetic energy. Such an interchange is not topologi-
cally possible when the magnetic field is sheared. The energetically
most advantageous interchange then bends the field lines, and gives rise
to an instability only if the energy released by plasma expansion exceeds
the increase in magnetic field energy.

The condition for shear stabilisation of the interchange mode in a
cylindrical plasma described by the ideal magnetohydrodynamic (MHD)
equations, was derived by Suydam [1] using the energy principle. Since
this mode is highly localised in the radial direction, it was expected
that its stability in a real plasma would be influenced by finite Larmor
radius (FLR) effects, neglected in the MHD equations. FLR effects were
first studied for the Rayleigh-Taylor instability of an inhomogeneous
plasma supported against gravity by a shear-free magnetic field |2,3].
Gravity plays a role analogous to field line curvature. The main effect
is to replace w? in the MHD dispersion equation by w(w - kn Uni)’ where
w is the angular frequency, kn is the wavenumber perpendicular to the
confining field, and U, = (dpi/dr)/neli is the ion diamagnetic velocity.
Whereas all wave lengths are unstable in the MHD model, those below a
critical value were now found to be stable, Mikhailovskaya and
Mikhailovskii [4] considered a cylindrical plasma confined by a sheared
magnetic fleld, The interchange mode is now radially localised, its
radial profile being described by a second order differential equationm.
This equation again differs from that obtained from the MHD model only
by a replacement of w? by w(w - kn Uni)' Thus the eigenvalue for w can
be expressed in terms of that for the MHD model. However, since the
eigenvalues of the MHD equation were not derived explicitly, it was omly
possible to estimate the order of magnitude of the FLR stabilisation.

The effect of FLR on the interchange instability in a straight heli-
cal field was investigated simultaneously by Kulsrud[5], He found the
same relation, w(w - kn Uni) = UH?’ between the eigenvalues with and
without FLR terms, w and wH respectively. He determined the eigenvalues

of his differential equation and hence was able to evaluate explicitly



the critical parameters for stability in a stellarator.

The differential equation for the radial profile in a cylindrical
plasma is rederived in Sec. 2, using guiding centre equations. The
eigenvalues of this differential equation are determined in Sec. 3,
using the samg treatment as Kulsrud [5]. The factor by which the
critical gradient is increased over the Suydam value is plotted as a
function of Larmor radius/scale length. The assumptions made, and
application to experiments, are discussed in Sec. 4. The eigen-
function is expressed in a convenient form for evaluation, allowing

comparison of gbserved and predicted radial profiles.

2. DERIVATION OF THE EIGENVALUE EQUATION

The differential equation for the radial variation of the inter-
change mode was derived by Mikhailovskaya and Mikhailovskii [6] by
integrating the Vlasov equation along particle orbits. The following
derivation from guiding centre equations is given because, although
less rigorous, it is much more concise and more physically transparent.

Expressed in cylindrical coordinates, the confining magnetic
field is §o = [0, Be(r), Bz(r)]. The perturbation is taken in the
form f£(r) exp i(m6 + kz - wt). We shall assume it to be localised
around the radius r0 where its phase is constant along a field line,
i.e., ku(ro) = 0 where k”(r) = (mBe/r + k.BZ)/B . The most dangerous
modes in a low-J plasma are those which, to first order, do not change
the magnetic field emergy, i.e. 3,.B = 0 where subscript 1 denotes
the perturbation. For such a perturbation the electric field perpend-

icular to go can be written as the gradient of a potential, i.e.,

Ei = - Yi @. This substitution eliminates the compressional Alfven
(or fast magnetosonic) wave. We shall assume E” = 0, as in the

standard MHD analysis. If E” were retained, a further relation between
E” and j|| must be derived from the kinetic equation, as in reference 7.
This introduces the drift/ion-acoustic mode, whose coupling to the
interchange mode can then be shown to be small if B«l.

The plasma will be described by guiding centre equatioms [8].

This assumes W « Qi, where Q. = eB/m, is the ion gyration frequency,
1

and Ry « Ll , where py = (ZmiT/eB)i is the mean ion Larmor radius

and L. is the radial scale length of the perturbation. To minimise

1
the analytic detail, both the temperature and the magnetic field

strength will be taken to be uniform when evaluating the FLR corrections.



The average guiding centre motion of an ion perpendicular to the

magnetic field is
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drift due to magnetic curvature and gradients, and the radius of
curvature of the helical field lines, respectively. r and b are
unit vectors in the radial direction and parallel to §0 respectively.
FLR corrections need be applied only to the dominant (E X B)/B? term,
where the effect is to replace the electric field by its mean value
averaged over the gyration orbit [8].

The linearised conservation equation for ion guiding centres is
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where N denotes the guiding centre density. This is related to the

particle density n by [8]

P2 P\
= _l 7 2 _1.
n, (1 ik \{L Ni + 0 (L) N, . (3)

Because of the localisation assumption, L1 « r, FLR corrections to
equilibrium quantities are relatively small and we need not distinguish
between n and N . The contribution of the electric and magnetic

o

drifts to WV.v is negligible because
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and the variation in §0 is slow compared with that of the strongly

localised interchange mode. Thus equation (2) gives
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where kn = (m Bz/r —'k.Be)/B. Since k“(r) ~ 0 is assumed over the
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localisation region, we can write
ZTi m
s = — b - =
KRy eBR_ \T =z kbg) = Ky Vai (3)

Since the effects of finite electron Larmor radius and inertia are

negligible, the electron demsity perturbation is

kn dnO
(w_kn VBe)nei - E.; ar ¢ o 1{n %o Ve (6)
= - BR . i g5 i -
where vp ZTe/e R, Invoking quasi-neutrality, n., =1,
gives
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where Uni = (Ti/eBr%) dno/dr is the ion diamagnetic velocity, and

n; = an/dr. The parallel current is carried mainly by the electroms,

ie., v, «v =-3j/ne,.
in ell o

We now relate i, and ¢ by Maxwell's equations. Since

E = -V¢+—ik”$h,

briwg = E.curl(curl E)

1]

ib. [V(V.k b)) - V2 (k 9b)]

= - iV o) -iv(k“ @. [bx (VX b)) +ik ¢V X(Vxb). (8)

The first term is dominant because of the localisation assumption.
(The other two terms become significant only in the less localised
kink-mode ordering). Substituting for v - v, in equation (7)

ell in
leads to

"
=

r 2 n;(T,-&Te)
= - - - 2
‘i L?o(w HIVBE)(w kani anni)Vitp m, L

_kane
v, k“ n ?L (k“ p) =0 (9)

where vy is the Alfven velocity.
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To obtain the eigenvalue equation. in the same form as in earlier
publications [4] we assume w ~O0(k U ,) » k_v,,. The localisation
n ni n bj
assumption allows the variation of n and r to be neglected. Since
we do not wish to include the driving term for the kink mode, we neglect
k: p compared with k; ¢’ , equation (9) then takes the form given in

reference 4, i.e.
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3. SOLUTION OF THE EIGENVALUE EQUATION
Provided the mode is sufficiently localised around r,» we can
approximate to k“ by (r-ro)k;(ro) . Equation (10) can then be

written in the following non-dimensional form

- 5

(1+2x2) —-(E + 2z gq’ [% y (1+:c2)knzaf] p=0 (11

w(k Ui—w) 32
where a = ——;Efirg—- P 2= ——EE (\
A
B B \?2
_ % _ &) ro_ z '
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M 1is the pitch of the field lines, which is related to the safety
factor (q) of the analagous toroidal system by u = 1/Rq.

Equation (11) is formally identical to that solved by Kulsrud [5]
in the limit kh?a « x?, when investigating the effect of FLR on the
interchange instability in a stellarator. The following derivation
of the eigenvalue for x? is the same as Kulsrud's. This section will
discuss important details of the solution, most of which are not given
in reference (5). Apart from the different application, the method by
which the stability condition is determined from the eigenvalue is
rather different from that in reference (5). The physical implica-
tions of the assumption kh?a « y? will be discussed in Section 4.

Two approximate solutions to equation (11) will be found, one
valid when x « x/2kna%, and the other for x » 1. The eigenvalue

is determined by matching these two solutions over their common range
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of validity, 1 «x « X/2k}1a%' We first consider the small x range.
The z? term can then be neglected in the coefficient of ¢, and
equation (11) becomes the Legendre equation for imaginary argument,
and index v defined by

1, i %
I,=_5+-1?“, w=[x2-1]1%. (12)

The general solution is

p = APv(i:r:)+ B[Qv(ix) + i(7/2) Pv(ix)] . (13)

The + sign is taken when x > 0, and the - sign when x <O. This
term is needed in order to remove the discontinuity in Qv(ix) as the
argument crosses the real axis, see reference 9, p.l44, Because

the equation and boundary conditions are even in I, we choose the

solution for which dg/dr=0atx =0, i.e.,

do _ o % v\ A gqn (2 w | _
T 27 [;’(} + 2) } [W sin (5 ) + B cos > 0

B [% (% i - cot %%) Pv(ix) - Qv(im{] (14)

When =« » 1 the unity in the first term of equation (11) can be

Hence )

neglected, and the equation may then be transformed into a Bessel

equation, The solution which vanishes at infinity is

p(x) = 6 Kiu/2 (kna;?’x) (15)

where K is the Bessel function of imaginary argument and second kind.
We shall now compare the asymptotic form of equation (14) with

the small argument approximation to equatiomn (15). Using the asymptotic

forms of the Legendre functions in terms of gamma functions [9]1, and

various relations between the gamma functions, the asymptotic form of

equation (14) may be obtained in the form

_ _B 1
py =g (E=3
iuacx
_

g o sin L? In(8x) + ¢} (16)

uwawx
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T(1+ =) =+ r A
where £ = e et (8x) exp |-i tan-1 e 2 + =2
m% © T(1l+ iu) 4
(cosh ??)
-

; - u T

¥ =2 arg I'(1+ 3‘-22) - arg I'(1+ iu) - tan ' LEXP(' "2'_):| %
and a? = sinh (mu/2)/(;u/2). To express the first expression in

sinusoidal form, one must demonstrate that |g| =1, This follows

from the relation |I' (1+iy)| = (my/sinh ﬂy)%.

To obtain the small argument form of the Bessel function solution
we first express Kiu/2 in terms of a Whittaker function, which in
turn can be expressed in terms of the confluent hypergeometric and
gamma functions, Using the small argument expansion for the hyper-

geometric functions leads to the following form

om—S (’ x
wl s
iuazx” 4

L o
= il 1 sin 'g' In (knozz:c/2) -arg I (1 + %):l (17)
uaz
i iu/2
k ofx
n 1
where 1 = —2

al (1+ %1-)

Equations (16) and (17) must be equal over the common range of
L
validity, 1 « z « )(/ana'z . This requires B = C and knaz = Hn(xz),

where

Hn(XZ) = 16 exp [% {3 arg T (1 +-12£) - arg I'(1 + iu)

~ tan~! [exp (- m/2)] + n/h - nx }} (18)

and u = (xz-l)% . Different n correspond to different eigen-
functions. As shown by Rulsrud [5], the eigenfunction which first
goes unstable is given by n = 1. That this is the appropriate
value of n could also be demonstrated later in the analysis by
requiring that the stability criterion shall pass into the Suydam

condition as FLR effects tend to zero,



Substituting for & in the eigenvalue equation gives the following

quadratic for w as a function of x2.

TEk, 8p’ 5
- = 2 2 = - — 2 Z
wlk_U; - ©) T BOO) ez B (19)
) 8H12 %
i.e. w = > ani 1+ [].- TE; } (20)
! 12
rp
where A= kn Pl éi [} i_ ]
2 Pl Pe

The stability condition is therefore 8H (x2?) < Ay . The function

H (x?) is plotted in reference (5) and reproduced in Fig. 1. This
stability condition can be expressed in the more convenient form,

x? < xcz(hj , where xc2 is plotted as a function of X in Fig. 2.
kB/Be = (m/r)(B/BZ) provided B_ # 0.

Since k” =0 at x =0, kn
The smallest wavenumber is m = 1 though, as we shall see later,
this mode may not satisfy the localisation assumption, i.e. m =1
may occur only as a kink-mode. However, if the stability condition
is satisfied for kn = B/rBz, then all localised modes are certainly
stable. For the mode centred on the radius where Bz =0, kn =k
and the smallest permissable value is determined by the localisation
requirement, discussed later.

In the MHD limit, A = O, we recover the Suydam stability
criterion [1], x2 < 1. The vertical axis of Fig. 2 gives the
factor by which FLR effects increase the limiting pressure gradient
over the MHD prediction. We now examine the assumption
% » 4kn2a = 4H12, necessary for overlap between the two solutioms.
It may be seen from Fig. 1 that this is satisfied over a reasonable
range of x?, e.g., (21-11/)()2 = 0.04 for %% =3 and (2H1/x)2=:0.2

for % =5,

4, DISCUSSION OF THE SOLUTION
Since the magnetic field curvature due to toroidicity is stronger
in a Tokamak than that due to rotational transform, the cylindrical
model 1s not adequate. In pinch devices, however, the curvature due
to rotational transform is generally dominant, and the cylindrical

model should be applicable. For example, a typical set of parameters
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for the Culham HBTX experiment [10], is B = 2kg, Te = 30eV, Ti = 10eV,
r = 2cm, rBZ/Be = 10, and rp’/p = 1. Then for the m = 1 mode, A = 0.2.

The solution of the eigenvalue equation for w= we + iy is
shown as a function of x2 with A = 0,2 in Fig. 3. The MHD eigen-
value equation may be obtained from equation (19) simply by setting
knlu_ =0 on the left hand side. 1Its solution, which is a pure
imaginary for %% > 1, is shown for comparison by a dashed line.

The frequency and growth rates are normalised to cs®/r where &,

is the sound speed and © = BG/B' It is more natural to normalise
the FLR solution to knlu-, and it may be read off the right hand
scale in that form. The ratio between the two scales is given by

T knlh-/cs 2] =‘2-%h4 We see that the marginal value of x2? is almost
doubled by FLR effects. As x? increases beyond the marginal value,
the growth rate approaches that predicted by the MHD equations. How-
ever, the mode retains the real phase velocity, wR/kn = Ui/2 , due
to FLR effects.

The MHD stability problem is usually treated using the emnergy
principle. This does not give the radial profile of the mode ampli-
tude, The analysis of the preceding section allows the profile to be
calculated, for both the MHD and FLR models. Comparison between
predicted and observed mode profiles can provide a useful diagnostic.
To calculate the profile for a specific case one first evaluates x?2
and then finds lﬂ1a% from H (x?). When the Legendre functions are

expressed in terms of the hypergeometric function, the solution given

in equation (14) becomes

_ 7B 1‘-15 ] 1+ix
? = T T lF(—v, vl, 1, — )+ Fk—v, 1, 1, = ﬂ

(21)

cos,:(Bm/z) {Ll +7-‘£ {ﬂn 2-%2 + x2 (0.026 - 0.05x?) +}]
(22)
The second form, which is valid for x < 1, has been obtained using.
the hypergeometric series. Because this series converges rather slowly,
the coefficients of %2 and x2x2? have been evaluated exactly by
summing an infinite series of terms. The coefficients of x% and
x?y% are much smaller, and for these the sum of the appropriate terms

including n =4 1is given. Higher powers of %2 and % are
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negligible if x2 =0(1) and x < 1. If the solution were needed
for x% » 1, these coefficients could be evaluated exactly up to any
desired order.

The solution for =z » 1 is given by equation (16) or equation
(17), which are identical with B = C and the eigenvalue for kn a%.
The solutioms given by equations (16) and (22) could be joined over
the range x 21 by retaining higher powers of x in the hypergeo-
metric series. However, it is easy in practice to join the two

sections by a smooth curve, as is dome in Fig. 4.

1
When kniwzm » 1, the asymptotic expression may be used for the

modified Bessel function in equation (15), giving

;2, p—
i 2 2 2
plx) = T : exp ljkﬂ‘lzf] 1 - (1 + u?) 4 (1+u2)(9 +u )+
3

8w

7 2 e
Bknﬂé:r 128kn ax

(23)

Exact evaluation of the modified Bessel function may again be avoided
by joining the curves given by equation (16) and (23) by a smooth

L
curve over the range kntrzw = 0(1) .

As an example, Fig. 4 shows the radial profile for x2 = 2,
knf12= 0.04, The sine function approximation of equation (16) is
shown by a dashed line. The approximate expressions of equation (22)
and (23) merge very smoothly with this curve at the two ends of the
overlap range.

We now examine the localisation assumption. From Fig. 4 it may
be seen that the mode amplitude is typically down to about 50% of maxi-
mum when kn(r-ro) ~ 0.16, and about 10% when kn(r-ro) ~ 0.6. The
half-width in this example is |r -rol ~ 0.16 E)Bz/mB if B, 0,
or 0.16k if B, = 0. If the change in u'  over this localisation
region is comparable to u'(ro) » this analysis is not valid. This
imposes a lower limit on the mnumber for which a localised inter-
change mode can occur. For lower modes, the kink destabilising terms,
neglected in this paper, will be important. This limitation equally
affects the Suydam criterion for MHD stability.

The relation w(w—kn Uni) = wH3 = - THZ between the eigenvalues
of the FLR and MHD equations should still apply when kink terms are
important. If the ideal MHD equations have been solved numerically,

the corresponding solution including FLR effects may be obtained

immediately from this relation.
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Fig.l, Variatiom of Hl(xz) with xz.
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Fig.2.

The value of xz for marginal stability vs X.
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Fig.3. w = wR + iy as a function of x2 for » = 0.2,

W is the growth rate for the MHD mode.
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Fig.4., Radial Variation of the Mode Amplitude. x2= 2, kn&% = 0.04.

The dashed curve shows the sine function approximation.
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