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ABSTRACT

The threshold is derived for parametric excitation of Alfven waves
in a uniform plasma in which the background magnetic field is modulated
sinusoidally in time. Including the plasma pressure we show that ion
acoustic waves can also be excited directly. Both cases are absolutely
unstable for any interaction length. Finally the subsequent decay of
the excited Alfvén wave into an ion acoustic and another Alfvén wave is

analyzed,
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The growth rate for the parametric excitation of Alfvén waves was
calculated by Vahala and Montgomeryl. The Alfven waves were excited by
oscillating the background magnetic field. This phenomenon was later
observed experimentally by Lehane and Paoloniz. The purpose of this
letter is three-fold; first we derive the Alfven wave instability threshold;
secondly we show that by taking the plasma pressure into account not only
Alfven waves may be excited directly but also ion acoustic waves; thirdly
we obtain the threshold for the subsequent decay of the finite amplitude
Alfven wave so excited into an ion acoustic wave and another Alfven wave.

We shall follow Vahala and Montgomeryl and use simple magneto-
hydrodynamic equations with the'addition of a plasma pressure term and

resistivity. These equations are the following
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and we take the equation of state t§ be p = c; 8

The model considered by Vahala and Montgomeryl was thaﬁ of a uniform
column of plasma of radius a with a uniform magnetic field pointing in the
z-direction. The source of energy %or the parametric excitation was then
a perturbation to the background magnetic field which was approximately
uniform spatially but periodic in time. This perturbation to the background
magnetic field then formed the new 'oscillating equilibrium' whose stability
properties were then examined. Vahala and Montgomery constructed the follow-
ing equilibrium:
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where w_ is the modulation frequency and € is a small parameter measuring
the percentage modulation of the uniform magnetic field and mean plasma
density. This zero order (or oscillating equilibrium) solution is not
affected By the inclusion of plasma pressure. It is also unaffected by
the resistivity term provided v/wo < wpz a?/c? where v is the electron-ion
collision frequency and ¢ and upe have their usual meaning.

Let us now calculate the threshold for the excitation of Alfven waves
by the modulation of the equilibrium state. The ordering chosen by
Vahala and Montgomery allows one to consider Alfven waves which propagate
only in the direction of Eo and whose wavelength is long compared with the
plasma radius. For simplicity we consider waves polarized such that

El = (BX, 0, 0). Now taking the x-components of equations (1) and (2) we

obtain
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where we have included only those terms which couple the modulation to the
Alfven waves.
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We now put equations (4) and (5) into the coupled mode form using

the selection rules Wy = Wy + W, and ko = kl -~ kz where ko = 0 and (ul,kl),
(wz,kz) are the frequency and wave number of the two Alfven waves we are
investigating.

The Alfven wave solution Bl varies approximately as Re exp i (klz-wlt)
where Wy = |k1]CA and CA is the Alfven speed. The wave equation obtained

from equations (4) and (5) describing the coupling of this wave to the

second Alfven wave B2 and the modulation is
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where bl(t) is a slowly varying amplitude (compared with wo) given by

_ i(k,z -w, t) - ) ‘ L
B,(z,£) = b, () e "1 1 and 4 =w - w - w,. Similarly, the
equation for the second Alfven wave, obtained from equations (4) and (5)

is
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where bz(t) is the slowly varying amplitude of wave B2 defined as for wave

B (Note that w, = 'kZICA and k, = - kl, from the matching conditions),
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Equations (6) and (7) yield the dispersion relation
' 2
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where TA = kfr[/Zpo. This equation has an unstable solution when the

amplitude of the modulation exceeds a threshold value given by
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where we have used the fact that Wy = W, = u0/2. The minimum threshold

occurs for perfect matching (6 = 0) and is
Ldon
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Well above this threshold the growth rate of the two excited Alfven waves is

(10)

Y=€w/8 ' (11)

which is the result obtained by Vahala and Montgomeryl.

Now consider the second possibility i.e. the excitation of ion acoustic
waves by the modulation of the equilibrium state. In this case, it is
the modulation of the average density which couples to the acoustic waves.
Again we consider waves which propagate along the uniform magnetic field.
The wavelength of the excited acoustic waves depends on the value of
B (==2uonoKTe/Bé). The ion acoustic wave number ks must satisfy

-5 . 5
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The equations required to describe this process are the z-component
of equation (1) and equation (3) (NB We have added a phenomenological
collision term to the z-component of equation (1) in order to simulate the
damping of the ion acoustic mode). We mnow proceed as for the previous
case using v, as the wave amplitude and calculating the perturbation to

the two acoustic waves varying as A Re exp i (kslz - Wy t) and

V,o ~Reexp i (k ,z - w_,t) where Wy 2 = lksl,s, c,- The resulting
coupled mode equations are
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is the phenomenological collision frequency. (It is expected that the

main damping mechanism of the ion acoustic waves will be ion and electron

Landau damping). The analysis of equations (12) and (13) proceeds as

before giving as the threshold for instability
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where T, = v/2. The minimum threshold is again for perfect matching (és==0)
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The growth rate of the two ion acoustic waves (one travelling in the + z
direction the other in the - z direction) well above threshold is given by
€
=W

Y =3 (16)
This process excites ion acoustic waves of frequency wO/Z (the same as the

Alfven waves) but usually with a much shorter wavelength than the Alfven



waves, uniess B ~o0(1).
| In other parametric instabilities where ion acoustic waves are

excited only a small fraction of the pump energy goes to the acoustic
wave (due to the Manley-Rowe relations). However, in the direct excitation
we have described the energy from the pump flows entirely to the acoustic
waves. (The competition for the pump energy would be between different
parametric instabilities rather than the decay products of one instability).
In view of this, the instability described above could be an important
plasma heating mechanism, |

We now describe the subsequent decay of the excited Alfven waves
into another Alfvén wave and an ion acoustic wave. For a low-£ plasma
this process produces a long wavelength low frequency ion acoustic wave,
compared with the ion acoustic wave excited directly. The decay of an
Alfven wave in the manner described was first analyzed sevefal years ago
by Galeev and OraevskiiS. However, they gave only the initial growth rate
whereas we shall calculate the threshold both for the decay instability
and a purely growing (or modified decay6) instability which is a magnetic
analog of the oscillating two stream mode7.

We again obtain coupled mode equations for the non-linear interaction
of Alfvén and ion acoustic waves giving the dispersion relation
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where K = kllszkg C§|b1|2/4pogo, Y, = ké n/Zpo, 6 = Wy -w, and & =w-6 and
where we have taken the usual selection rules. TIn order to satisfy these

relations for Alfvén and ion acoustic waves we have taken k >0, ksi>0,

1
k,<0 and Wy,Wy,w  are all positive. The amplitude of the Alfvén wave
(a standing wave) excited by the modulation of the equilibrium state is

denoted by bl' We have therefore taken our pump wave b1 to be
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wz,kz are the frequency and wave number of the excited Alfvén wave and Yy

its damping factor. Equation (17) is exactly the form of Nishikawa's model

dispersion relationT. Using his result we can immediately write down the

minimum tﬁresholds for the purely growing and decay instabilities respectively
K = Zwszwz 72 (18)

and 2
Ts
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where equation (19) is only valid for 72 €W The threshold for the decay
mode is lower than that for the purely growing or modified decay instability.
The threshold for the decay of the excited Alfven wave can be written
in terms of |b1|/BO. 1f we compare the threshold value of this quantity with
the minimum threshold for the initial excitation of the standing Alfven wave
L
we obtain lb1|/e B, ~ (e YS/CA'Y2)2. If B« 72/75 then the excited Alfven
wave will decay at a much lower value of ]bl|/BO than the initial amplitude
of modulation. In this case the decay of the Alfven wave into another Alfven
wave and an ion acoustic wave will be an important saturation mechanism for
the original Alfven instability. Comparing the threshold values of € required
for the excitation of Alfven waves and the direct excitation of ion acoustic
waves equatioms (10) and (15) show that the Alfven threshold is much lower.
However, if € is well above both threshoids then we can see from equations (11)
and (16 that the ion acoustic growth rate is double that of the Alfven insta-
bility.
We have also considered the spatial dependence of these two instabilities.
In both cases the two excited waves travel in opposite directions and both
instabilities are absolute. Also, in both cases, the pair of excited waves
have equal and opposite group velocities. Following the analysis of Kroll
it turns out that both cases are absolutely unstable for any value of the

interaction length L i.e. there is no critical length: (NB This result is

only true for a uniform plasma).



Summarizing the main reSulﬁs of this letter we have shown that by
modulating the background magnetic field sinusoidally in time both Alfvén
and ion acoustic waves can be excited. We have calculated the threshold
values for the percentage modulation of the magnetic field for these two
cases. For a low-S plasma the ion acoustic waves excited will be very
short wavelength compared with the Alfvén waves. In additiqn, the ion
acoustic instability may be an effective method for heating a plasma
since the pump energy flows entirely to the acoustic waves. Provided
Te » Ti in the experiment of Lehane and Paoloni2 the acoustic waves should
have been producgd in their experiment. Both the Alfven instability and
the ion acoustic instability have been shown to be absolutely unstable.

In both cases there was no critical length. Finally we have calculated

the threshold value of the amplitude of the Alfvén wave excited for further
decay into another Alfven wave and an ion acoustic wave. The ion acoustic

wave excited in this decay has a wavelength comparable to the Alfvén wave.

An extension of this work to two dimensions will be forthcoming.

This will be more readily comparable with experiment and may also be of

relevance to experiments on transit time magnetic pumping.
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