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THE DISRUPTIVE PROCESS IN THE DIFFUSE PINCH

by

E. Minardi

ABSTRACT

Starting from a cylindrical Tokamak equilibrium with a peaked parabolic
current profile, and considering helical perturbations, a class of non-
linear neighbouring equilibria is shown to exist corresponding to pertur-
bations of the poloidal magnetic field only, which are localised in the
current channel. The main contribution to the pertubed flux is independent
from the helical coordinate and, when the value q, of the safety factor
on the axis decreases, it is associated with a negative change of the
poloidal flux. A situation is considered in which 4, is time dependent
and decreases as a consequence of the radial shrinking of the current
channel; moreover the conducting shell (if it exists) surrounding the
plasma, is slit in order that the poloidal flux can adjust to the new
neighbouring equilibrium. 1In such a situation the sudden change
which occurs in the poloidal flux when q, crosses the bifurcation
points of the nonlinear equilibria gives rise to voltage spikes (indepen-
dent from the detailed shape of the peaked current profile), whose sign and
magnitude are consistent with observations in Tokamaks when do(t)<50. It is
shown that, in the case of aslightly peaked current density, the voltage spikes
correspond to a relaxation of the current towards a flat profile. How-
ever, if the current density is strongly peaked, the nmew nonlinear equi-
librium corresponds, rather than to a relaxation, to a collapse of the
current distribution accompanied by a strong decrease of the poloidal

field, so that the initial equilibrium is disrupted.
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1. INTRODUCTION

As is known, a typical effect observed in the present Tokamak experi-
ments [1, 2, 3] is the so-called disruptive instability which manifests
itself with negative spikes on the voltage driving the induced axial
current, accompanied by sudden inward shifts of the major radius and
relaxation {see Ref. 2] of the current density to a flatter profile.

While the small amplitude oscillations which precede the disruptive
events can be explained in terms of neighbouring nonlinear kink equilibria
or of nonlinear limits on tearing mode growth [4, 5, 6] in the frame of
an equilibrium model with a homogeneous [7] or a rounded current profile
[8], the disruptive process still escapes a theoretical understanding [9].

In the present paper we construct a class of nonlinear neighbouring
equilibria whose existence is related to the fact that the initial unper-
turbed equilibrium has a current profile which is not homogeneous but
peaked. In our model the perturbations of the equilibrium are localized
inside the current channel, while the singular surface, where E'Eo =0
{Z = (0, %’ k)}is the wavenumber of the perturbation and ﬁo is the unper-
turbed magnetic field) is outside this channel. In section 2a the non-
linear equation describing the neighbouring equilibria is formulated in
cylindrical geometry; in order to proceed analytically a plane approxima-
tion in the form of a sheet pinch is introduced in the subsection (b) and
the space dependence of the coefficients 1is neglected., After these approxi-
mations the solution of the nonlinear problem and the bifurcation analysis
can be performed exactly, in terms of the Weierstrass function, as shown in
subsection 2c. The relevance of the solution so obtained for the descrip-
tion of the disruptive process is discussed in section 3. Here the change
in time of the voloidal flux, associated with the radial shrinking of the
current and the decrease of the safety factor is calculated together with
the magnitude and the sign of the voltage induced in the z direction.

One obtains negative voltage spikes when the safety factor crosses the
bifurcation points, whose location depends on the form of the current
profile. At the same time, for slightly peaked currents, there is a
sudden flattening of the profile, while, if the equilibrium current is
strongly peaked one has, on a longer time scale, a collapse of the initial
current distribution.

Finally in section 4 the disruptive process is considered briefly
from the more general point of %iew of the thermodynamics of the collision-
less plasma and the relationship is noted between the neighbouring equilibria

discussed here and those which can be derived with a thermodynamic method.



2. NONLINEAR NEIGHBOURING EQUILIBRIA
a. Formulation in cylindrical geometry )
For the calculation of the helical equilibria neighbouring to a
Tokamak cylindrical configuration, we start from the equation for the

magnetic helical flux x considered earlier by various authors([9] and

[4]):

1o oy, mazx_,, -
8rTar Tria2 =2 kB + mj(x) . (2.1)
Here T is the helical coordinate 7 =mf + kz ; % is the magnetic flux

through a helical ribbon in the direction K = (0, %, k) and is defined

by the relation
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The longitudinal magnetic field Bz is considered unperturbed and constant

while the poloidal field B, includes a possible perturbation. At equi-

2
librium the axial current j(x) (a factor 4x was included in j) depends on
space through the flux y omnly. In the following we will look for the

helical equilibria which are neighbouring to an initial equilibrium speci-

fied by a given function xo(r), satisfying the unperturbed equation
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where j(xo) is a known function of j =~ depending on the current profile
of the unperturbed equilibrium. The flux ) can then be split in the

form x = x (r) + x,(r, 7), with x  satisfying the equation
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Here j,(r,7) is the fundamental perturbation of the equilibrium current,
namely it describes the departure of the current from the given functional
dependence j = j(xo) which specifies the unperturbed equilibrium. It
will be assumed that |x1| « fx0| . Then we expand j(y + x ) in
MacLaurin's series and, up to third order in x, , the equation above takes

the form:
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where the primes indicate differentiation of j(xn) with respect to X, *

Now we assume that the effect of the fundamental perturbation j,(r,7) on the
flux x, is of secondary importance with respect to the effects resulting from
the term j(xo4—x1) -j(xo). This term describes that part of the current
perturbation which preserves the form of the dependence between j and X, s
is defined in the unperturbed equilibrium. Correspondingly we introduce a
further splitting in y,, putting X1™= Kaplr) +9,,(x,7), where X1 does not
contain, by definition, any effect related to ji> so that it satisfies the

equation

1 d d , _ p ) . . J_’i _.Im 3
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Then, remembering Eq. (2.5), the equation for x,,, which comprises the

contribution of the fundamental perturbation j,(r,7), takes the form
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% ;% T g% X11 + %;-7§;%i =m {3'4v%r(2x10%-x11)4-lg~ (3X;o4’3X13X16+XI1) X1p+mi; .
(2.7)

In the limit of an homogeneous current profile the termsinvolving the

X ~ derivatives of j vanish. Eq. (2.6) is then satisfied by x,, = O (this

would be the only acceptable solution in view of the boundary conditions

for x,, considered below) and only Eq. (2.7) for y,, remains. A solution of

this equation for anhomogeneous current profile (when only the term m j,

exists in the r.h.s.) was found in Ref. 4.

The present paper originates from the feeling that the part y,, of x,
could be more important than y,,, even in the case of a slightly inhomogeneous
current profile. So we concentrate our attention only on the calculation of
X10» Which is determined by the nonlinear equation (2.6) and by the boundary
conditions. In order to specify the latter we consider aninitial equilibrium
with a current profile j(xo) = j(r) which extends to r = a, while for r > a
we take j = 0. The plasma has an infinite conductivity and also exists
in the region r > a outside the current channel. However we will consider
only perturbations whichare localised in the current channel so that
T~ @ for 3 a. Let us introduce a function £(r) describing the

radial displacement of the constant ¥ surfaces, defined by the equality

X,(t ) = x (r, + &) + x{r_ +8). (2.8)

At first order in ¢ one has y,, = - (dx,|dr)¢ and from the continuity of

£(r) across the surface of the current channel one obtains the condition
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1igldE) = 0 (2.9)

A second limiting condition is obtained by noting that x,, is related

to the poloidal field perturbation B, by the relation

16
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== & 8 B18 (2.10)

which is a consequence of Eq. (2.2b), remembering that Bz is not per-

turbed. It follows from Eq. (2.10) that

i d-x
( L0 2 - (2.11)
dr =0

We assume further that the singular surface where E.§O= 0, falls outside
the current channel. It follows that the coefficients of Eq. (2.6) are
regular in the whole region O <r <a of our interest (see Egs. 2.12).
The solutiom y,;, is then completely determined by Eq. (2.6) and by the
boundary conditions (2.9) and (2.11). The derivative of x,, can be
discontinuous at r = a, implying a discontinuity of B16 at the surface
of the current channel. Moreover ),, can be different from zero at

r = 0, a property which will have important physical implicatioms.

b The plane approximation

In order to proceed analytically we use a simplified mathematical
model in plane geometry. For the equilibrium current, in the z direction,

we assume the following parabolic form:

[
1]

jo(l -yx2) for x < a ,
j=0 for x> a .

The parameter 7 satisfies the limitation ya? <1 and will be taken as
positive. So the case ya? « 1 represents a slightly peaked current
profile while for ya? »1 the profile becomes strongly peaked. The
field created by the current in the y direction simulates the poloidal

field B _
o]

\v]

at equilibrium. The unperturbed flux xo(x) (x now replaces

the radial coordinate r) is expressed by the relation
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apart from an arbitrary constant. Solving the equation above with
respect to x? (choosing the solution such that x - 0 for X 0)

the current profile can be expressed as a function of X, as follows

) = 3.0 - yx2 = 3+ 8- Doyp 4 b
J(xo o -'YX(XO =dgFa\ g BBt A
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q(x) = q0(1-73x2 ) .

Here a, is the safety factor at x = 0 and is expressed in plane as

well as in cylindrical geometry by q, = 2 Bz/j0 R (henceforth k =-1/R).

The %o derivatives of j(xo) are then expressed by the relation
=1
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These expressions should be introduced into the equation for X10 » Which

in plane geometry, instead of Eq. (2.6), takes the form

dleo , Ji -.Lm .
ey = " Xi0" 2 X1o0 T+ 6 X10 . (2.13)
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If the singular surface q(x) = m is far away from the surface of the
current channel, namely if m-q  » Ymx2/3, the x dependence in the
coefficients of Eq. (2.13) can be neglected. We shall see later that
neighbouring nonlinear equilibria of practical interest exist for values

m - q which are 24/7? times larger than yma? /3. Although the co-
efficients (2.12) cannot be considered as strictly x independent, a

first insight into the form of the solution of Eq. (2.6) can be gained
assuming the homogeneity of its coefficients. In fact the rigorous treatment
of Eq.(2.6) (in cylindrical geometry) by means of the computer shows that the
inhomogeneity does not strongly affect the general structure of the solution,
although it may somewhat affect the numerical results.

After this approximation Eq. (2.13) can be solved exactly in terms



of the elliptic Weierstrass function [11]. Indeed from Eq. (2.13)

follows the first integral
2

XmO < M .y
%(dx>=j"x2+3§-x3+i—2xio+c. (2.14)

Passing to the dimensionless variables
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Eq. (2.14) takes the form
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Clearly, as a consequence of our homogeneous approximation for the co-
efficients, one can take for q, any value of q(x) in the interval

0 <x<a. Let Yy be one of the two zeros adjacent to the origin y = 0

of the algebraic equation

| =

y
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F(yo) =- - yi +1n=0. {2,18)
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Then the solution of Eq. (2.16) satisfying the condition (2.11), namely
dy/du = 0 at u=x =0, is given by the expression [see Ref. 124 p. 453]:

Yo
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where P (u, g,, g,) is the Weierstrass function and the invariants g, and

g, are given by the equalities [12]:
i 15
= 12 (1= 3), g, = =6 (1 + 5 n) . (2.20)
The root yo of Eq. (2.18) depends on the parameter n and then on the
integration constant C. This constant is determined by the remaining
limiting condition y(u) = x10(a) = 0 (Eq. 2.9), which implies, from
Eq. (2.19)

I A N T I
1—4(y0+y0+2){p(ua, €55 g3)+8y0+12+12} , (2.21)
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or

After solving Eq. (2.18), Yo is known as function of n, and the equation

above determines m as function of the parameter

(N
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As a consequence of the nonlinearity, the period of P (u) and then of
y(u) depends, as known, on the amplitude C (or on the parameter 7). It
is just this circumstance which allows to determine the wavelength of
y(u) in such a way that the solution can be fitted in the interval

0 <x <a, while satisfying the boundary conditions (2.9) and (2.11)

for arbitrary values of the physical parameters 9, » v and m.

c. Discussion of the solution

For n « 1 the function ©(u, g,> 83) has period 2x and can be

expressed in terms of trigonometric functions as follows [13]

=L Lt
Plu, 12, 6 ) = - 35 + 7 sin (3) (2.24)

so that the solution (2.19) takes the form

1 1 1 -2 %5 1 1
(w) ( P T Yot 13 Yot Ts [ Bln LTt 3 Y, )
ylu) =y (1 - =y (1- :
: I o, L 1) Yo\ a1 )
P +g o+ 13 Y7 12 Y Al G)+ ouke 5,
(2.25)

The behaviour of y(u) is sketched in fig. 1. Eq. (2.25) is a good
approximation of the solution also for n # 0 because the dependence of
©(u, g,, g3) onn is very slow and can be neglected even when n and
y, are rather larger than unity. Eq. (2.22) then yields at once

y, =y(u =0) as function of ua(qo, m)

2
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This expression is of immediate physical significance because yo(qo, m)

M=

is related to the change ¢P occurring in the poloidal flux when the



neighbouring equilibrium is realized in the system. Indeed, remembering
Eq. (2.10) one has, after integration across the current channel
a 2

1 3 jo mody
r = = - - = o =
| [ B, dx = %4000 2 ( > Yo(qog m) . (2.27)

m

Starting from the initial unperturbed equilibrium with Yo = 0, the
neighbouring equilibrium arises when, for a variation of the physical
parameters and in particular of the safety factor 4y (the change of qo
actually occurs in the Tokamak experiments where 4, is time dependent
as a consequence of the shrinking of the current channel) the function
yo(qo, m) becomes different from zero. We then look closely at the
properties of the function yo(qo, m). Since one should start from the
value Yo T 0, that branch of the square root should be chosen in

Eq. (2.26) which admits a zero of yo(qo, m), namely the branch corres-

ponding to the positive sign. The function yo(qo, m) has then a zero

i P -1 Ry 5 _ .
for (ua, 12 7,6 ) 17 Of 4, =7 . Remembering Eq. (2.23) one has
- 2ya?
qo—m(l -2 ) (2.28)

one obtains a critical value of d,

and for u_ = i
a 2

8a? \
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(2.29)
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which represents a bifurcation point for the equilibrium, This is a
point where a new neighbouring equilibrium is generated by a variation
of a, from dyes SO that yo(qo, m), which is taken to be zero for
q>q_ _, becomes different from zero in a continuous way (but with

oG
discontinuous derivative) from yo(qoc, m) = 0. The location of 4

depends on <va? and one has from Eq. (2.29) 9o <m; for wva?2«l

9 is very mnear to q, = m; but for va?- 1(peaked current) one has qocﬁst.Zm.
As seen from Eq. (2.22) a real solution for y0 only exists for

p(ua) > 13/36 or LS 1-6 and is negative for % < u, or

4 > Ao When u and 4, decrease below the bifurcation point, 7.

increases from zero and is positive, thus corresponding to a negative

change wﬁ of the poloidal flux (see Eq. (2.27), recalling that j0

has the same sign as B09)°Fig'2 shows the behaviour of yo(qo) obtained

by solving the basic equation (2.6) with the aid of the computer (taking

into account the full inhomogeneous and non linear term j (x - x,)-Jj(x ).
o o

-8 -



For the forthcoming discussion of the physical implications of the
above solution it will be of interest to calculate the derivative

dyo/dqo. Using Eq. (2.24), one finds for values of q, in the neighbor-
hood of ¢ :
oc
dyo 3

G-~ T (2.30)
o

It is noted that when the current profile is slightly peaked (a2 « 1) the
derivative above is very high, so that ¥, becomes a sensitive functionofqo.

We observe that a positive solution 39 of F(yo) =0
(Eq. (2.18)), corresponding to a negative poloidal flux always exists for

all values of n and is unique. This solution increases to «© with
increasing m or decreasing 9,

A positive solution of F(yo) = Q0 also exists and is unique and
unbounded for mn - ® when higher order terms are taken into account in
the MacLaurin expansion for j(x_  + X,,) because, as can be verified,
they contribute to F(yo) with terms of degree higher than the fourth,
all with the same negative sign. Then one should not expect that the
higher order terms will change essentially the structure of the soiution.
This is confirmed by the rigorous numerical solution of the basic Eq.(2.6) -
In fact the solution retains its general form near the bifurcation point
also when the term y;- of F(yo) is neglected.

Finally we observe that in the case of an initial equilibrium with a
skin current distribution (7 < 0) it can be verified that the neighboring

nonlinear equilibria studied above do not exist.
3. THE NEGATIVE VOLTAGE SPIKES AND THE

FLATTENING OR COLLAPSE OF THE CURRENT PROFILE

We now consider a situation in which, as a consequence of external
factors, the current channel is shrinking in time, so that the equilibrium
parameters are time dependent. 1In particular, if the total current remains
constant, as in the Tokamak experiments, the safety factor g decreases
with time.

We also assume that the conducting shell (if it exists) surrounding
the plasma column is slit in order to admit poloidal flux, so that the
poloidal magnetic field can adjust as required by the equilibrium config-
uration. The poloidal flux (2.27) which is zero for qo(t) > 9e becomes

suddenly time dependent at g An axial electric field is

o Joc-
then induced in the plasma and is given at x = a by the expression
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It is seen from Eqs. (2.27), (2.30) and (3.1) that at the bifurcation

point, where (qOc - m)/m = (8/n?)ya?, a voltage spike occurs with magni-
tude

b
dt °

V = 27RE = 2L%E Ra?j
zZ 7 o)

(3.2)
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Since qu/dt < 0, the voltage spike is opposite to the driving voltage
of the axial current jo' Experimentally one has qu/dt?ﬁ—lo3 sec” ' and
with a total current I = 32][j0/4W = 50kA one finds easily a negative
voltage spike of the order of 102 Volts. It should be noted that this
result is independent from < and is then insensitive to the detailed
current profile.

When qo(t) decreases below the bifurcation point,the system assumes
the configuration of the mneighbouring equilibrium which is associated
with the increasing positive yo(qo, m) and a lower poloidal field and
magnetic energy. The change in the poloidal field, averaged in space,
can be calculated from Eq. (2.27). 1In the neighbourhood of the bifurca-
tion point, (qo - and ¥, « 1) this equation gives

a

a
i

3-32
b
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The modification of the current profile associated with the neighbouring
equilibrium is also easily calculated in terms of the solution y(u)

m-=dq

m

2 4 1 1o\ 24, 2o/ 1.1,
JOY<1+2y+ Zy )""_ﬂg.]o'ya y‘.\l-i_ 2y+2y

juo+xw)‘j(%)=-3

(3.4)
A quantity which is of interest to us is the difference Aj between the
values of the current on the axis X = 0 and near the edge x = a

of the current channel. One has
24 / 1 1
3 = s b et 2 g = = 2
&= . 3, vak~—3 | 98 yok 14 R > . . (3.5

We first conmsider the case when +ya?« 1, so that the initial
equilibrium is slightly peaked at the centre. One sees from Eq. (3.5)
that when . increases the current profile becomes more flat and the

original peak at the centre is completely removed for ¥y = 0.35 when

Aj = 0. For higher values of Y, the value of the current at the centre is

= 10 =

) .



further decreased. However, on the one hand, the validity of the
approximation based on the McLaurin expansion for (%, + xlo)

(which results in a series of powers of y) becomes doubtful, in this
case. On the other hand, the external circuit, which is highly
inductive, tends to keep constant the level of the tetal current and then

to restore the original unperturbed equilibrium with y = 0. It is con-

ceivable that if the modification of the current profile related to the
neighbouring equilibrium is not too strong, namely if +vya2?« 1, the
original equilibrium can be re-established after the spike, however

with a flatter current profile and a value of qo(t) lower than q_ .
Then, as the current channel continues to shrink, on one hand the current
profile becomes peaked again; on the other hand qo(t) reaches the
bifurcation point corresponding to the lower value of m after a time
of the order of 107~ sec. At this point Yo starts suddenly to increase
again while qo(t) decreases and a negative spike occurs followed
possibly by the restoration of the equilibrium. The existence of the
shrinking then gives rise to a characteristic cyclic process; the nega-
tive voltage spikes, however, should increase proportiounally to mﬂl.

The duration At of the relaxation process towards a flat current profile,

related to the negative spike, can be calculated from the relation

ar D A (3.6)

where by & 03 , dqo/dt ~ - 103 sec ' and va?2 =~ 10"'. One finds that
At is proportional to m and is of the order of 10 psec.

The process sketched above takes a quite different character when the
current profile is strongly peaked, namely when <a? approaches unity.
Indeed the current's modification (3.4) is proportional to <va? and for
the same value of Ayo but after a time somewhat longer than 1lOusec
(depending on the value of < a2?) the peak is completely removed. But now,
rather than a flattening, the process is a collapse of the current pro-
file, as indicated in fig. 3. Moreover the perturbation of the poloidal
field, which is also proportional to <yaZ?(see Eq.(3.2)) becomes very great.
It is conceivable that in such a situation the extermnal circuit is unable
to restore the original equilibrium, which is then disrupted. One can also
understand the fact that the collapse is occurring at the lower m, at the

end of the shrinking phase, when the current profile is very peaked.

= 1] =



4, DISCUSSION

The model presented above, notwithstanding the approximations
involved, seems to provide a satisfactory basis for the description of
the disruptive process observed in the Tokamak experiments. In particular
the existence of the relaxation of the current profile agrees with the
measurement of Bowers et al. [2] and the correct time scale of the relax-
ation can be obtained when the value of q(t) known experimentally is
used in Eq. (3.6). As shown in Fig. 2, when the current profile becomes
more peaked, the voltage spikes tend to concentrate, for a given m, at
the lower values of q, - In practice the first spike corresponds to
the value of m associated with the first branch at the left of the g
value associated with the initial unperturbed equilibrium. 1In this
connection it should be remembered that the voltage spikes are inversely
proportional to m. The sudden decrease of the poloidal magnetic field
in the current channel (when q, crosses the bifurcation point) while this
field remains constant at the plasma surface, implies a similar decrease
in the internal inductance per unit length of the plasma column. This
can explain the major radius inward shift.

It follows from the present model that the disruptive process is the
result of two opposite factors, namely the existence of the shrinking of
the current channel and its consequent peaking due to external conditions
and the intrinsic tendency of the current density to assume a flat profile.
This tendency can be established on general thermodynamic grounds, also in
the case of a plasma without individual collisions [14]. The thermodynamic
arguments [14] indicate that the relaxation towards a flat profile should
occur independently from any specified toroidal effect (this conclusion
also holds for the relaxation of a skin current profile). So we do not
expect that the treatment in toroidal geometry will alter essentially the
present picture.

It is also worthwhile to note that the Eq. (2.13) for the nonlinear
equilibria has just the same form as the equation describing the nonlinear
neighbouring equilibria arising in the case of electrostatic reactive
marginal instabilities [see Ref 15 Eq. (42)]. This case can be treated by
means of the thermodynamic method. 1In fact the thermodynamic nature of
the neighbouring magnetic Tokamak equilibria considered above is concealed
by the time dependence of the equilibrium parameters arising from the
shrinking, with the consequent vast inductive effects, which make the

whole process so peculiar,
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Fig.2 The branches of y{qD,m) (obtained by solving with a computer the
equation (2.6)) for 1 «m <4 and 2% = 10"" and 0.5. It is

seen that when the current profile becomes more peaked, the

branches of ¥, and the related voltage spikes tend to concentrate
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