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ABSTRACT

Several existing theoretical treatments of the low frequenéy drift
instability for low P and low density plasmas in mirror machines are
compared. We point out the importance of boundary conditions, and show
that finite Larmmor radius stabilization is important for the m = 1 mode.

The equation for the electrostatic potential for high densities is

solved for some ratios fl of the Larmor radius to the plasma radius.
¢}

It is found that in the Phoenix experiment, under the present operating

conditions, a ratio of ﬁl;B 0.5, corresponding to the field of < 5 kG
o

is sufficient for stability.
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INTRODUCTION

Several theoretical treatments of the low frequency drift instability for
low g and low density (s = 1) plasmas in mirror machines have been published
during the past few years. Many of them appear to be in disagreement without it
being obvious where the difference between them lies, One such treatment has
recently been published by us !, We have now succeeded in understanding its
relationship with at least two other standard works on the subject; those by
Rosenbluth, Krall and Rostoker ® (R.K.R.) and by Mikhailovskii?® , Apart from
showing the crucial differences,the comparison elucidates the role of the finite
Larmor radius stabilization for the m = 1 mode. It follows from our treatment
that in the Phoenix experiment, under present operating conditions, the plasma

should be stable for fields around 5 kG.

Our equation (14) in reference 1 for the perturbed electrostatic potential

in cylindrical co-ordinates was obtained from the Poisson equation:
- V¥ = 4nec (n’ - n}) ‘ eee (1)

and can be written in the form:

2 2 2
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1w+mﬂ) r B2 dr or
2
M2 m*Qw
- AN E_ 10,y o, cen (2)
B2 w(w + m) r dr

where the symbols are defined as follows:

¥ = electrostatic potential, assumed to be
Y = ¥(r) exp (iwt + img)
= 1ion mass
B = magnetic field
we = 1ion cyclotron frequency
{1 = lion precession frequency due to the
magnetic field gradient
a = Larmor radius
= ion density
n’ = perturbation in the ion density
n; = perturbation in the electron density.
This equation was obtained assuming that é; %% is independent of r. To



simplify the comparison with the other works we shall have to assume that B is
independent of r, the equation (2) will then apply to a parabolic density

distribution:

2
n=N{1-=).
r.2
8]

COMPARISON WITH MIKHAILOVSKII THEORY

Mikhailovskii ® treated the case of an infinite plasma in Cartesian co-
ordinates with the density varying in the Yy direction and the magnetic field
pointing in the 2z direction. The electric field was in the x direction only

and was of the form:

- =¥ . e
E = E, exp (- imt + ikx) .

The resulting dispersion relation for w was:

4mdic? (n _@%ack  an)) 4mMc® g dn
B 2(w+g_|§) dy B® w(w+g-k) dy
(.OC U)C

where g 1is some equivalent gravitational force and all other symbols are

defined as before.

One can attempt to apply the dispersion relation to cylindrical geometry by

transforming:

x> re, y= -r, and k-~ % .

It follows then that 8k =mQ . The transformed relation has the form:

Ye
2 mw 2 2 m*0w
[H%Mc (o c i.l@ﬂkz_wc c_ldn_o .. (3)
B2\ (0 +mp) 2 rdr B2 wlw+mQ) T dr

This is basically the same as the dispersion relation used by Damm et al?® .,

There is now no difficulty in seeing that the dispersion relation (3)
follows from the equation (2) for a potential of the form ¥ =C exp (img),
corresponding to the assumed field % = Ex exp (ikx). The method of using the

dispersion relation (3) is however not at all obvious, since both n and K*



depend on r. One tends to use their values at the boundary r = rg. Such a
procedure leads to a wrong result as can be seen by comparison with the result of

equation (2) when solved properly.

47‘EM 2
We restrict the comparison to low densities, ( B;: n « 1), where finite Larmor

radius effects can be neglected. The dispersion relation (3) then takes the form:

2 _ dmMc? M ¢ gp
B® w(w +mQ) r dr

a -%‘. ee. (4)
)

It was shown in reference 1, however, that the correct solution for cylindrical

geometry should read

arg®[J___(ar ) =0]
a® = m—12 2 . wes K8}
Lo

This correction makes the plasma considerably more stable. The additional

parameter in equation (5) appears naturally when the boundary conditions at r = Ty

are taken into account.

COMPARISON WITH R.K.R,

R.K.R.* used a density distribution of the form: n = N exp - (ﬁlJz. This

0
density distribution cannot be used directly in the equation (2) which is valid
only for a parabolic density distribution, To see what changes are required in

(2) one has to re-examine the calculation of n' .

The perturbed ion density n’ used in equation (1) was obtained from the
expression for the perturbed density of guiding centres né ; With the help of
the relations:

2 a2

R a_zi - — = T2 §
n =ng o+ SV NG .. (6) and ng =n - 2= vn, wisens {0

where n is the unperturbed density of guiding centres.

g

In calculating the finite Larmor radius correction,anézzn’-né, to the per-

turbed density né, only the largest term was kept in the expression for né.



dn.
non—B— L By ... (8)

With

one finds from (7) :

The correction &ng now easily follows from (8) :

3 m 1 dn

ey = £ 2
o =7 To+md) prdr

This correction is incorporated in equation (2).

Repeating the above procedure for the density distribution used by R.K.R.,

one finds:
d“g a°® r? dn
- = I+2—r5 N == a y
) 2ry 2
and
a® m 1 dn 4r oV 4 .
snl, = — -—-—-<V2W-——-+-—‘}'>
g 4 (w+ mQ) Br dr rg ar I‘g
It is seen that this contains correction terms to %% and Y as well as

the correction in V?¥ equal to the one for the parabolic distribution used in

(2). At this point one can also add the term

Q m 1 dn

we (o+ mQ) Br dr

which was neglected in our original calculation, It is believed to be of no

importance as it is of order é} , but it is introduced here to facilitate the
c

comparison.

For the exponential density distribution of R.K.R., the corrected equation

now becomes:
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By neglecting 1 compared to S n and substituting oo & . BF n, one
B2 dr r,Z
finally obtains the R.K.R. equation:
oy _ 2 (¥ _ ) i
vy %(rar v¥)=0, ees (9)
with
a2
mQ We ~ ;Eo -0 lw
_— w(w + mN) ... (10)

& __ m
r-% (w+ mQ)

While the equation (9) is identical to the one of R.K.R., there is a slight dis-

2

crepancy in v, the correction terms a_2 and Q being a factor of 2 smaller

r
0

than in the R.K.R. paper. This difference may be attributed to the different
velocity distribution assumed in the two calculations, and does not affect the

general conclusions of this discussion.

m

R.K.R. used the solution ¥ = r"e'™?® for 0 \<\r\<\m and obtained the condition

v=m. By setting v=m in equation (10), one obtains the dispersion relation:
a2
w? +|m=-1)a2-(m-1) = w=-mw, =0,
| &
1 e 0 -
which shows that for m = 1, there is no Larmor radius stabilization and
mwe % K
w==xi " =+ i (kg)? .

The same result follows from our equation (2) if one uses V = MelM® as a solu-
tion, which satisfies (2) for all densities. This solution, however, does

not satisfy the boundary conditions determined by the density distribution

= 5 =



2 i

n=NI(1 - Eg), which requires V¥ = rM elM¢ peyond the plasma radius rg. In
o)

general if realistic boundary conditions are taken into account, a finite Larmor

radius correction exists even for m = 1.

STABLE REGION AT LOW FIELDS

We have shown in reference 1 that the proper‘solution to the equation (2) for
low densities is VY = Jm(a,r‘)el"“P , but no solution that satisfies the boundary

4mMc’
B2

see, however, that under certain circumstances the solution for higher densities

conditions has yet been found for higher densities ( N » l> . It is easy to

is again a Bessel functioun and that finite Larmor radius effects exist and are
important, even for m = 1.
To prove the statement one only has to assume that

a’mw o
Az ————— 1. ens L11)
Pg(w-+an)

The equation (2) for a parabolic density distribution then becomes:

5 2mQ
VY m == =0 4
a“w
and the resulting solution is:
im
¥ = J (ar)e™™? ,
with
o . _2m0
ap
The dispersion relation is
1"02 mQ)
w=~2—a— =
arg?[J_;(ar,) = O]
For m = 1 this becomes
r, \2 Q
0
oo a(Z) 2 2
< a 5.76

The solution for  is real and the plasma is stable provided the assumption (11)
can be satisfied and if the second order correction in Larmor radius is sufficient.

By inserting the expression for w back into the equation (2) one finds:

VY = -



-

and stopping at the second term in the exXpansion VYV + %f V3¥... seems well Jjusti-
fied for ro, of the order of 10 cm. One still has to check the assumption (11)

which, using (12), becomes:
V: 1

A =— » 1,
riwef (4 - _2_ rd
5.76 2z

For Phoenix and a hydrogen plasma of 20 keV thermal energy:

A 4
= 2

a2
An 'A' of 10 requires a field of 5 kG which gives ﬁ% £ 0.5; Such a large ratio
of the Larmor radius to the plasma radius is of course not satisfactory but there
are several means available to improve on it. One obvious possibility is to
decrease the precession frequency 1. That would, however, result in a lower
trapping efficiency in Phoenix. In principle one could also increase the

stability of the plasma by placing a conducting wall very near to the plasma,

Under such conditions the dispersion relation (5) becomes:

2 - arg®[J; (ary) = 0]
= ?
r5

which changes A into:

4

A:mf‘or m=1.
a2

This requires a field of about 8 kG and ﬁi = =31 .
' o

Apart from these possibilities there is the experimental evidence that the
plasma is actually more stable in the high magnetic field region than the theory
predicts, probably due to the finite length of the plasma as opposed to the infi-
nite one assumed in the theory. This suggests that the required ratio of %% for
stability is possibly smaller than 0.5, More experimental data is required for
magnetic fields below 15 kG to prove that conclusively. As far as the theory is
concerned stability can probably be obtained with A > 1 and not necessarily
Ax» 1, The equation (2) is now being solved numerically and that should give an

answer to the required A and provide the stability boundary.

—



CONCLUSION

We have shown that the three apparently different treatments of the low
frequency drift instabilityi’aa are basically the same. The crucial difference
between them lies in the boundary conditions which are closely connected to the
density distribution chosen. For a cylindrical plasma of a finite radius the
finite Larmor radius effects can be important even for m = 1, contrary to the

common belief.

Detailed comparison with the experimental behaviour must await a treatment
which takes into account the motion parallel to the magnetic field and the finite

size of the plasma in that direction.
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