CLM-P 398

OLYMPUS AND PREPROCESSOR PACKAGE FOR AN IBM 370/165

by

M H Hughes, P D Roberts”™ and K V Roberts

(Submitted for publication in Computer Physics Communications)

ABSTRACT

(Page 1 of the text is a summary of the paper)

*MoD(PE), Aldermaston, Berkshire

UKAEA Research Group
Culham Laboratory
Abingdon

Oxfordshire

June 1974

Title of Program: OLYMPUS

Catalogue number:

Computer for which the program is designed and others upon which it is operable:

Computer: IBM 370/165 Installation: AERE, Harwell

Operating system under which the program is executed: HASP

Programming language: Standard FORTRAN

High speed store required: 72 Kbytes

- Is program overlaid? No

Number of magnetic tapes required: None

What other peripherals are used? disk, line printer

Noi of cards in combined program and test deck: 2412

Card punching code: EBCDIC

CPC Library programs used: None

Keywords descriptive of problem: Preprocessor, Control, Utility, Package,

Initial-value problems, Simulation, Computation, Standard, Framework, Kernel.

Nature of Problem

A standard methodology called the OLYMPUS system has been established for
constructing, testing and operating Fortran progr ams which solve equations
describing initial-value problems. A previously-published control and utility
package[1] implements this system for the ICL 4/70, and the present package
contains the corresponding version for IBM 360/370 series computers. It also
includes a FORTRAN preprocessor which will insert labelled COMMON blocks into a

source file using only one master copy of COMMON.

Method of Solution

Ref 1 should be consulted for the details of the OLYMPUS system proper.

The preprocessor reads the COMMON blocks into store on one channel NA, the

source code on another channel NB, and outputs the expanded program as a data

set on a third channel NC which is then passed to the compiler.

Restrictions

Different'implementations of OLYMPUS are required for different types of
computer to take account of differing wordlengths, channel numbers etc. The
present package should work on most IBM 360 and 370 systems provided that the
control cards are modified to suit local conventions. Since the preprocessor
is written in Standard FORTRAN it can, in principle, be used on any computer.
However, it has been designed to take advantage of the IBM scheme for concat-

enating data sets.

LONG WRITE-UP

1. INTRODUCTION

A previous paper [1] has described the OLYMPUS control and utility
package for initial value FORTRAN programs and its implementation on an ICL
System 4/70 computer at Culham Laboratory. Except for the details of control
cards and channel numbers the discussion in ref[1] applies equally well to
the present package. However, OLYMPUS programs developed on that machine
usually make extensive use of a local facility for file substitution. The
facility takes the form of a preprocessor and extends that introduced at
Culham several years ago for an IBM 1401/STRETCH system [2], and subsequently
incorporated into the ICL KDF9 EGDON system where the Job Organizer automatic-

ally intercepted control statements of the form

#SUBSTITUTE B

and inserted file B into another file A at the point where the statement
appeared. The format is slightly different for the ICL System 4/70 preprocessor

where the control statement is (where L denotes a blank):

//_SUBSTITUTE, B

On the ICL systems the substitution is recursive and allows files to be manip-—
ulated symbolically. The facility is extremely powerful and has many applications.
One important application is to FORTRAN COMMON blocks where only one master copy

of each block need be supplied however many subroutines there are to be compiled.

To facilitate the movement of OLYMPUS programs from the ICL System 4/70
to IBM 360/370 and similar machines, we have devised a very simple preprocessor
for file substitution. The program is written entirely in Standard FORTRAN IV.
However, since it is designed primarily for handling COMMON blocks we have not
allowed for recursive substitution. To illustrate the use of the processor
we have used it to implement the OLYMPUS system on an IBM 370/165. A description
of the preprocessor and the organization of OLYMPUS on the IBM 370 is presented

" below?®

*Reference to the IBM 370 should apply equally well to the IBM 360.

2. THE PREPROCESSOR

The principle of operation of our preprocessor is quite simple and involves
essentially two steps. First, we read into core from one channel NA all the
blocks to be substituted. We have reserved sufficient store for a total of
300 lines for substitution; if this number is exceeded the preprocessing is

terminated with an error message. Each block must be preceded by a control

statement of the form
/AJBLOCKLNAMEwa-identifier-a

where, to maintain compatibility with the ICL System 4/70 the block identifier.

can comprise up to 28 characters. It is not necessary to delineate the end of

a block. To assist with the handling of COMMON blocks various convenience

features are included on channel NA. These are described in detail in Section 3.
Each time the keywords BLOCK NAME are encountered on channel NA the block

identifier is entered in a table. We have allowed for 100 entries in the table;

again, abnormal termination with an appropriate error message will result if

this number is exceeded.

Secondly, having encountered the end- of-file marker on channel NA we read
the source deck on a second channel NB. We immediately output each line on a
third channel NC. However, if the control statement
//_SUBSTITUTE, +identifier—
is encountered on input we check that the identifier is in the table of blocks
available and, if it is found, we copy that block on channel NC in place of the
SUBSTITUTE card. The expanded data set so constructed on channel NC can subse-

quently be passed to another job step.

The channel numbers NA, NB and NC are preset to 8, 9 and 10 respectively.

At run time these channels must be defined by control cards of the form

//G.FT@8F@@1,_DD_DATA
COMMON blocks

/%

//G.FTPIFP@1,_DD,_DATA

Source code

/%
//G.FT1¢FO0] DD DSN=———-- ’
//LJVOLZ ————— .l’ sPACE:—-—__._’ DCB=————— ,

//_DISP=(NEW,PASS)

3. ADDITIONAL FACILITIES

To add some flexibility to the handling of COMMON blocks a number of
facilities are incorporated in our preprocessor. These facilities are designed

to exploit the standard IBM concatenation scheme which allows any number of

data sets to be combined.

3.1 Copying data sets from the input stream

Unfortunately, at our installation the HASP system prevents us from
concatenating data sets directly from the input stream. To circumvent this
curious restriction the OLYMPUS package for IBM 370 contains a member called
COPY which simply copies a data set from the input stream to a temporary file
on the disk. At some IBM 360/370 installations this facility will be redundant.
Some of the examples shown below assume that temporary input data sets were
created in a previous job-step. Figure 1 illustrates the control cards to
initiate a copy from the input stream to a data set which is subsequently

passed to another job-step.

/ /STEPX_EXEC_PGM=COPY
//STEPLIB DD, DSN=LOAD.CUL.,OLYMPUS,DISP=(0LD,SHR) ,VOL=---~
//G.FT@5F@@1_DD, NATA

%
//G.FT¢6F¢¢1HPDUSYSOUT=A
//G.FT@7F@@1_ DD, DSN=TEMP,DISP=(NEW,PASS),

!/ VOL=----,SPACE=———-,

!/ DCB=(RECFM=FBS, LRECL=80,BLKSIZE=80)

Fig 1. Copy data set from input stream

3.2 Permanently saving blocks

It is often convenient to save the COMMON blocks associated with a program
in a permanent data set. Thus, the occurrence of a card
//_SAVE
causes all subsequent blocks to be saved on channel NSAVE which is preset to 7;
previous blocks are not saved. Channel NSAVE must, of course, be declared on
control cards. Figureé 2 and 3 indicate the control cards necessary when the
preprocessor is used : (a) to create a new program COMMON and use it ; (b) to

permanently add or alter certain blocks and use them. In each example, the

OLYMPUS COMMON blocks are stored in a permanent data set called
*DATA,CUL, OLYMPUS.COMMON while the program blocks are saved in PROGRAM.COMMON;

the temporary data set TEMP is generated in a previous step.

//G.FT@7F@@1_DD_DSN=PROGRAM. COMMON , DISP=(NEW,KEEP) ,

// VOL====~, SPACE===——,

M DCB= (RECFM=FBS, LRECL=80 , BLKSIZE=80)
//G.FT@8F@P]_DD_DSN=DATA., CUL.OLYMPUS . COMMON , DISP=(OLD,SHR) , VOL=---~,
// DD DSN=TEMP,DISP=(OLD,DELETE)

where the temporary data set TEMP contains the card images

/ /_SAVE
——-—-program COMMON----

Fig.2 Create new program COMMON and use it

//G.FTP7FPP1_pD_DSN=PROGRAM.COMMONL,DISP=(NEW,KEEP), -~=--

//G.FT@8F@PP1_DD, DSN=DATA, CUL, OLYMPUS. COMMON , DISP=(OLD, SHR) , VOL=----,
& DD,_DSN=TEMP,DISP=(OLD,DELETE) , VOL=~——~,
!/ DD, ,DSN=PROGRAM. COMMON , DISP=(OLD,KEEP) , VOL=———~

where TEMP contains

//_SAVE
-~== new cards or amendments -=—--

Fig.3. Permanently add or alter certain blocks and use them

3.2 Temporarily add or alter certain blocks

The processor is designed such that if a block name appears more than

once, the second and all subsequent versions are ignored. Figure 4 shows how,

for diagnostic purposes, we can exploit this feature to temporarily add or alter

certain blocks.

//G.FT@8F@@],_DD, DSN=DATA. CUL.OLYMPUS , COMMON , DISP=(OLD, SHR) , VOL=—-—-,
// DD_DSN=TEMP ,DISP=(OLD,DELETE) , VOL=—-—-~,
// DD, ,DSN=PROGRAM. COMMON , DISP=(OLD,KEEP) , VOL=---—

where TEMP simply contains the amendments

Fig.4. Temporarily add or modify blocks

*The prefix DATA.CUL. or LOAD.CUL. is a local naming convention

= 5 =

4, ORGANIZATION OF OLYMPUS ON IBM 370

On the ICL System 4/70 [1], the entire OLYMPUS system resides in a private
subroutine library; control cards point to the library which the composer
(linkage editor) searches for unresolved external references. Although it is
possiblé to construct such libraries on IBM 370 series machines it is generally
a rather tedious task. We therefore exploit the hierarchical structure offered
by the equally convenient concept of a load module. A load module is the
absolute binary data set output from the linkage editor; this module possesses

the very useful property that it can be used subsequently as secondary input

to the linkage editor to resolve external references in another module.
Although this arrangement means that all unsupplied routines are loaded, regard-
less of whether they are required, the entire OLYMPUS system takes up rather

little core store.

The arrangement which we have found most convenient is as follows: The
pre-processor and the OLYMPUS library load modules are saved in a single parti-

tioned data set called LOAD.CUL.OLYMPUS; the two members are

LOAD. CUL. OLYMPUS (PROCESOR)

and
LOAD. CUL.OLYMPUS (LIBRARY)

]

together with the entire library of utility routines. The two labelled COMMON
blocks COMBAS and COMDDP associated[ll with the OLYMPUS system are saved in

. 1
The member LIBRARY contains the skeleton control structure CRONUS[

another data set

DATA. CUL. OLYMPUS . COMMON

At our installation both data sets reside on a permanently mounted volume
having public access. A detailed description of the implementation is given in

the next section.

The way in which a problem program utilizes the processor and library facil-
ities is illustrated symbolically in Figure 5. In general there are two job
steps involved. Firstly the pseudo-FORTRAN source deck containing //.SUBSTITUTE
cards (S-deck) is read by the preprocessor which creates a valid FORTRAN data set
(F-deck) on channel 10. The latter is input to the compiler in the usual way.

In Figure 6 we indicate the control cards necessary at our installation to achieve

the sequence of Figure 5. We point to the library programs by means of the JOBLIB
card which precedes the first EXEC card. The OLYMPUS library of utility routines
is included in the user program by means of an INCLUDE card in the linkage editor

statements.

- B =

OLYMPUS
COMMON

PROGRAM
COMMON

-Figure 5.

FTO8FOQI

Subprogram

FTO8FOOI

S-decks
OLYMPUS
Y FTO9F 00! (Procesor)
STEP |
PREPROCESS
FTIOFOQI

Subprogram
F - decks

OLYMPUS
(Library)

v C.SYSIN

STEP 2
CLG

Output

Method of using Preprocessor and Library

//JOBLIB DD DSNAME=LOAD.CUL,OLYMPUS,VOL= ----

//STEP1 EXEC PGM=PROCESOR

/%= i W

/% 1. PREPROCESS

e
//G.FT06FCO1 DD SYSOQUT=A

//G.FT1¢F@@1 DD DSNAME=TEMP, VOL= —----——- ,DISP=(NEW,PASS) , ===e=m
//G.FT@8F001 DD DSNAME=DATA.CUL.OLYMPUS.COMMON,VOL= ————=
Il DD DSNAME=PROGRAM.COMMON ,VOL=—~-—-=
//G.FT@9F@@1 DD DATA
S-deck
/%
[/%

//STEP2 EXEC NEWCLG

/ [x=== e

[l 2. COMPILE,LINK EDIT AND RUN

e

//L.DDLOAD DD DSN=LOAD. CUL.OLYMPUS,VOL= —-—-, DISP=(OLD,SHR)

//L.SYSIN DD *
INCLUDE DDLOAD(LIBRARY)

ENTRY MAIN
/*
//G.SYSIN DD *

program data
/:k

Figure 6. Typical control cards to use processor and library

(//% indicates a comment)

54 IMPLEMENTATION OF OLYMPUS ON AN IBM 370/165
The OLYMPUS package comprises:
(i) a skeleton control structure called CRONUS which is
itself an executable program;
(ii) a library of useful utility routines;

(iii) a test program called MINOS which tests all the utility "
routines.

In addition there are two standard labelled COMMON blocks called COMBAS and

COMDDP together with a block COMTES of test variables for MINOS. These were
described in detail in ref [1]. The implementation and testing of OLYMPUS on
the IBM 360 comprises 10 job steps; the control cards and the structure of the

deck are shown in Figure 7. The individual job steps are considered below.

(1) Compile and link-edit the preprocessor

Referring to Figure 7, the first step involves compilation and link-editing
of the pre-processor; we use a catalogued procedure called NEWCL. To save the
program we supply a card L.SYSLMOD which overrides the catalogued procedure
statement and stores the load module in member PROCESOR of a partitioned data
set called LOAD.CUL.OLYMPUS.

(2) Compile and link-edit copy program

The second step, similar to step 1, compiles and link-edits the copy program.

The load module is stored in member COPY of the data set LOAD.CUL.OLYMPUS.

(3) Preprocess OLYMPUS

The third step is to insert the COMMON blocks COMBAS and COMDDP into the
control and utility routines of the OLYMPUS library. We use the program gener-
ated in step 1, using //STEPLIB to point to the appropriate load module. The
pre-processor reads the COMMON blocks on channel 8 ; these are copied on channel 7
and saved permanently in the data set DATA.CUL.OLYMPUS.COMMON. The pseudo-
FORTRAN source deck is read on channel 9 and the expanded FORTRAN is written

to a temporary data set TEMP! on channel 10.

(4) Copy MINOS COMMON block

In step 4 we copy the block COMTES of test variables associated with MINOS
from the input stream to a temporary data set MINOS.COMMON

(5) Preprocess MINOS

This step is similar to step 3. However, we now read the standard COMMON
blocks on channel 8 from the permanent data set DATA.CUL.OLYMPUS.COMMON gener-
ated in step 2; the MINOS COMMON block is also read on channel 8 from the
temporary data set created in the previous job-step. We output to another

temporary data set TEMP2 on channel 10.

(6) Compile and link-edit OLYMPUS library

This step again invokes the catalogued procedure NEWCL. The compiler
takes its input from the scratch file TEMP! generated in step 3. The load
module output from the linkage editor is saved in a second member LIBRARY of
the data set LOAD.CUL.OLYMPUS created in step 1.

(7) Compile and link-edit MINOS

The compiler takes its input from the scratch data set TEMP2 generated
in step 5. The //STEPLIB card points to the OLYMPUS library and we explicitly
include the member LIBRARY in the linkage editor statements to supply unresolved

references.

(8) Run CRONUS

This step executes the skeleton control structure CRONUS; there is no

input data required.

(9) and (10) Run MINOS

There are two test cases which are run separately. The output should be

compared with the Test Output given in ref [1]to check that the package has

been implemented correctly; it is then ready for use.

o L s

// JOR

//STEP1 EXEC NEWCL
//* ——— - - oy o
//* 1 COMPILE AND LINK= EDIT PREPRUCESSJR
/1 *
l/C.5YS51IN nn *
PRE=PROCFSSGR FUORTRAN
[*
//L.SYSLMOD DD PSH=LOADCUL.OLYMPUS(PRUCESOR), LUAD MUDULE
!/ VOL=REF=CUL,DISP=(NEW,KEEP),
// SPACE=(CYL,(2,1,2))
I FL5¥STH bo * L=EDIT STATEHENTS
ENTRY “AIN
/¥
//STEP2 EXEC NEWCL
[ke e e e e e e m c e — e —— e ———————
/1 * 2. COMPILE AND LINK=EDIT COPY PRIGRAM
//*
//C.5YSIn) *
FGRTRAN FOR COPY PRUGRAMN
/%
//L.SYSLEQT D DSH=LOADaCUL L OLYHPUS(COPY) , LIAD JUDJLE
// VIL=REF=CUL,DISP=(NLN,KEEP)
f/L.SYSIR) * L=EDLIT STATEAENTS
ENTRY MAIN
/ *
//STEP3 EXEC PGH=PRUCESOR,REGTICN=80K
J e e e e e e e e e o e e g e
//* B PRE=PROCESS OQLYMDPUS
/] *
//STEPLIE non DSH=LOADCUL qULYMPUS VOL=REF=CUL,DISP=)LD
[/GLFTORTOUT LD DATA
OQLYMPUS COMMON BLOCKS
/%
/G FTOQCNT DD DATA
OLYMPUS S=1iCK
[*
J/GLFTIUEDLT ab DSHu=TENPT, FUORTRAA F=FILE
/Y YULEReF=CUL, DISP=(MNEN, PASS),
// SPACE=(TRK,(5,72),RLSE),
// DCH=(RECFM=FES, LRECL=80,BLKSIZESALOY)
[/GLFTUHFCGT GL YsoUT=a
J/GLETO7FO2T oD DESW=DATALCULLOLYHNPUS, COldidinN, CJ.l:1194 FILE
// VOIL=REF=CUL,DISP=(NEY,KEEP),
!/ SPACE=(TRK,(1,1),RLSE),
// DCB=(FECFM=FU3S, LRECL=80,BLKSIZE=HU)

Figure 7.

Control cards to create and test OLYMPUS library

//STEP4L EXEC PGM=COPY

//i‘ —————————— - ——— - - - - — = = - -ty g et = -
/1 ba CRFATE DATA SET FOR 1IL{IGS COMIDN

/7%

//STEPLIR oo DEH=LOAD - CULLOLYMPUS, VGL=REF=CLL,NI5P=)LY

/G FTOSFOUT np DATA

MINQS COMMON BLOCK

] *
//G.FTOH6FONT DD SYSOUT=4
//GLFTU7FOLT DN DSu=MIHNS . COMYLN,

// : VOL=REF=CUL,DISP=(HEY ,PASS) » SPACL=(TPK, (5,2) +RLSE),

// NCR=(RECFM=FBS, LRECL=ZU,BLKSIZE=RQ)

J/STEPS EXEC POM=PRUCLSQR,REGIN=E0K

J] &m0 B L L L ———
{/* 5 PRE=PROCESS H'IHUS

/1 *

f/STEPLIE np DSHsLOADCU JOLYHPUS, VOL=ENEF=ECULL,DISP=ILD

[/G FTOSEDT D0 PS=DATASCCUL wOLYHMPUS, COIMN, CJo)l FILE

// VOLEREFECULDISP=(NLD,, KEEM)

// np DE=MINOS COMION, VOL=REF=CUL, DISP=C LY JELETE)
[/GLFTOSRFQNT 0n DATA FIRTRANID 5=DECK

PMINCS FORTEAD

/x

F/G FTTOR0CT DD DEW=TENPS, DTSP=CHTW, PASS),

/7 VULEREFSCUL SPACE=(TRE, (5,2) ,RLSE),
f/ NCES(HECTIH=F3S, LREOL=A0, 3 LK51Z2F=000)

//G-FTUC{)FO!'E‘] nn SYSOUT=4
//STEPA EXEC “EuwCL

P e pp—— e o e e S S S

//* B CUMPILE AND LINK~ELLIT LIRRARY

/>

//0SYSTH D DSN=TENHRT, FORTRAL F=FILE

// VOL=REFECULDISP=(OLD,NELETE)

f/L.SYSLY DT DD DSH=LOANCULLOLYNPUSCLIBRARY), Laad hidJLe

!/ VUL=REFSCUL, 2ISP=(OLDKEFR)

[/LaSYSTH ni * - L= ATATEIAEATS
ELTRY SATH '

/*

//STERPT? TXEC MELCL

T T e e oo R i 5 e e -

/% 7 COYPTILE AMD LINK EBRIT HINJS

/A *

//*

//C.SYSTi DB DSwETEMPZ, FIRTRAL F=FILE

// VOLEREFECUL, DISP=(OLD, NELITE)

//L.SYSLYOL nn DSH=MINOSC(DTSKIEGI)Y, LJAd JJdJLE

// VOL=REF=CUL,DISP=(NEW,PASS),

// SPACE=(CYL,(2,1,1),KLSE)

//L.DDLOAD o DSH=LOAD«CULLOLYHPUS, , VOL=REF=CLL, DI3P=ILY

/IL.sYSIH nno % : L=£)IT STATEIEATS
[HCLUDE DDLGADCLIEBRARY)
EMTRY MATN

/>

Figure 7. (contd.)

- 12 -

//STEP8 EXEC PGM=LIBRARY

il ——————— —m e mm - ——— e —mm————o
[/ * 8. RUM CROMNUS

[/ %

//STEPLIE DD DSN=LOADCUL,OLYMPUS,VOL=REF=CUL,DISP=ULD
//G.FTO6F001 DD SYSOUT=A

//*

//STEP9 EXYEC RUNG

[/ ¥ m e c e e m e ———— - ——_—————
/1* 9. RUM MIMUS TEST 1

/[*

//STEPLIB nn DSN=MINOS,VOL=REF=CUL,DISP=0LD

[/ *

[/G.SYSTH) *

DATA FOR MINOS TEST 1

[*x

//*

//STEP10 EXEC RUNG

//* —— - o e 0 T o = = D -

/1% 10, RUM MINOS TEST 2

//*
//STEPLIR non PSe=MIHUS,VOL=REF=CUL,DISP=(ULD,DELETE)

[/ *
//G.SYSTH nn *

DATA FOR MIMNOS TEST 2

[*
//

Figure 7. (contd.)

= 19 %

6. REFERENCES

1 Roberts K V and Christiansen J P. 'OLYMPUS: A Standard Control and
Utility Package for Initial-Value Fortran Programs'. (1973) CLM-P373
Computer Physics Communications Vol.7 No.5 (1974).

2 Roberts K V. 'Scientific Computing and Operational Research', (1965)
Culham Report CLM-R 45, available from HMSO.

= 14 =

