CLM-P 403

THE RELATIONSHIP BETWEEN THE MODULATIONAL
INSTABILITY AND THE OSCILLATING TWO STREAM INSTABILITY

C.N. Lashmore-Davies
Euratom-UKAEA Association for Fusion Research
Culham Laboratory, Abingdon, Oxon, 0X14 3DB, UK

(Submitted for publication in Nuclear Fusion)

Abstract

The stability of a finite amplitude monochromatic Langmuir wave is
considered in one dimension. A dispersion relation is obtained which
includes the decay, purely growing and modulational instabilities. It
is shown that for an infinite wavelength Langmuir pump wave the modula-
tional and oscillating two stream instabilities are the same. It is
also pointed out that the threshold for the modulational instability is
equal to the threshold for the inverse oscillating two stream instability,
in which the Langmuir wave energy is converted into electromagnetic

radiation.
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I  INTRODUCTION

There are a number of situations in which long wavelength Langmuir
turbulence can be generated in a hot collisionless plasma e.g. in the inter-
action of intense laser or electron beams with a plasma. This long wavelength
turbulence then has the tendency to decay to longer and longer wavelengths
by various non-linear processes resulting in an accumulation of the Langmuir
waves in the k= 0 state. The problem then arises as to how this turbulent
energy is dissipated since for such long wavelengths linear Landau damping
is negligible and collisions are also ineffective. A possible resolution
of this problem was proposed some time ago by Vedenov and Rudakov!. They
noted the existence of an instability in which the initially uniform Langmuir
turbulence would become modulated due to some initial density perturbation
and in which shorter wavelength Langmuir waves are generated. This insta-
bility has become known as the modulational instability. The fully non-
linear stages of this instability have been examined more fully by Zakharov?
who has predicted a three dimensional focussing of the Langmuir waves with
resultant generatiéﬁ of very intense high frequency electric fields and
density depletion. The subject is now attracting a good deal of attention?,®

and was recently investigated in a computer simulation-’.

In this paper we shall consider the simpler problem, originally discussed
by Vedenov and Rudakov! and also by Zakharov?, of the stability of a finite
amplitude monochromatic Langmuir wave. The two principal aims of this paper
are the following. We shall show explicitly the relationship between the
modulational instability and the oscillating two stream instability. To the
best of the authors' knowledge, this has not yet been demonstrated in the
literature®, We shall also compare the modulational instability with the
inverse oscillating two stream instability’ (in which a finite amplitude
Langmuir wave generates transverse electromagnetic radiation) and show that
the threshold amplitude of the Langmuir wave is the same for the two instabil-
ities.

II DERLVATION OF THE NON-LINEAR WAVE EQUATIONS

We shall use a two fluid description of the plasma and assume that the
electrons are much hotter than the ions (Te » Ti). A finite amplitude
Langmuir wave of frequency and wavenumber W, Eb will be assumed present
and we shall calculate the effect of this wave on other Langmuir waves and

on ion acoustic waves. The fluid equations we use are as follows
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where j =1 or e. We now perform a perturbation analysis on these equations

in which we obtain the coupling between the Langmuir and the ion acoustic
branches due to the presence of the finite amplitude Langmuir wave. First
consider the equation for Langmuir waves. We shall consider the one dimensional
problem in which all waves (including the finite amplitide Langmuir wave) vary
as exp i(kz - wt). Eliminating all the Langmuir variables in favour of the
wave electric field we obtain the following equation
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where the variables have beem split up into a uniform, constant part and a wave
part. The wave damping has been treated as a perturbation to the linear undamped

wave solution along with the non-linear interaction between these waves. The

quantity Ef(w,k) is the dielectric function in the plasma where

Gg(w’k) =0

gives the Langmuir wave dispersion relation

2 = 2+ k2 2
wﬂ wpe Té 2 VTe (5)

We now introduce the slowly varying amplitude functions given by
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and expand the dielectric function about the w,k values given by equation (5).

Making the identification &w — i8/8t and 6k—-1i8/0z we obtain the equation
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where the noﬁation 6;* denotes the Langmuir wave propagating in the
direction kg and 63- represents the wave travelling in the reverse
direction. We can now simplify the right hand side of equation (7) by
picking out those terms which are resonant or nearly resonant. We do

this by means of the wave number and frequency matching conditions
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where (w,, k,) refer to a Langmuir wave and (ws, kS) to an ion acoustic
wave., Equation (8) is taken to be satisfied exactly whereas equation (9)
is only required to be satisfied approximately, thus allowing for a fre-

quency mis-match. We take the finite amplitude Langmuir wave to be
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and similar expressions for its associated density and velocity fields.,
The acoustic waves which we shall consider will be
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and again the associated fields for both ions and electromns. Notice that
we are using the convention of distinguishing between left and right travel-
ling waves by reversing the sign of w (rather than k). In the above
expressions for the wave fields this sign has been included explicity so
that w,, w,; and w, are all positive definite quantities. At this point

the signs of ko, k, and ks have still to be specified. We shall do that
at a later point in the analysis. With the aid of the matching conditions
(equations (8) and (9)) and equations (10) and (11) we can obtain the final
form of the equation for et(z,t) where we have retained only the dominant

contribution to the coupling coefficients

v, 2 -i(6-w )t -i(6+4+w )t
9 Te O + . + s =y s
(81: + —yekl-—-—ul 5. T 71) €(z,t) =-ic,. CO [(NS) e +(Ns) e
(12)
T O
where cﬂ = Eomew and § S Wy - W,



The equation for the Langmuir wave propagating in the opposite direction

is obtained in a similar manner and is
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The damping factor <, appearing in equations (12) and (13) can be inter-
preted as the sum of the collisional and linear Landau damping. The finite
amplitude Langmuir wave given by equation (10) couples together four waves
- two Langmuir and two ion acoustic. The reason for this is that W KWy
so that the off resonant acoustic wave is only off resonant by a small
mis-match. If we consider smaller and smaller values of ko then 6

becomes smaller (or even negative) and both acoustic waves are off resonant.

The non-linear wave equations for the two ion acoustic waves can be
obtained in a similar way. Eliminating all the acoustic wave variables in

favour of the density perturbation of the electrons we obtain
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We proceed from here exactly as for the Langmuir wave case to obtain the

desired equations for the two ion acoustic waves
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where the frequency W, |kS|cS and c,, = ksznoez/4wsmiﬁewow1. The
condition for the validity of equations (12), (13), (15) and (16) is
60[€6|2 « nolee .  These four equations describe the stability of the
finite amplitude Langmuir wave Eo' In what follows we shall assume
that 55: remains constant thus linearizing the equations. A relaxation

of this condition would take account of the full non-linear behaviour of



the coupled waves. However, we shall only be concerned to find the

conditions for instability and the initial growth rates.

Equations (12), (13), (15) and (16) have time dependent coefficients

and these equations can be simplified by introducing the new amplitudesi
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In order to specify the problem completely we must choose the signs of the

wave numbers and we take
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The final form of the equations is then
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III THE DISPERSION RELATION
Equations (17) - (20) can now be solved assuming a variation

expi(qz - wt) resulting in the following dispersion relation
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where Q=W - 6. We will now examine this general dispersion relation
for a number of special cases
(i) q =0, k0 #0 .
- -
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In this case the dispersion relation is
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which is well known® to give rise both to the decay instability (6>0)
and a purely growing instability (6§ <0) . The expression for the growth
rate of the decay instability given by equation (22) agrees with the
result first given by Oraevskii and Sagdeevg. In addition the thresh-
old fields for the decay and purely growing instabilities are equal

; 10
to the corresponding thresholds for a tramsverse pump .

In this case the dispersion relation reduces to
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This equation is of the same form as the one derived for the inverse
oscillating two stream instability7 and has unstable roots both when
5 >0 and 6 <O0. However, in contrast to the oscillating two
stream instability the & < 0 solution is no longer purely growing.
This is due to the fact that the travelling wave pump drives the
excited Langmuir wave non-symmetrically such that it is frequency
shifted below the pump frequency and the instability is converted to

the decay type. This result is similar to that of Nishikawa et al.'’,

(ii)q=0,ko=0-
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In this case there is no difference between Eo and E0 and so
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we put % = Cb = CO when the dispersion relation becomes
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For this case k; = - kS and 6 1is necessarily negative. In this
case, we no longer have the possibility of the decay instability -
just the purely growing mode for which 6 < 0. Again using reference

8 the minimum threshold for this instability is when & = - Yy and is



given by
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Neglecting the damping terms in equation (24) we can easily obtain an
expression for the growth rate of the instability when |6' «w

Using the fact that 6 =~ - v k2?v,_2%/2w we obtain
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which is exactly the result given by Vedenov and Rudakov1 for the

instability of a cold gas of Langmuir plasmons.

For an infinite wavelengfh pump this instability is indistinguish-
able from the oscillating two stream instability. Therefore, for this
simple case of a monochromatic Langmuir pump wave the modulational
instability can be interpreted as the excitation of a pair of finite
wavelength Langmuir waves propagating in opposite directions and at
the same frequency as the pump. In other words, the excited Langmuir
waves form a standing wave perturbation at the pump frequency. Asso-
ciated with the excited Langmuir waves is a growing density perturba-
tion at zero frequency which results from a down shifting in frequency

of the two ion acoustic waves.
(iii) ¢ #0, k =0, € =g~
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The dispersion relation in this case reduces to
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Looking for solutions @ = iy we can again obtain the threshold

minimum for instability
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where q/kS « 1. The inclusion of q > 0 evidently lowers the

the threshold for the instability.



IV  CONCLUSION

We are now in a position to make an interesting comparison. It has been
shown in the above analysis that the modulational instability is equivalent
to the oscillating two stream instability when ko = 0 and the pump is mono-
chromatic. However, a finite amplitude Langmuir wave of the type considered
here can give rise to another instability7. This is the inverse oscillating
two stream instability in which the Langmuir wave pump excites a standing
electromagnetic wave and a zero frequency density perturbation. The minimum

threshold amplitude for this process is’
2
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which is the same as the threshold for the modulational instability given by

equation (25)! The growth rate for the inverse oscillating two stream insta-

bility is
2
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where kT is the wavenumber of the electromagnetic wave which is excited in

a direction perpendicular to Eo' For the condition of minimum threshold the
above growth rate is also equal to that for the modulational instability

given by equation (26). It is therefore possible that the inverse oscillating
two stream instability could be just as potent a mechanism for the dissipation
of long wavelength Langmuir turbulence as the modulational instability.
Whereas the latter effect transfers the Langmuir energy to shorter wavelength
Langmuir waves, where it is eventually Landau damped, the inverse oscillating
two stream instability would result in the Langmuir energy being lost by

radiation.
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