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ABSTRACT

Hydromagnetic waves travelling along an axial magnetic field in a cylindri-
cal plasma bounded by a conductor have a frequency w determined by the exciter,
The non-linear terms appearing in the equation of motion and in Ohm's law,
usually neglected in wave theory, will induce a small amplitude wave of frequency
2w accompanying the basic wave, In addition the boundary conditions at the
exciter will produce further double-frequency waves (df waves), but moving at
speeds different from the basic wave. In this paper the amplitudes of these df
waves are calculated for all the components of the magnetic field and Tor the
plasma density. The existence of certain critical frequencies, at which reson-
ance between the basic and df waves occurs, is established. In the limit as
0 = w/we; tends to zero, the amplitudes of the magnetic df waves are shown to
depend on (/e , where &' is the damping length of the wave, whereas the corres-

ponding density wave amplitude is found to be independent of both & and Q.
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1. INTRODUCTION

An understanding of non-linear processes is important in plasma physics since most
instabilities are in fact detected through their non-lincar effects, since proposals to
heat plasmas with various kinds of waves inevitably involve (finite) large amplitude waves,
and since non-linear wave interactions form the basis of many theories of hydromagnetic

turbulence and collisionless shocks.

In this paper we consider a very elementary process in which a basic wave interacts
with itself to produce a higher harmonic. Aside from the fact that this problem is mathe-
matically tractable, it also has the virtue that it can be tested by simple experiments,

All that is required is that the amplitude of the waves in existing experiments be
increased(l’z). Let B0 be the magnitude of the steady magnetic field and let the ampli-
tude of the perturbations in B be proportional to CB,, then the present theory is correct

to second order in the amplitude parameter C.

(

It is frequently stated (e.g. see Spitzer 3)) that transverse AlLfvén waves are not

subject to amplitude effects with incompressible motions and when the frequency ratio,

= w/bci , is negligible. However the actual effects of removing these restrictions on
the density p and on  have not been discussed in the literature as far as this author
has been able to determine. For example it is not clear, a priori, whether these are

effects of 0(C?) or O(C®).

The non-linear problem we shall study is that of determining the relative amplitude of
the double frequency (df) wave we anticipate will be induced by the (squared) non-linear
terms occurring in the equation of motion and in Ohm's law. This amplitude, a say, will
normally be O(C?), but we should not be surprised to find that at certain frequencies a
resonance between the basic wave and the df wave will lead to much larger amplitudes
than this order would suggest. In fact one of the resonance frequencies proves to be the
low frequency limit Q = O, which at first sight seems to contradict the result quoted
above from Spitzer's text. However the introduction of some resistivity, m, is found to
modify this singular behaviour, so that if the limits Q - 0 and m > 0 are taken in
this order, o is found to be zero for all components of the magnetic field, This result

holds (for the transverse wave only) even when the density is permitted to fluctuate,

2., THE NON-LINEAR DIFFERENTIAL EQUATION FOR B,

Adopting the usual notation and mks units, we take the equations for a pressureless,

isotropic, fully-ionized plasma to be



VxB=uj, YxE=-23Blt swe k1)
nd =E+v«B- (Bo/wei)(dv/ot + v « Vv) can (2)
paV/dt + pv + W = j x B ver (3)
and
ap/ot + Vv « (pv) =0, coe (4)
where We j is the ion-cyclotron frequency corresponding to Bg . In the steady state

E, v and j are taken to be zero, p =p, and B = Bgn, where n is unit vector along

the axis of the cylinder.

Now let v, j, E, p and B denote perturbation quantities, then (1) is unchanged in

form, while (2), (3) and (4) become

nd = E + Bgv x n - (B/wcj) v o+ (By/bpowei)Q , veu (5)
Pol = Bod x + Tk .r (6)
p=-pg? "X -7 (py) cer (D)

where the dots denote time derivatives and T and Q are non-linear terms defined by

T=pd B -upgy WY - ey, »or (8)

Q= (ppgwei/Boly x B = ppo¥ * V¥ . .es (8)
We shall use cylindrical co-ordinates (r,0,z) and write 2 = V x A vi = Bz/ppo for the
vorticity and Alfven speed Vp e Then on applying the operators é%;}- Vx to (5), n. and

V. to (6), and eliminating V.v and n-.y (=v,) from the three resulting equations we
obtain

LBy - (Bo/Viwei)ey =R(T. - Qg /wci)/Bg » ... (10)

where L, and # are the operators
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Similarly, elimination of 9V -.v, v, and j, from n-Vx (6), n-(6) and n«Vx (Vx(3))

gives
" ] ) ' T
BoLolz+ (Vi/wei)V?By = (Vi/Bowe i) R{Th= @ - 35(Tz - Q) '~ @ Tg/Bo wee A3T]
where
2 M 3 .2 1 2°
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and the dashes denote derivatives with respect to z.



Hence on eliminating £, from (10) and (11) we get the non-linear differential equation

b 2 ' i =
Lny=F= 5o R L (Tr-Qo/ocs) + ;)%—i%gBT’r— G- (1,-0)} - =& T9:|€ ) e (12)

where £ is the linear operator

L=L L, e 2 _ o ee. (13)

wej 0taz’

3. THE SOLUTION TO THE LINEAR WAVE EQUATION

When F,; = 0, (12) reduces to the linear equation #1BZ = 0, the wave solution of which

has been given in an earlier paper(4). The axial components of j, & and v are found

to satisfy the same linear equation. For the moment we shall ignore the resistive damping
term, i.e, the term involving m appearing in the operators ?31 and}ﬁg " Let w be the

frequency and k the real wave number, then it is convenient to introduce the following

notation:

¥ =kz -wt, 2= wwej, ky = w/vy, k® = K* + K2,
where k. is a radial wave number to be determined by the boundary condition. Another
parameter that arises in the linear theory is

f = flw,k,ke) = (K* - K§)/ ke®0 = K0/(e® - K3) . e (14)
As our main interest here is in torsional and radial waves, we shall restrict attention to

waves of zero azimuthal wave number (m = 0). This restriction is easily removed, but at

the cost of a considerable increase in algebra.

One form of the solution to the (undamped) wave problem just described is

B =-BC {kfJ; cos § , Jy sin ¥ , —kcJg sin q;} s
ki = BoC{KkJy cos ¥ , k®fJ; siny, —keJo sin ¢ r )
wy = vzc{ k3f cos ¥ , k sin , 0}J, ,

where C is a non-dimensional constant, and the argument of the Bessel functions J, and

J, , omitted for brevity, is k¢r. The equality in (14) is the dispersion relation, which

can be written

li

I = I{w,k,ke) = (® - KR (K* -K7) - «?k°0° =0, ... (16)

and it has the two roots k; and kg given by

Klwke) = (kf ~%Gy) /(1 -0%) -5 kg, o=1,2, ee. (17)
1 (+ is o = 1, fast wave)
where Gy=* {ki(1-0%)% + 4kj0?; * , ’ .

(- is o = 2, slow wave)



We shall use the notation f5 to denote the value of f(m,kd,kc), and when the subscript
o is omitted from k,«,f and other functions of k to be given later, the quantities in
question can be the values either for the slow wave or for the fast wave. From the linear
terms in (7) and the last of (15)

w Vv

~

C Vi f ko «® Jg cos | , ... (18)

and

I

p =Cpg ko (B/K3)I, sin . e (19)

Resistivity has two effects on the solution given in (15). The first, and most
important, is to replace C by Ce_ez, where C 1s now the amplitude factor at z = 0,

and the absorption coefficient e is related to the resistivity parameter § = hqw/pvi) by

=m—) (1-202%Kk3/G) . .o (20)

The second effect is to replace the cos | in By and pj,. by cos § - (e/k)sin ¥ , and
the sin{ in vg by sin iy + (e/k)cos | ; to first order in ¢ this is simply a change

in phase.

We shall confine our attention to the case of a cylindrical plasma bounded by an
infinitely conducting wall at r = rg, for which the appropriate boundary condition is
Br = 0, i.e. from (15)

Jy(kerg) =0 . ee. (21)

The roots of (21) in ascending order will be denoted by k.i, Kca, «.. , and (15) can be
immediately generalized by summing over these radial wave numbers. In the sequel by k.
we shall mean one of these roots, usually the first one, kg, - This completes our

survey of the linear theory.

4, AN APPROXIMATE SOLUTION FOR THE NON-LINEAR EQUATION

A linear approximation to (12) can be found by introducing the linear solution (15)
into the right-hand side of (12), which is thus assumed to be small. After some algebra
we find that

£B, = F, = Bokc(f‘kCCe_EZ)Q{ ay (I, T0) + 2623 /ker) } cos 2§ , ... (22)

where
5 = 6% { 2 (e - K)/04K2) - 1
and we have taken into account the attenuating effect of resistivity on C. In arriving
at (22) it has been assumed that the resistivity is small enough to permit the ommission
1.
of terms of the order (C2e/k), which requires that e/k be O(C?) or smaller. With

this ordering and C « 1, it follows that



It will be noted that the time independent terms arising in T

1»C»Ce/k»C?s» C®e/k

and Q have disappeared,

and that the non-linear term F, has become a forcing term with a frequency twice that of

the basic wave.

To solve (22) we shall adopt the orthogonal set of functions Jo(kcsr), s =1, 2, ..,

generated by the boundary condition, and expand functions of

e.g.

where (after an integration by parts)

and k¢

and Kgg.

Tsz

~

clo

Q

is one of kg,, Kogs +-

It is practical to choose kg

(==}

Y3, 3p) = ;{: kesTs JolkesT) -

S=1

kr

c o
T Jo(x)3, (x) I, (xkeg/ke)dx f T Jolxk.g/ke)dx
o}

r in Fourier-Bessel series,

The non-dimensional numbers Tg

to be the first root, k.,

.o (23)

depend on both kC

= 3:38 i/ Yo o

because the higher radial modes are more rapidly dissipated by resistivity, however we

shall continue to

Kes

for

various functions

write k¢

k¢ -

80 as to leave the choice open.

of r that arise in the theory.

TABLE

1

VALUES OF Yq and kcs

Table 1 gives values of

= k__, while Table 2 lists the expansion coefficients for the

s 1 2 3 4 5 6
¥y 0.176, | 0.438, | 0.009, | -0,001; | 0.0004 | -0.0002
KosTo | 3.832 | 7.016 | 10.174 | 13.324 | 16.471 | 19.616

The coefficients given

where

- o B

tg

in Table 2 enable us to write (22) in the form:

il

, —2EZ -
Bof k. C* e cos 2V Z/ L Jolkpgh) o
S=1

20i®KegY g {6!@(:«3 -K3)/K] - k& - % kgs}.

ve. (24)

... (25)

To solve (24) first replace e €% cos 2y by exp {2i[(k + ie)z - wt]}, then a particular



integral of the resultlng equation is easily found to be

o

a aif{(k+ ie)z-wt
B, = Bof k, C" e { }7 ag Jolkegr) oo (26)
(O}
S=1
where . )
ag = £g(Ig - iE)/Pg , Pg = (I3 + E3)* , ... (26a)
Ig = 1(2w,2k,keg) = 4(K® - K3) (4K? -4k + K2.) - 16 k2(4k2+kgs)n” ’ ve. (27)
and

i

Eg = 25(4k® + kEg) (8K} - 8K® - Kk3g) - sek{skg- 8k* - kg + 407 (8K7 + kgs)} «  wam (28)

To the real part of (26) we must add the complementary function, i.e. the solution to

LB, =0 at a frequency of 2. This is

- 2
—£5qZ
B, = BQCa z e U5% kegfygAgg C0S(lgg — Egg) T Kaul) » coe (29)

s=1 g= 1
where Agg,Egg are constants, Ygg=kgsz - 20t , Kyg =k (2w, Keg), fog = 20, kyg y Keg)
and ggg = e(2w y Kog kcs)' Here we are simply doubling o and replacing Kk, by Kkgg
in (17), (14) and (20) . Thus equation (29) contains the fast and slow waves, propagating
in the positive z-direction, that would occur naturally in the plasma if the exciter had a

frequency of 2w.

Our complete solution, viz. the sum of the linear solution, i.e. B, in (15), the

real part of (26) and (29), can be written
B, = BC|T kee™®% sin § Jg(ker)

2

—-2EZ '65 ~-E oz
+C Z E‘kce P cos(2y - ) +z £ Kot O5"A 5g €08 g —E\O_S;Jk?o(kcsﬂ, . (30)

s=1 og=1

where

9g = tan”| (E/L,) . e (31)
To evaluate AO_S and E’o‘s we need boundary conditions, at =z = 0 say, this is discussed
below in section 5. Table 1 shows that it would be sufficiently accurate to terminate
the series in (30) at s = 2.

TABLE 2

FOURIER-BESSEL COEFFICIENTS

F(r) Coefficient F(r) Coefficient
R(I, J) KesYe A LRI, 3) -kesYs
A(I2/kogr) | 2kegYs(l - Kog/4kE) " %R(Ji/kcr) ~2k2 Y5 (1 - k2g/4k3)

73 2k Yo (1 - k2g/2kg) /Keg R (35 35 ) ~kesYs(1 - k25/2k2)




5. TRANSVERSE COMPONENTS

An analysis similar to that given in section 2 yields the non-linear differential

equation

Xlui,) =F,= BS' {i‘iﬁ,[('i' Qr‘)/wcl Tgl’ —EJC—- Vsﬁ. T [Tr +(T3 Qe)/wu]} ves (32)

And on using (15) to find an approximate value for the right-hand side of (32) one finds
Fo = 2 Bk2 C* € "% ¢ K, cos 2y

2,2 2 d 2 2 s ,
x 3(;(2/1{;) 12k% (k3 - k?) + (3k® - 2kﬁ)ﬁ;]ﬁ (Jgd,) + ko =4k +H;)ﬁ(J1Jé)f ;
which, with the help of Table 2 can be expressed
2 —2EZ
Fo = - Bk, C e cos 2 Y',\s Jolkesl) o eo. (33)
A .

with

Ag = 2fkgYg {(4k2 +kag)[3K? (K? -K3)/Kkp + ko =5 k&gl +.l(2kgs} ; ces (34)

And now if we proceed to solve (32) by the method used for (24) we will find the solution

piz = = BoC ke °% siny Jo(ker)
7\ 2
~Re4 B Egs?
+C Z [ . cos(2y - ‘Ps)“"z Kog® AggCos (¥ g - EUSZ|J (kegr )f —
=1 s
For the zeroth azimuthal mode'miBr = - B; and }138 = “jz . Hence from (30) and (35) we

deduce that

B,. = B,C {-kfe ™*%(cosy - Tsiny) 3y (ker)
2fkckeg  —26 z
+ CZ[k‘CZP 8 e %“sin(2y - ¢S)+Zr Kos€ fos Ao_ssin(zyo_s—E,GSﬂJi(kcsr) .+. (36)
Bg = - BC %e“ez siny J; (k.r)
| —z2ez
_— ) Lﬁce 2€ _E;_; cos(2y - pg) + ;:q €os? Asg cos(wds-gos)t]Ji(kcsr)I i L37)
Bt

on ignoring a small phase shift 2&/k in the By df wave, If the transverse components

of the current are required, they can be deduced from pj, = - Bé and pj6==B; -aBz/ar.

To evaluate the constants in these equations for the components of B we must employ
boundary conditions, For example suppose the exciter is at =z = 0, and produces waves
symmetrically disposed about this plane, then B, will be zero at z =0 and for all

time. By (30) this requires that &,5 = ¢g and

- F =



k.4 ﬁ;ﬂ
gbs
+ f _A__ =0,
kesPs W el i

Further if the exciter causes a radial current to flow that contains no double-frequency

terms, Bé wlll be zero at z =0 at all ¢t. Hence Crom (37)

2
2kk A X
chg
—_— k. . A =0 i
kes Pg EZJ oS5 08

og=1
This pair of equations gives
" Ke 2ikglyg — el kyg <a~ = 1,2) (38)
- ’ see
&8 kcs ps kasrds - kGBrGS a = 2,1

These values are appropriate for the usual method of exciting torsional waves by means of a
radial discharge between a circular electrode on the tube wall and a point electrode on the

(2)

axis If the plasma is compressed at z = O by a current loop, then B. =0 at

z = 0 for all t; then from (36) and the symmetry condition on B, we find that in place

1,2)
|

Well away from the exciter the differential damping rates for the df waves in B

of (38)

A

ko T&g 2k = kg (:r
?

o8 T T_k.P. Kug-Kog a

will suppress some waves compared with others, but it is not easy to draw general conclu-—

sions from the analytic forms of e and egg. At low values of Q0 €e,g5 <€, < 28,

provided s = 1, so that the slow, natural df wave will predominate at large z.

6. DENSITY FLUCTUATIONS

On eliminating V.yv from V. (6) and g%(T) we find

P = (Bo/WV?B, + X , eee (39)
with
1 '
X = —{a—’3—£V- (py) gy (AT, + Tz)} .

An expression for X can be calculated from (8), (15) and (19), with the result:

X = El B2C%e %% 1 ko (a; cOS2¥ - ay) .eo (40)
with
k " %
g = —kg{kﬂji+15kcﬁ.(J1Jo } + Ek—zﬁ(JoJi) ;
A
and
K2 2k? (k® - k2)
=< -_ A "
=g 1 - —Ab R,

kp

The secular term a, 4in (40) appears at first to be an embarrassment, but it should



be associated with the steady state rather than with the perturbed state. It will then
result in a modification of order C*® to the assumed steady state, v, =0,p =p, and
B = B,n, and when this new steady state is perturbed, terms of order C® will result from

the secular term, We can therefore safely drop it from (40),

Using Table 2 to express a, as a series and calculating V?B, from (30), we can

express the right-hand side of (39) as a series of Bessel functions. Then integrating

this we get

p = pC Kn | f ke ®[? sin § + 2ek cos ¥] Jo(ker)

1 | ez 2 2 s
+4C " |L® f ko (4k™ + kKlg { 5; cos(2y - ¢g) - qq cos 2y
S=1

E -€ _Z
+ EiJfogkcsnge os Agg c0s(ygg - EGS{J Joblear)t wae (41)

where
2 1.3

T . R

s Cs's| 2knN kcs ki(‘PkQ + kgs)

7. RESONANCE FREQUENCIES

The possibility that the amplitude of the df wave could be especially large for

certain wave numbers will now be considered, From (30) and (35) such resonances will

occur at minimum values of Pg,defined in (26a). As E; is 0(e?), and therefore must

be small if the wave is to be propagated any distance, minimum values of Pg will lie

near the zeros of Ig. Thus from (16) and (27) we should seek values of k that make

both I and I  zero. Combining these quadratics in k® we find

kg = ki U/(U + S) = kR(U-N)/U y sr e (42)
Y 2 2 a2 2 2 3.2
U = 4dk, - kog + 07 (kig - 16kg) + 12kp0° ,
s = 40° { 12ka + kog - ka + 0 (4kg - kgs)} ,
and
- 2 3 2 2 2,2
N = QﬂkAﬂ {SkA(kCS-4kc)+-3(4kA - kekog) } .

The equation U® = (U + S)(U - N) is the condition that I =0 and Ig =0 have one root

in common. It is a quintic in ®?, and for the special case ko = kg, 1t can be written

I{tsx'* -40 2@ + (13 = 4274)2% + 5(1 —z):;-z}:o, ee. (43)

where 1 = (w/'k.ch)2 and Z = (wci/kch)s . To make further progress we need to assign

a value to Z and then to look for the real positive roots of (43). The negative sign



for the term of zero degree (-Z) ensures that (43) has at least one positive real root.

One conclusion of a general nature can be deduced from the first of (42). It is
that as S is positive for s =1 and 2 (see Table 1, which shows that higher values of
s can be ignored), then k < kp. By (17) this inequality means that these resonances
can occur only if both the basic wave and the df wave are fast waves (see Fig.1), except
of course near the root T =0, i.e. Q =0 of (43). In this case (42) reduces to K =kz;

this slow wave resonance is investigated further in the next section.

Let R denote the ratio of the amplitude of the df wave to the amplitude of the
basic wave, then at a resonance R will be large. However the theory given in sections
4 and 5 depends on R being small compared with unity, and so it will fail at a resonance

unless the resistivity is sufficient to make R < 1,

8. THE RESONANCE NEAR Q) = O

(a) The Slow Wave

To study this resonance in more detail we shall assume that 0® and e are compar-
able small numbers, and that higher order terms like e can be neglected. From (14)
we find that k* = ki and f = ko/k2, then it follows from (26a) and (27) that to this

= w.0? ~
order Ig = w,0°,and Eg = w,e , where

= 2 2 2 _ 2 2 _ 2
wy = 4k} kcs(kA Skc)/kc 16k% 1. eee (44)
and . =
= 2 2 _ _ o2 2
Wy = 4kAkCS(2kC kCS 2kA)/(kA + kc) ,
so that - 5 il
Pg = (wiQ" + wxe™)? . ee. (45)
Also from (25), (34) and (31)
2 2 2 2
Lg k0 i (kC + kA)(l()kC - kCS)
s 0 g <—i-(—>< T::—S-> Y eos (46)
c c 2 2 2 2
A (2kA ¥ kcs)(4kC = Ky
and
o W,E
p. ~ tan ! ( 2 ) vl (47)
S \\rlﬂ2

First notice that if & = 0, i.e. if resistivity is neglected, then both (e5/Pg) and
(rg/Pg) behave like 1/0 near Q = 0, so that the amplitudes of the df waves in (36)
and (37) tend to infinity as ( tends to zero. However equation (44) shows that this
surprising singular behaviour is eliminated by the presence of a small amount of resis-
tivity, for then these amplitudes tend to zero with . The theory given in section 5

is slightly inconsistent in that some small phase shift of order e/k has been neglected

- 10 -



in the df wave, whereas ¢  has been retained. We have done this because (47) shows

¢g to be quite large if lw102| < [wbel and equal to 90° in the limit 0 =0,

In experimental work with torsional waves one frequently finds that ke » ky, 1in

which case
2o 3 (0 %)
—x-C 8 [ =2 )(4-=2 —
Pg 12 \ k)1 / kz ! )
assuming |wy0?| » |wae
From (44) resonance occurs at lwilﬂ2 = lWaIE , when Pg =,2 w,0?, and an equat ion

like (48) holds if ke » kA' except that Yg 1is replaced by Ys/&/f. The phase lag ¢gq

is then 45°,

It is interesting to take the limit 0 -+ O in (41). Ir ke » kA , the result for

the forced wave is

2 —QEZ

P =r, QEZ——;— coder:;J T —-— (k2 + 2ka ) Jo (k r),

S5=1

80 that double-frequency density fluctuations occur even when such non-linear effects are

-absent in the magnetic field components,

(b) The Fast Wave

1
For the fast wave (14) gives k = (kj - kg)é and f = - kz/(kkin), near 1 = 0,
Then (25) and (34) yield
(K¥ + 4k2_)K3
kckcs Yg ¢ ES
k 0k} ’
2 1.2 ] 4 2
(8K2 + K2)K3 - BKE + k3

while from (31) and (26a), g % 0, and Pg = Ig = 4ké{4ké - kgs). Thus for this wave the

resonance at 2} = 0 1is not suppressed by resistivity.

9. EXAMPLES

I. To illustrate the elfects discussed in sections 7 and 8 we have chosen the values -
typical of some of the Culham Laboratory experiments - vy = 5 x lO6 cms/sec,

Woj = 106 rads/sec, k, = k¢,= 0.4 cm-], 6 = 0.05 kp . Fig.1 shows the resulting disper-
sion curves for the fast and slow waves, The line OAB of constant phase velocity inter-

sects the fast wave curve at points A and B such that w and k at B are twice the

values at A. Thus I and I, are both zero at these points and the resonance frequency

= 11 =



is therefore about 3.2 wcj. This value is confirmed by (43) in which Z has the value
0,25, This fast wave resonance is also shown in Fig.2, the vertical ordinate of which is
A = (2¢,re,/P,). From (36) we see that BC® times A will give the amplitude of the

driven df wave in the first radial mode in the component Bp. (Recall that C is the
ratio of the basic BG wave amplitude to Bo). Fig.3 shows values of A when wg; is

. 7
increased to 10 rads/sec., the other quantities being kept constant.

The resonance at cut-off, i.e. at k, =k, reveuled in both these figures, is due to
the fact that as kp » kg,k» 0, > = and £, > =, Resistivity does not suppress this
resonance, so experiments near cut-off may have some chance of verifying this part of the

above theory.

II. In Fig.4, for the same values of vp, wej and k. given above, but with 5 =0
and 0.25 k, , we have plotted the ratio (A,/Py) for the slow wave; (37) shows that ByC?
times this number gives the amplitude of the driven df wave in the first radial mode of
BB § The resonance at 1 = 0, and its damping by resistivity is clearly shown. The
equation following (48) relating (1 and e gives a resonance frequency in agreement with

that shown in the figure, The figure also shows a resonance at 0 = 1, which is suppressed

by resistivity. This resonance arises because at 1 - 1, k> o for the slow wave, and 8o
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