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Abstract

A simple model of a toroidal, high-f quasi-uniform current model of
a tokamak with elliptic cross-section, is investigated for stability against
uniform vertical displacements. On the basis of asymptotic theory it is
shown that for high-f / toroidal effects to be important [ must be of order
the equilibrium limit. For a given f and ellipticity the mode can always
be stabilised by a conducting wall placed sufficiently close to the plasma.
-Although the plasma is displaced rigidly the toroidicity leads to both

m=1 and m=2 harmonics in the perturbed vacuum field.
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1. INTRODUCTION

In this paper we consider the stability of a toroidal elliptic cross-
section model of a tokamak maintained in equilibrium by a vacuum field,
against uniform vertical displacements (n=0, m=1). The interest in this
mode has arisen through the necessity to design field configurations or
feedback systems [1l] to produce tokamak equilibria. Several authors have
investigated analytically the "n=0", m=1 mode in a straight tokamak.
The toroidal problem, however, has been studied numerically. The object

of the present work is to investigate analytically the stability of a

toroidal, high-f, quasi-uniform current model of tokamak, with elliptic

cross-section, against this mode.

We begin by briefly reviewing the earlier work. Rutherford [2] has
examined the straight uniform current elliptic cross-section plasma and
finds it to be unstable to rigid shifts in the direction of the larger semi-
axis, b say. More precisely, the model is unstable to the m=1, k=0
mode, for b>a. In their recent paper, Laval et al. [3] have investigated
the same model in the presence of a conducting wall. They find this mode
to be stabilised by a wall placed at or within a critical distance from the
plasma. This distance is a function of the ellipticity. The above results
are confirmed numerically by Lackner and MacMahon [4], who also find that
for a sufficiently tight torus stability pertains for b/a < 1.25, even in
the absence of a wall. This effect, which is obviously toroidal, has also
been found by Okabayashi and Sheffield [5]. Recently, Wesson and Sykes [ 6]
have studied numerically the equations of motion for n=0 perturbations of
an approximately elliptical cross-section plasma with a quasi-uniform
current and find the motion to be vertical but ﬁon-uniform. It is of
interest, however, to consider a uniform displacement, since for this mode,
the investigation of a toroidal high-f system can be carried through analyt-

ically using asymptotic expansions.

2. MODEL AND EQUILIBRIUM

We consider an axisymmetric plasma of elliptic cross-section containing
both a poloidal and toroidal magnetic field. Introducing cylindrical coord-
inates, R, ¢, Z based on the axis of symmetry, the centre of the ellipse is
taken to be at the point R =R, Z = 0 (see Fig. 1). If we further intro-

duce the cartesian coordinates x,y such that

x =R - R0 and y =2,

then the equation for the plasma boundary can be expressed as

.
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where a, b are the semi-axes of the ellipse. External to the plasma it is

assumed that there exists a vacuum magnetic field capable of maintaining the

required pressure balance at the surface.

Within the plasma the magnetic field B can be written in the form

B= e+ ——, (2)

where e is the unit vector in the toroidal diiection, ¥ the poloidal flux,
and F(V) the current stream function. It is well known that V satisfies the

equation
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In the present paper we consider its solution for the choices

~

and /j (4)
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the latter enmsuring that the pressure vanishes at the plasma boundary ¥ = ¢B.
The dimensionless quantities 7 and o are free parameters. Using the forms

defined in Eq. (4), Eq. (3) becomes
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Eq. (5) is now solved by an expansion in the inverse aspect ratio, € = Q/Ro.
Choosing nand @ such that @2 ~ y~ 1 and that n - a® ~ €, and expanding
V¥ in the form

¥ o= ﬂfo(x,y) + ‘lll(x,y) e (6)
then Eq. (5) can be solved order-by-order. If we set WO = constant = WB,

then the leading-order equation is trivially satisfied, and to first-order,
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It is straightforward to show that the solution of this equation for which
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¥, = 0 at the boundary, is
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a form similar to that obtained by Laval et al. [7] for a different model,

Defining the total B to be given by
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where the pressure is integrated over the minor cross-section, A is the cross-

sectional area, and Bmo is the zero-order toroidal field, we obtain to leading-
order, '
1 - a?
B=3 ﬂ—az ) (10)
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Similarly, the total toroidal current I is given by
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I = B o <ay, (11)
a

The safety factor for an equivalent cylinder of radius b is defined to be

2n€B b
q_ = —_po , (12)
o] L
and can be expressed in the form
3
= 28
q_o n-az . (13)

Now it is well-known that a second magnetic axis can enter the plasma when f3
approaches the equilibrium limit BC[B]. In the model discussed here this

occurs when the ratio mnAn-a?) approaches the value

| 3+ 8,
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It follows from Eqs. (10), (13) and (14), that the limiting-fB can be written

as a?
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which, allowing for differences in notation, is of the same form as that
obtained by Laval et al. [9] . The equation for the flux-surfaces can now be

written as

>. (16)
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Fig. 2 shows a typical plot of the flux-surfaces for the case B/Bc =% and
b/a = 2.0, the magnetic axis being displaced outwards by an amount 0.12a. The
toroidal current density for the present model is quasi-uniform and shows the

usual phenomenon of current reversal. This occurs when 3 approaches the value

a?
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Having described the essential properties of the plasma in our equilib-
rium, we now consider the behaviour at the interface. This is most conven-

iently discussed in terms of elliptic coordinates, Assuming b > a, we take

R—RO = ¢ sinhu cosv and Z = ¢ coshu sinv, (18)

where ¢ is a constant. Denoting the plasma surface by l1=uo,then ¢ and

satisf
ug y

c cosh u = b and c sinh u = a. (19)

For the case b < a we must take the definitions

c coshu cosv and Z = ¢ sinhu sinv, (20)

R-R
o
where

¢ cosh u = a and ¢ sinh u = b. (21

Apart from this minor change the analysis is the same as that for the case
b > a, Thus the results obtained cover both cases. Deriving BR and BZ-from
Eq. (16) it is simple to show that the poloidal magnetic field Bp at the

surface is given by

: 5
B (v) =——IT 1 +£cosv) coszv+(%)2sin2v) ; (22)
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The present model having no skin-current, the magnetic field at ¥ = ¢B



must be continuous, and since p=0 at the interface, this implies that the
pressure-balance condition is automatically satisfied. 1In principle we could
obtain the vacuum field required to maintain the plasma in equilibrium by
solving for the vacuum flux-function and matching solutions at the interface
using the continuity of the poloidal field (see for example [10]). For the
present problem, however, this is unnecessary as the subsequent stability
calculation depends only on the poloidal-vacuum field at the surface and not

on a complete knowledge of the vacuum field.

For completeness we show the relationship between 9, and the true

safety-factor at the surface, q(uo). The latter quantity is defined to be

q(u ) = %9 ; (23)
© Vigv = 2n
which to leading-order becomes
27 a? '
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Using the above form for Bp(v) this leads to
q b a? 1
= 2= s (25)
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3. THE ENERGY PRINCIPLE FOR VERTICAL DISPLACEMENTS

We now apply the energy principle [11] to our equilibrium with the
express purpose of studying uniform vertical displacements. In general, the
potential energy 6W resulting from a small displacement £ comprises three
terms:

= + W 4+ &W . (26)
oW 5Wp " s

Since we shall be concerned with incompressible perturbation (V.{ = 0) the

plasma energy GWP takes the form
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where 6B= V X (§ X B). The vacuum energy 6W is given by

1 ! ~r2
W == dT B
oW sz , (28)
where E’ is the perturbed vacuum field. As the present model has no skin

current and thus the magnetic field is continuous, the surface energy 6W is zero.
: s

Taking the trial-function gz = constant, which in the conventional
notation of MHD stability theory is an n=0, m=1 mode, it is straight-

forward to show [12] that

1 p oB ¢ 9B OB, y
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Deriving aéz, 8; and a7 from Eq. (16), and evaluating this integral over

the elliptic cross-section, we find SWP to second-order to be given by

EZIZR ab 7 2 5
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We now consider the minimisation of the vacuum term. The vacuum region
is assumed to be bounded by a perfectly conducting wall placed on the u = u,
coordinate surface. In most experiments the discharge lifetime is long com-
pared to the penetration time through the conducting shell. Thus the conducting
shell should not influence the equilibrium. On the other hand it can be
considered as perfectly conducting on the instability time scale and can
therefore affect the stability. If BWV is minimised subject to the constraint
VQE'==O then the minimising perturbations satisfy Vx 8 =0, Consequently

§'= VV with V satisfying
V¥ =0 . (31)
The boundary condition for V at the interface is

(0.VV) =B.Ve- tn.(a. VB, (32)
0

where n is the unit normal to the surface and is given by
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and £ is the component of displacement normal to the surface. For the sur-
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face, the operator V can be expressed as
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where 7 is the unit vector in the poloidal direction. From V.B= 0 it is

straightforward to show that

B 9B %
R, a_. z _ 3 &\ . 4 0B
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Using Eqns. (33), (34) and (35), it follows that for an axisymmetric pertur-

bation, the condition (32) can be put into the form

av \ _ &
(5-;2 = 3y (g Bp(v)) . (36)
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We now have to relate Ez and £ . Thus

=
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Using Eqs. (22), (36) and (37), we obtain
£ la :
(g—z) = -'ﬁ(_az;T];E) [COS v+ ‘BL cos 2v ] . (38)
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To the order required,Laplace's equation takes the form
e | 8%
ez T vz - 0 (39)
and the solution relevant to the boundary condition is
velce®+ce™ eosv +(c,e?®+ce?® 2 (40)
={ ¢ 9 cos v 3 4 cos 2v .

Using Eq. (38) together with %% = 0 at the conducting wall the coefficients

P w



C. can be determined. By Gauss' theorem GWV can be expressed as
]

SW = - 1R f v
0

gls

" dv . (41)
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Substituting the solution for V it is straightforward to show that to

0(e?), oW, is given by
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Combining the results for 6Wp€€ and ﬁwvée leads to
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4. DISCUSSION OF STABILITY

From Eq. (43) the necessary and sufficient condition for stability against

uniform vertical displacements 1is

2
1+t 94__1_(1_3_) [.1__+_§2 ] P_} >0, (44)
a 2 a

1-t B.
2(u, -u,)

where t = e . Stability depends on bfa, B, and t - the effective
wall distance. For an ellipse with b > a, b, = tanh_la/b, and placing a
conducting wall on the coordinate surface u=u,; corresponds to an elliptic
cross-section wall with semi-axes B, ™ A sinh u,/sinh u, and bw==b coshu,/coshu,.
Thus although we could discuss stability in terms of the actual wall posicion,
it is more convenient to use t. We note that t=0 corresponds to a wall at
infinity, whilst t=1 corresponds to a wall on the plasma. In criterion (44)
the terms involving B are a direct consequence of the toroidicity of the
equilibrium. Thus for [ « Bc the toroidal effects vanish and the stability

criterion for a straight ellipse is recovered [3], that is

LI |
a

t =

. (45)
By
a

We now briefly review criterion (45). In the absence of conducting

walls the criterion becomes 1-b/a 20 . Clearly a flat ellipse (b/a < 1)



is stable to an upward shift whereas a vertical ellipse (b/a > 1) is always
unstable to a vertical displacement. We note that a circular plasma (b/a = 1)
is marginally stable to the order of the present calculation, and in the
absence of conducting walls it would be necessary to work to 0(e%) to ascer-
tain the correct result. The vertical ellipse, however, can always be stabil-

ised by a conducting wall placed sufficiently close to the plasma. A circular

plasma is stable with a wall placed at any finite distance.

We now return to the full stability condition (44). For toroidal effects
to be significant [ must be of order the equilibrium limit, and this is far
from the case in most experiments. Since however an ultimate reactor would
operate at as high a 3 as possible it is of interest to ascertain the

theoretical position regarding a vertical shift at 3 ~ ﬁc.

Although the plasma is displaced vertically (m=1), high-f/ toroidal
effects lead to an additional m=2 harmonic in the perturbed vacuum field.

1+t?
This is seen from the boundary condition (38), and from the Tjjgz wall

stabilisation term in Eq. (44) - the wall stabilisation terms being equivalent to

14 (et 70
p w

the - vacuum terms in the cylindrical pinch. As before, a flat

1- (¢ /r )"

- P W
ellipse is stable. 1In the absence of conducting walls the stability
criterion is identical with that for the straight case, that is, 1-b/a =0.
Thus high-f3/ toroidal effects can only influence stability when a conduct-

ing wall is present. It is clear that with conducting walls present vertical

shifts can always be stabilised for high-f. For if

b-a
2 6)
t? 25 5 (4

condition (44) is certainly satisfied. Criterion (46) is however, over strin-

gent, and it can be shown that the precise stability criteriomn is

A (4(E) (8-0)-

(47)

Fig. 3 shows the marginal stability limes for this criterion for the cases
b = a, 2a and 4a. Stability requires that t be chosen to lie above the

appropriate curve. For b= a our model is stable for all t # 0.

-9 -



For "flat" current profiles in the absence of conducting walls recent
numerical investigations have indicated stability against uniform vertical
shifts for values of b/a larger than unity. Thus, Lackner and MacMahon [4]
find stability for b/a < 1.25, and Okabayashi and Sheffield [5] find stability
for b/a < 1.6. Since both sets of workers consider plasmas with inverse
aspect ratio € ~% this effect is presumably due to the strong toroidicity.
Since the present work relies on an asymptotic expansion, it is mnot

surprising that we do not recover their results.

5. PHYSICAL INTERPRETATION OF 6WF

We now discuss the physics of 6WF. Since we have shown toroidal effects

to be unimportant for 3 « Bc’ and this is the condition which pertains in
present Tokamaks, it is reasonable to consider the simpler case of a straight
system. In fact for this case we are able to consider plasmas of arbitrary
cross-section and arbitrary current profile. Thus the discussion is appli-
cable to any device for which toroidal effects can be neglected. As before it
is assumed that the equilibrium is maintained by a prescibed vacuum field. The
analysis is carried through in rectangular coordinates x, y, z. The x,y axes
are set in the plane of the minor cross-section, and 9/0z = 0. The y-axis is
defined to be the direction of the uniform displacement. Defining the stream-

function VY such that

1=.&=-ﬂ and3=a—‘|’ ‘ (48)
dy y

it is well-known that the MHD equilibrium equation is

T2y jz(‘lf) 5

where

5,0 = -p (W - BWB W. (49

For gy = constant, 6WF can be written as

2 aB an_ ‘
&W., zg] {( ) axay . (50)

Using V.B = 0 this integral can be put in the symmetric form

awF=Zg/dv{<8x ay>+ BxEEJ ) (51)

which, using j = VX B, can be expressed as

...]_0..
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where B %2 = Bx?-+By2. By Eq. (48) and using Gauss' theorem this becomes

_ 3 2 i fﬁl , i
N

where n is the unit normal to the boundary. Since

. _ 1
: n.Vy= - E-V<P + 5 B;) (54)

we have
PP 1., 1
W_ =+ £2%2/dS n, +=B2+=8% |,
oW, 4gyj EV(p 7 B ZBZ> (55)
The potential energy for the fluid can now be written in terms of the
radius of curvature [ of a magnetic line of force in the surface. Defining

p to be the vector from a point on the line to its centre of curvature, then
Y [ B?
oWy =3 & de 57 B - (56)

The sign of the integrand is determined by the direction of p. Thus if at
a given point on the surface p is inward (n.p < 0), that is the field line
is concave towards the plasma, the integrand is destabilising at this point.
Whereas if £ is outward (E'E > 0), that is the field line is concave outward,
the integrand is stabilising. For an ellipse ¢ is everywhere towards the

plasma and 6&W_ is clearly negative. In general, however, the overall sign

F
of SW_ must be determined from the surface integral. We observe the similar-

ity bitween this discussion and one given in the original energy principle
paper [11]. The earlier work, however, is concerned with the stability of
a plasma in which the magnetic field is zero. That is, plasma equilibrium
is maintained by a skin-current. As a consequence of this model the destabil-

ising part of the potential energy is due to GWS.

For a model with arbitrary cross-section and arbitrary current distri-

bution for which jz vanishes at the boundary,

ey 7 ==
W, 4€y de B = (57)
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wnere p is the radius of curvature vector for the poloidal field. In this

p
case nh§.= + 1. For an ellipse p is everywhere inward and n.— = - 1.

We note that the magnitude of 6W_ does not depend on the direction of

F
the displacement. It follows, therefore, that the directional aspect of
stability to a rigid shift must arise from the stabilising 6WV term. This
is borne out by the results for the straight ellipse with quasi-uniform

current.

6. CONCLUSIONS

We have derived a necessary and sufficient condition for stability to
uniform vertical displacements of a high-f3, toroidal, quasi-uniform current
model of a tokamak with elliptic cross-section. It reduces to known results

for the straight case. High-f2/ toroidal effects are only significant for

B's comparable with the equilibrium limit. For B'vﬁc and in the absence of
conducting walls, however, the criterion is identical with that for the .
straight system. Thus within the limitations of asymptotic theory high-f3/
toroidal effects occur only in the presence of a conducting wall. For a

given 3 and b/a the rigid shift can always be stabilised by a wall positioned
at or within a critical distance, the value of which depends on 3 and the
ellipticity. We note that the rigid shift of the plasma (m=1) for f§ ~ Bc

leads to both m=1 and m=2 harmonics in the perturbed vacuum field.

Finally, we have considered the uniform displacement of a straight
system with arbitrary cross-section and arbitrary current profile. It is
demonstrated that the potential energy for the fluid can be expressed as an
integral taken over the surface of the interface, the integrand involving
the local curvature of the magnetic field lines in the surface. For an
ellipse the integrand is everywhere negative and so the fluid contribution

is destabilising, as exemplified by the quasi-uniform current model.
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Fig.1 Coordinate systems. OZ is the axis of rotational symmetry.
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Note the outward displacement of the magnetic axis M from the geometric centre C of the ellipse.

Fig.2 Flux surfaces for /8, = 0.25 and b/a=2.0. Qis adimensionless flux defined by Q=-
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Fig.3 Marginal stability lines for an elliptic cross-section plasma with b =a, b = 2a and b = 4a. For stability, the
effective wall distance t must be taken above the appropriate curve.
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