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ABSTRACT

The propagation of a plane electromagnetic wave through a Lorentz
plasma in a sheared magnetic field is considered. The characteristic
waves in a uniformly sheared, but otherwise homogeneous, medium are
found, and their properties presented graphically. Some effects intro-
duced by the presence of shear are investigated by means of elementary
applications of the uniform-shear theory. By suggested extensions of
the analysis, refinements may be made in the interpretations of micro-
wave diagnostic experiments with controlled-fusion containment devices

having complicated sheared fields.
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1. INTRODUCTION

A common refinement to the Appleton-Hartree theory of electromagnetic wave
propagation in a magnetized (anisotropic) plasma is consideration of spatial
inhomogeneity of the plasma electron density (BACHYNSKI, 1960). 1In this paper,
we investigate another type of inhomogeneity, namely, spatial variation of the
orientation of the magnetic field. The problem is suggested by the importance of
sheared magnetic fields in the plasma containment devices of controlled fusion
research, such as the diffuse pinch, the multipolar Stellarator, and the Ioffe

stabilized mirror configuration.

Initially assuming a simple method for the sheared field, we derive a
dielectric tensor and the resulting wave equations. Then with further simpli-
fying assumptions, we find the characteristic waves in a "uniform" sheared medium.
The general problem, for an arbitrarily complicated model of magnetic field con-
figuration and electron density profile, may be set up by a straightforward

extension of the analysis given,

2, DIELECTRIC CONSTANT TENSOR
Consider the special case of propagation in the z direction with the
magnetic field B 1lying in the x-y plane. The magnitude B0 and the orienta-
tion of B within the x-y plane, and the electron density n, may be arbitrary

functions of z., If ¢ is the angle between B and the x axis, then

B, = B cos ¢(z)
X 0 - (1)
By = B0 sin ¢(z),

%
The force equation for plasma electrons, neglecting collisions, is

* The effect of short-range collisidns may readily be included by inserting the
Langevin damping term - vmy on the right-hand side of equation (2), where v
is the effective collision frequency for momentum transfer. The result is
simply to modify the dielectric coefficient elements (10)-(12) in a well-known
manner (HEALD and WHARTON, 1964).



m— = -e (E+vxB). (2)

Assuming harmonic time dependence exp(+jwt) and neglecting the a.c. component of
B, edq.(2) represents a linear relation between Y and E with a complex tensor
mobility. Alternatively the electron motion may be regarded as a current density
J = -ney, (3)

in which case (2) becomes Ohm's law,
| g . 1=E (4)

For our assumed geometry the complex reciprocal-conductivity (resistivi ty) tensor

is explicitly

w 0 jr.ub sin ¢
Y el 0 ® ~Juy, cos ¢ |4 (5)
~ w_E
po ~Juy, sin ¢ Jwb cos ¢ w

where we have made the usual identification of the plasma frequency
n e? V% '
o (5F)

[ E%n' (7)

and cyclotron frequency

]

“p

The tensor dielectric constant is related to the conductivity by

k==
wsO

Inverting (5), we then obtain explicity

k cos® ¢+« 8in® ¢ (k -k ) sin ¢ cos ¢ Jx_sin ¢
0 n oL x
= - sin ¢ cos sin? ¢ + Kk cos - cos (9
£ (e =k ) ¢ cos ¢ K p+ kcod g ~Jk co8 ¢, )
- sin K CO08 . K
|_ JK" \ J x " 4 -
where
Kk = 1 - w/w? (10)
1 p
= 1 - 0¥/ (w?-w? (11)
K p/( ‘b)
- a_, a ‘ .
K = wpwb/w(w wl). . (12)

-2 -



The subscripts used in (10)-(12) refer to the orientation of the wave electric

field with respect to the static magnetic field, in the well-known dielectric

tensor for a homogeneous, cold magnetoplasma (HEALD and WHARTON, 1964),

3. WAVE EQUATION IN SHEARED MEDIUM
The Maxwell curl equations for exp(+jwt) time dependence and a medium
described by a complex tensor dielectric constant x are, in MKS units,

V x

i

= =Jup, H

Vx H= jue

K . El
oR =~

Further assuming that the only spatial variation is in the z direction and

(13)

(14)

denoting the operation d/dz by a prime, we obtain from (13)-(14) with the aid of

(9) the four coupled equations

E

-jwpolE

[VER

-

E

]

Jou, B

, K3
Hy = —Juso(p E +r Ey)
!

H ,]f-OEJO(I‘ Ex+q Ey),

where

2 s o2
= K cos + K sin
p ord $ ex ¢

;o2 2
= K sin + K cos
q ord ¢ ex ?

r= (« -xex) sing cos ¢,

ord

and where

and

2
2 2 2_2 - 2 2
Ky N (o %J ke

K
€Xx K

1 w? (W= w?- w?)
p b
are the squares of the refractive indices for, respectively, the ordinary

(E

E s I B) and extraordinary (Erf 1+ B) waves propagating across a shear-free

magnetic field (HEALD and WIARTON, 1964). Equation (14) also yields the

(15)
(16)
(17)
(18)

(19)

(20)

(21)

(22)

(23)



condition for the longitudinal E component

E =j-— (E sing - Ey cos @), (24)
which incidentally ensures the vanishing of the divergence V. D =V v (g E).

Differentiating (15)-(16) and using (17)-(18), we may obtain two coupled

second-order equations in E components alone,

2
1 w
= - — E .
E, " (p y ¥ rEy) (25)
' =- w? (rE + gE ) 2
y c?2 x Ty (26)

By two further differentiations, one can obtain a single fourth-order differential
equation in Ex or Ey alone., Similar manipulations provide the corresponding,
but more cumbersome, equations for H components, This familiar line of attack
is not very useful here because the field shear couples the cartesian components
awkwardly. For example, the coefficients of the fourth-order equations in a
single field component contain terms of the form tan ¢ and cot ¢, which blow up

when ¢ = 0, /2, etc.

Our basic assumptions, of one-dimensional spatial variations and a purely
transverse magnetic field, nevertheless permit realistic treatment of a large
class of possible microwave-diagnostic ray paths in complicated experimental
devices for plasma containment. By postulating the 2z dependence of the field
orientation ¢ and of the dielectric coefficients K(H,BO), one may obtain
solutions to (15)-(18) by initial-value numerical computation. In practice,
however, it may be difficult to guess a priori the proper initial conditions
corresponding to a desired situation (e.g., a pure forward-travelling wave). As
discussed further below, the wave impedance (ratio of E to H) is altered in
the sheared medium, and reflections from the plasma boundary include a wave

component with polarization orthogonal to that of the incident wave.

If one obtains solutions to the first-order simultaneous differential

equations (15)-(18) by numerical integration, assuming certain initial values for



the four field components, it is most convenient to present the results in terms
of the parameters of elliptical polarization, rather than the cartesian field
components directly. This conversion from cartesian components to the alternative
variables (inclination, magnitude, and phaseshift of major axis, and ellipticity)

is given in the Appendix. An example of this description is given in Section 6.

4, CONVERSION TO SHEARED COORDINATES
Because of the assumed structure of the magnetic field, it is useful to
take a new sheared coordinate system in which the transverse axes, replacing x
and y, are respectively parallel (n) and orthogonal (L) to the local magnetic
field direction. Thus for instance the E-field components in the two systems

are related by

E = E cos ¢ - E sin g (27)
= E i 28
, Qy , Sin ¢ + E cos ¢ (28)

The coupled first-order Maxwell equations (15)-(18) then become:

i P
= E - H 29
En P, T I, B (29)
[} 3
EL= —wE“ + Jop, H" (30)
u ' (31)
L="¢ml-3moxmﬁEu
'} &
lﬂ|= ¢Hl + jueg K E¢ (32)

5. CHARACTERISTIC WAVES IN A UNIFORM SHEARED MEDIUM
We now consider the special case of a unifermly sheared but otherwise homo-
geneous medium; that is, we take the shear d¢/dz and the dielectric coefficients
ord and Kex to be constants, lndepehdent of position. Incidentally, a uniform
shear of this sort is generated by a volume current density

VxB=-B do/dz, - (33)

which is everywhere aligned with the magnetic field and hence force-free. It is



useful to normalize all variables to those for an isotropic medium of dielectric

constant « ; we define’z
ord 2 2
“ord “*ex “ “b
relative anisotropy a = —, = (34)
ord (0-w?) (0*-w’-w?)
p b
d
shear rate s =<f5(: ) b (35)
—_—— 4 dz
K w
ord

1
ste H 4
H = (;——9~g—-> H
I ord O H

% M 2
H (E_"Q'E—'> H
- ord o© +

The relative anisotropy a is shown as a function of electron density and magnetic

(36)

field magnitude in Fig.1. The shear rate s is the fraction of a full 2n rota-
tion of the magnetic field in the distance of a wavelength in an isotropic medium

of dielectric constant « The normalized *H components would be equal in

ord”
magnitude to the corresponding E components in a medium of dielectric constant

Finally we assume that all four field components propagate with the spatial

“ord"
phase factor %
Kord @
E, Hx exp (-j _QE___ z) (37)

1
where *u is the refractive index relative to a medium of refractive index Kzrd.

With these notational assumptions and definitions, the differential equations

(29)-(32) simplify to:

i *u E + s E - *H =0 38

d T ] 1 J L (=8}

-s E + j*¥u E + *H“ =0 (39)
[ &

-1 + j*u *H = * =0 40

i E" J*u FH s H (40)

j(l-a) E +s *H  +j%u *H =0 (41)

# In the range 1<w§/w2<14-wb/m the shear-free ordinary wave is cut off (Kord<0)
[
while the extraordinary wave is not. This situation is easily treated by

interchanging the meanings of the subscripts u and 1, ord and ex.



The set of homogeneous equations (38)-(41) is self-consistent only if the deter-
minant of the coefficients vanishes. This constraint gives the refractive indices
of the two characteristics waves in the uniformly sheared medium,

*u? = 1 + 8% - %a £ [48%(1-%a) + ZaE]%. (42)
This relation is shown numerically in Fig. 2. Wave cutoff is displaced from

a=1¢(i.e., x._=0)toa=1-sand s =1,
ex

The relative magnitudes of the field components for the characteristic waves

may be found from the co-factors of the determinant of coefficients of (38)-(41).

The components are proportional to

*E‘.” « 25 ¥y (43)
*E¢ o j(1-s2-%y2) (44)
*H o s(1-s2+*u?) (45)
H oo -j*u(1+s®-*u?), (46)

where the refractive index *u is one or the other solution of (42). Thus the two

characteristic waves are elliptically polarized, with electric-field ellipticities,

E /E
Lo

magnetic-field ellipticities are somewhat different, although of course they also

or -E /E as appropriate, shown in Figs. 3 and 4. The corresponding
([

go to zero and unity in the respective limits of no shear and no anisotropy.

The natural identification of the two characteristic waves is in terms of
the sense (handedness) of elliptical polarization, which must be specified with
care since a wave that is right-handed in time is left-handed in space, the
handedness in both cases being defined with respect to the direction of wave
travel. For s < 1, the space dependence of tihe wave with *u < 1 (Fig. 2) has the
same sense as the field shear, and the wave with *u > 1 has the opposite sense.
For very strong shear rates such that s > 1, the "*p < 1" wave becomes a backward
wave, with Poynting vector in the opposite sense to the phase velocity, and the
medium exhibits features normally associated with periodic structures., In the

microwave plasma-diagnostic context the shear rates of interest are usually small,



and in the remainder of our discussion we shall generally assume that s® is

small compared with unity.

In practice, it is often preferable to label the characteristic waves as
"ordinary" or "extraordinary'" according to their limiting form as the shear rate
s goes to zero, with resulting discontinuities at a = O. In this latter special
case of zero anisotropy, the characteristic waves are circularly polarized with
refractive indices *p = 1 £ s; that is, the mathematical formalism here implies
that a linearly polarized wave experiences a "Faraday rotation" in the sheared
coordinate system just so as to "unwind" the shear, and the wave remains properly

unrotated in fixed coordinates.

It is also of interest to record the wave admittances (reciprocal impedances),
i.e,, the ratios of the H components to the orthogonal E components. For
each of the two waves, we have both '"parallel" and "perpendicular" wave admit-

tances, defined by

*y = *H /E (47)
] 41 1}
*YJ_ = *H"/EJ_ ’ (48)

where the asterisks recall the normalization (36) to the wave admittance
1
4 ; . . . :
(Kordeo/Po) of an isotropic medium of dielectric constant Kord® From a naive
%

1
s . % — # - v = = =
point of view one would expect *Y, = 1and *Y = (Kex/xord) = (1 -a)*. llow
ever, (47) and (48) differ from these expectations and, furthermore, differ

between the ordinary and extraordinary waves, as shown in Figs. 5 and 6.

6. EXCITATION AND QUALITATIVE BEHAVIOUR OF WAVES
Two elementary applications of the results of the previous section provide
insight into qualitative effects arising from shear in an anisotropic medium.
First, consider two forward—-travelling characteristic waves in the interior of a
uniform sheared medium of infinite extent. Let these waves have amplitudes and

phases such that at a particular reference plane their superposition yields an



E-field linearly polarized in the local direction of the sheared magnetostatic
field. Because the ellipticities and wave impedances differ somewhat for the two
characteristic waves (Figs. 3-6), it is impossible generally to have a resultant
wave that is simultaneously linearly polarized in both E and H. By constrast,
in an anisotropic but shear-free mediumn, the wave E and |}l are simultaneously
linearly polarized (although not in general in the same direction). Meanwhile
the E-polarization of the resultant wave in the sheared medium, observed at sub-
sequent planes, passes periodically from linear to elliptical and back to linear,
etc. The maximum vélue of ellipticity (ratio of minor to major axis) may be

computed from (42)-(46) and is given approximately by

ar 42l

(eE)max N ?ET 4s ’ (49)
whichever is less than unity. The periodicity is the distance Az required for
the two characteristic waves to get 2n out of phase; that is Az = k/hp, where
Ap is the magnitude of the difference between the two solutions of (42). This
same periodic variation of ellipticity, sometimes called the Cotton-Mouton effect,
occurs in a shear-free anisotropic medium only when the polarization is oblique
to the anisotropy direction. With shear, if one follows the inclination 1 of
the major axis of the elliptical polarization, with respect to the initial direc-
tion of linear polarization, then for 4s X |a| the major axis follows the shear
on average, although '"wobbling" somewhat within the periodicity. On the other
hand, for 4s 2 |a| the major axis "precesses" in one period by the angle

Ay = 27 @Sﬁ _ g) . (50)
This precession {(in fixed coordinates) is in the opposite sense to that of the
magnetic-field shear, which mearnwhile has turned through the angle QﬂXs/Ap. That
is, with respect to the magnetic field, the major axis has precessed backwards by
o« . The discontinuity between these two cases occurs where the maximum ellipti-
city is unity and the inclination 1V is undefined. In both cases, within one

period, the inclination of the major axis wobbles in a more or less sinusoidal

fashion about the average trend.

Numerical examples of the propagation of an initially linearly pelarized

= 0 =



wave are shown in Fig. 7. These curves were generated by numerical integration
of (15)-(18) with the results expressed in the alternative coordinates defined in
the Appendix. The examples illustrate the inclination "wobble'" about an average
trend, and the ambiguity arising in the special case where the ellipticity reaches

unity.

As @ second example, we consider the case of a uniform plasma slab of
thickness L, within which the magnetic field shears uniformly from ¢ = P through
zero to +94 (@0 < 1/2), a configuration crudely approximating a diffuse pinch.

We also assume that the shear is small in the sense that s = 2¢0c/k2rd wL is

small compared to unity and to % |a

. In this limit the refractive indices and

ellipticities of the two characteristic waves are approximately:

B (1432 gm (51)
liord Kord 2a

}, 1, 4 T - l, s R s
Mg ;rd |:(i-—a)/2 - *—I—“ﬁﬁgg s':} = x;"[:1 - —¥%~“ﬁﬂ) S%J (52)
2a{t-a - 2a{l-a

28 (53)

134

i
=

I
1

(34)

i
)
V)
———
b
1
)
o
W<

2

That is, the waves are essentially linearly polarized, with the refractive indices
of the corresponding unsheared medium; however, the polarization direction of the
characteristic waves follows the shear of the magnetic field. An incident wave,
linearly polarized with g in the direction of ¢ = 0, will in general excite
both characteristic waves inside the plasma slab and also return a reflected
wave having linearly polarized components both parallel and orthogonal to the
incident polarization. The respective amplitudes and phases of the four trans-—
mitted and reflected wave components could bhe found by application of the usual
boundary conditions at the interface. However, for our present purposes, we shall

take the crude approximation that the amplitude of the ordinary wave (major axis

of Erp

extraordinary wave (major axis of grf =L E) is proportional to sin Py and the

I g) in the sheared slab is proportional to cos Py the amplitude of the

amplitudes of the reflected components are negligible. Then allowing the two

- 10 -



characteristic waves to propagate through the slab, and making analogous simpli-
fying assumptions for the recombination of the transmitted waves at the far
surface, we obtain:

transmitted component parallel to incident wave

1
amplitude [1 - sin2@0 cos?® (m Ap L)]é (55)

. . —sin2¢0 sin (2nApL)
phaseshift tan (56)
‘ 1-2 sin2¢0 cos ®(nApL)

transmitted component orthogonal to incident wave

1
amplitude [sin22¢0 COS?(ﬂApL)]é (57)
-1
phaseshift tan [tan (mAul)] (58)
In these formulas, Ay = Bong = B and the phaseshift is reckoned with respect

to an isotropic slab of refractive index Hoprg®

It should be noted that the level of treatment used in this second example
is essentially that of geometrical optics; that is, the effect of shear, as
distinct from anisotropy, enters only through the geometrical fact that the
polarization of the characteristic waves follows the shear. The results are very
similar to the case of an obliquely polarized wave incident on a shear-free aniso-
tropic slab (Cotton-Mouton effect). Thus although the quantities (55)-(58) can
be readily measured experimentally, it is difficult to extract the diagnostic
information that they contain. In the shear-free case, the Cotton-Mouton compli-
cations may be avoided by alignment of the incident polarization parallel or
orthogonal to the anisotropy direction. The analogous procedure in our sheared-
slab example would be to launch the wave with the polarization aligned at R
and receive it with polarization at +P,r In the small-shear, reflectionless
limit considered, the amplitude would then be essentially independent of plasma

properties, while the phase would provide a direct measure of Hord’ (51).



7. DISCUSSION
The preceding highly idealized examples suggest the sort of phenomena to be
expected in practical cases where shear exists. In experimental situations where

e

the gradients (in ¢ and k) are weak relative to a wavelength, and where the
geometry conforms to the rather special case considered here, considerable
improvement over elementary shear-free theory can be expected from assuming that

a linearly polarized wave outside the plasma gradually deforms through a succession
of configurations, given by the locally evaluated characteristic wave for the

uniform sheared medium of Section 5, in analogy with theorems on the adiabatic

perturbation of quantum systems.

As mentioned in Section 3, one can handle quite complicated experimental
situations by postulating the dependence of Tield orientation ¢ and the
dielectric coefficients n(n,BO) upon distance along the assumed ray path, and
then solving (i5)-(18) by numerical computation. Indeed, in most plasma devices
the shear scale-length is necessarily comparable to the scale-lengths of electron
density and field magnitude gradients, so that the electron-density inhomogeneity
of the medium is as important as the shear, and numerical computation is the only
effective way of treating a specific experimental situation. In this case, how-
ever, the four initial values of the respective field components take the place,
mathematically, of the amplitudes of the two forward-travelling and two backward-
travel ling characteristic waves, which are available only when (15)-(18) can be
solved explicitly. The initial-value point of view is usually more awkward in
the sense that, for instance, a given set of initial conditions may implicitly
presume a "reflected" wave, of prescribed amplitude and phase, in the space
beyond the far side of the plasma sample., Thus trial-and-error methods may be

required to find initial conditions that yield a physically acceptable solution.

The basic assumpticn of this paper, that the sheared magnetic field is
always transverse to the direction of propagation, is of course not realistic for

many experimental problems. This iimitation can be removed by suitable

~ 12 =



generalization of the methods of Section 2 at the cost of considerable algebraic

" complexity.

I am very grateful to D.J.H. Wort for suggesting this problem and collabora-

ting on several details of the work.
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APPENDIX
With time dependence exp{+jwt) understood, the complex amplitudes of the

cartesian components,

E
X

E
Y

represent, in general, an elliptically polarized field. We seek a set of para-

it

a+ jb=rexp ja (A1)

I
[

c + jd = s exp iP, (A2)

meters, equivalent to (a, b, c, d) or (r, a, s, P), that describes the field
configuration directly in terms of the elliptical polarization. The inclination

y of the major axis with respect to the x axis is given by

V=X car [2(ac +ba) ] , s

[aZ +b? -c? = d?]

where the brackets signify that the four-quadrant inverse tangent is to be used.

The magnitude t and phase Y of the semi-major axis are then.

21/

2
t = [(a cosy + ¢ siny) + (b cosy +d siny) ] (A4)
B -1 [b cosy + d siny
T N [a cosy + c siny] * (A5)
Similarly for the semi-minor axis,
3 2 2 1,
u = [(-a siny + c cosy) + (-b siny + d cosy) 1? (A6)
B -1 [-b siny + d cosy]
6= %an [-a siny + c cosy| ° (A7)
The ellipticity is given by
e = % sin (Y - &), (AB)

where the sine term has the value *1 and denotes the right or left handedness,
respectively, of the time dependence of the elliptical po;arization with respect
to the direction of propagation. Thus the alternative set of parameters

(v, ts ¥y e) uniquely specifies the field and offers a somewhat more physical

description than the original set (a, b, ¢, d).

= T4 =
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CLM - P42 Fig. 1
Contours of relative anisotropy a =1 - kegx Kord a8 a function of
nomalised electron density and magnetic field magnitude for a
collision -free Lorentz plasma in a shear-free magnetic field.
The ordinary wave (Kppd) is cut off in the region with vertical
shading; the extraordinary wave (xgx) i8 cut off in the regions
with horizontal shading



Shear rate s

Relative anisotropy a=1-Kex [Kord

CLM - P42 Fig.2
Contours of relative refractive index *p=p/ Kolgd for the characteristic
wavesinauniform shearedmedium. Solid curves represent the ‘ordinary’
wave, which reduces to the usual ordinary wave in the absence of shear;
dashed curves represent the ‘exiraordinary’ wave. One wave is cut off
in the regions at lower right and upper left.
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Ellipticity E, / E, for the extraordinary wave
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Shear rate

Mommalised wave admittances for the ordinary wave,

*Yio= (o / Kord€0) " H /E,;, solid curves.
i - a)k = (uO/@ce..eo) H/E,, long-dashed curves.

|
05

0
Relative anisntropy 6= i =Koufora
CLM-P42  Fig.5

‘Parallel’ admittance

‘Perpendicular® admiitance
In the region

wheze the extraordinary wave approaches cutoff (a » 0.8), the latter is

4
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CLM - P42 Fig. 7
Examples of the propagation of an initially linearly polarized wave.
Shown are the inclination of the major axis of the electric field with
respect to the initial polarization (fixed co-ordinates), the ellipticity
(ratio of minor to major axis), and the amplitude of the semi-major
axis, Shear rate s = 0.1; relative anisotropy a=-0.5(short-dashed

curves), -0.396 (solid curves), -0.3 (long-dashed). For the transi-

tion case (solid curves), the major and minor axes interchange as the
wave passes through circular polarization












