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Abstract

Self modulation and filamentation of an electro-magnetic wave is con-
sidered as a problem of the non-linear interaction between electro-magnetic
and ion waves. A simple geometrical model is given of filamentation when
the non-linearity is due to the ponderomotive force. A new electro-magnetic
modulational instability is obtained whose threshold is the same as the
oscillating two stream instability. The relationship between the filament-
ation and electro-magnetic modulational instabilities and other parametric
instabilities is considered. In particular, it is shown that both electro-
magnetic modulational and filamentation instabilities can occur at the crit-
ical density where they have the same threshold as the modulational instabil-
ity of a Langmuir wave. Finally, a conservation relation (a generalization
of the Manley-Rowe relation) for the wave action density is obtained for
the filamentation instability. This shows clearly that this instability

results from a four wave interaction.
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1. 1INTRODUCTION

The phenomena of self-focusing, filamentation and self-modulation of
electromagnetic waves in plasma are all closely related to one another. Self-
focusing is the tendency of an electromagnetic beam (of definite width) to
reduce 1its own transverse spatial dimension through interaction with the
plasma medium. Filamentation, on the other hand, is the plane wave analogue
of this phenomenon and results in a spatially periodic distribution of the
energy of the incident (uniform) plane wave. Self-modulation is again due
to the interaction of the electromagnetic wave with the plasma medium result-
ing in a modulation of the amplitude of the incident wave in the direction
of propagation. The first description of this type of effect in a plasma
was by Volkov in 1958 [1]. More recently, effects due to the self-action
of electromagnetic waves in plasma have been described by a number of authors
[2-7]. 1In references [2-5], the non-linearity producing the self-action
was the ponderomotive force of the electromagnetic wave, in reference [6] it
was the wave induced heating and in reference [7] the self-action was pro-

duced by relativistic effects.

In this paper we shall consider filamentation and self modulation due
to the ponderomotive force although we shall not use this concept explicitly.
The aims of the paper are the following. First, we will give an alternative
geometrical description of filamentation. Second, we shall derive a new
modulational instability of an electromagnetic wave in the vicinity of the
critical density and indicate the relationship of this instability to the
modulational instability of a Langmuir wave. Finally, we shall relate the
phencmena of filamentation and self modulation to the parametric effects

which can occur in a plasma.

2, THE MODEL
A finite amplitude electromagnetic wave may interact with other waves
in the plasma. We shall describe filamentation and self modulation as non-
linear wave interaction phenomena. These effects are, of course, three

dimensional. However, the basic process can be described in two dimensions.

We shall consider an infinite, uniform, unmagnetized plasma in which a
plane polarized, finite amplitude, electromagnetic wave propagates in the
x-direction. The non-linear wave interaction we shall analyze is shown in
figures 1(a,b). We are led to consider this particular configuration by
analogy with the oscillating two stream instability. W ko is the incident

electromagnetic wave and figure la shows its interaction with an ion wave



propagating at right angles (in the y-direction, say) and another electro-
magnetic wave propagating at a small angle to the incident wave, such that
the wave vectors are conserved. This means that the electromagnetic wave

W, Eo - Es (equivalent to the Stokes wave) has a higher frequency than the
incident wave. This interaction will not therefore give rise to the decay
instability. Since this interaction is essentially mismatched in frequency
we will include both ion waves (propagating in the +y and -y directions)
in the interaction. Now, an exactly equivalent interaction is shown in
figure 1(b). In this interaction, the same two ion waves are involved but

a different electromagnetic wave (wz, Eo + ES), eduivalent to the anti-Stokes
wave) is coupled. These two interactions are not independent because the

low frequency ion waves take part in both cases. The incident electromag-
netic wave is therefore coupled to four unperturbed waves. The frequencies
of the two electromagnetic waves w, and w, are equal1 since Eo _Esl =|§0-%Es].
Figures 1(a,b) show clearly the possibility of a focusing of the incident
wave. We shall show below that this process can be unstable resulting in

the incident electromagnetic wave being converted to a converging electro-
magnetic wave in which the energy becomes more concentrated. By analogy with
the oscillating two stream instability, which can be shown [8] to result from
a similar process, we expect the ion waves to be purely growing and the
Stokes and anti-Stokes waves to be shifted to the frequency of the incident

electromagnetic wave.

We shall now outline the derivation of the non-linear wave equations
describing this process. It is sufficient to use the two fluid description
of the plasma in which we assume Te » Ti so that the ion waves are weakly

damped (this is not a necessary restriction). Starting trom the equations

¢E
FRE=Jd+g = (1)
o8
YEE == g : (2)
Eﬁi + (v.. Vv, + ELEL v 24
et AL, 3y 7 n, + ijj _Eg (1E_+!j X B) (3)

1 The Stokes and anti-Stokes waves, which are usually defined as forced waves
at different frequencies, have been identified with natural modes of the
plasma. This is possible in this example since both forced waves are near
to resonance under the same conditionms.



where J =% n, q, Ej and j =i, e, we obtain the following equation for a

]
plane polarized electromagnetic wave (w, k) propagating in the x,y plane

2
(k2+EE% —52;) E = -iWwngen v -y newv v (4)
c c z o e z 0o 0o e z
where we have put the term due to collisions on the right hand side of the equa-
tion since we shall always treat the case of weak collisions. If all waves
are infinitesimal in amplitude, the right hand side is negligible and we
obtain the usual dispersion relation for electromagnetic waves in a plasma.
However, when one (or more) of the waves has a finite amplitude, we must

include the non-linear corrections, which are assumed to be small. 1In

equation (4) we have only included the dominant non-linearity which comes
from the current. We have also chosen the polarization of all electro-
magnetic waves (incident, Stokes and anti-Stokes) such that the electric

field is in the z-direction.

We now assume that the wave fields (electro-magnetic and ion acoustic)
are given by products of a slowly varying amplitude (on the time scale of
the pump frequency) times the plane wave determined by the linear dispersion
relation. The Stokes and anti-Stokes waves are then given by

ik, ,.x-w k)

_ 21,2727 Y0
El’z(_}ﬁ, t) = Re € ,(x, e

Ly
h w, * =w2+c2k2
where 1,2 “pe L2
= =
and Ei,z (ko, ks, 0)

With the aid of the matching conditions

Eo =1,2 -s

where the second condition is only approximately satisfied, we can expand equation (4)
about the point (w,k) defined by the linear dispersion relation,making the identification
6w —1id/0t and 6k @ -1i0d/9x to obtain equations for 61’2
L ~i(h-w )t . -i(A+w )t
|

5 9 . o o s = )
(__8_1:4_21'@ - 1T>81(§,t) =-ic_, 80{(NS) e +(N) J(5)



o = N -i(ﬁ—l—us)t _ —i(a-ws)t
-—+v.-,:°—+")f \Ez(x,t)=—ic € N e + N e (6)
at  —2 Cx T} = so o| s s
In order to obtain equatioms (5) and (6) from (4) we have selected the terms
on each side of the equation having approximately the same phase and have
taken the real parts of all complex variables. 60 is the amplitude of the
incident electromagnetic wave which is taken to be much larger than all the
other amplitudes and therefore assumed to remain constant. N;: rep.esents

the slowly varying amplitude of the ion waves where + denotes the

ion wave travelling in the +y direction and - denotes the ion
wave travelling in the -y direction. Yy are the group velocities of the
3
electromagnetic waves (= ¢%k. ,/w, ,), =y w? /o ? :
i 1,2'%1,2 Yo l=v, upe/ ul,z) is the

damping factor of the electromagnetic waves, 6 = W,-w, where we have already
noted that w; = W, , ws is the unperturbed frequency of the ion acoustic
waves (W =k c and W >0 since k >0) and c¢__ is the coupling co-

s s s s 5 S0

efficient and is given by ¢ _=e?/be m w .
8o o e o

In order to obtain the corresponding equations for the ion waves we
use equation (3) along with the two continuity equations for the ion and
electron fluids and Poisson's equation. The unperturbed ion waves are assumed to
propagate in the y-direction and we choose the perturbed electron density as
the ion wave variable. We then obtain the equation

n ek
. o
(w2-k?c®n =-1i—=--(v_ X 3B,) -v.,wn,
s es m, —e =ly "i is

where the only non-linear interaction coupling the ion waves to the electro-
magnetic waves, is the v X B term.

If we now write the electron density perturbation as a product of the
linear phase and an amplitude function describing the non-linear interaction

& ik v F wst)

e
nt (x,t) = N (x,t) e ° ,
es - s =

and then proceed as before, we obtain the non-linear equations for the ion

waves

2 The non-linear wave equations for the ion waves can be derived rigorously
by taking suitable linear combinatioms of the equations of motion, continuity
and Poisson [8]. The above metnod gives the same result and has the advantage
of being briefer.
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where c,, = n e? k?2?/4m m,w W,wW, and where the damping term arises from
el o s e i s 071

a phenomenological collision frequency. This term can be used to simulate

Landau damping.

3. THE DISPERSION RELATION

(i) We must now solve equations (5) - (8). 1In order to calculate instability
thresholds and initial growth rates we can linearize these equations in the
usual way, i.e. by assuming that the incident wave is much larger than the

Stokes, anti-Stokes and ion waves

=+
£ »€ E »E&
o 1:2 o s
- S . . . Ni .
where 33 is the electric field corresponding to g - The equations can be
5 i(ﬁ—ws)t
put into a standard form by using the new amplitudes 81 , NS e 3
i(b+w )t ;
- s i26t . .
NS e and 82 e and assuming these amplitudes vary as

exp i (gx -wt). The following dispersion relation is then obtained

_ : s £ _ _
(Q-qv + 5+17T)(9 qv, - wT) (Q+ w, ws)(n “5+”s) +Kow =0

(9

where 9 =w -6, 6§ =W, -Ww,; and K =4c . Equation (9) is a

e lel
so o1' o

generalised form of Nishikawa's [9] dispersion relation and has unstable

solutions both when 6 >0 and when & < 0. 1In this case 6 is necessarily
negative since klz2 > k02 and 6 1is given approximately by
3
cz(koz- klz) czksz
T TR .
o o

There is therefore only one unstable solution to equation (9). If we put

g = 0 then we can immediately write down the instability threshold which is



. 75 Ot 62) (11)
which has the minimum value
Km = ZuE T (12)
where & = - Yo Well above threshold the growth rate is given by
L.
Y= R/ [s])* . (13)

Substituting the expressions for K the minimum threshold can be written

2
VO 8 wl’rT

c 2 w2
s pi
w i Yo
and v = J%, ==
where v, =e 6o/me W . These last two expressions agree exactly with the
results in reference [5]. This instability (self-focusing or filamentation

[3]) results in purely growing density perturbations and in the Stokes and
anti-Stokes waves both being shifted to the frequency of the incident wave '
(provided q=0). It is of the same type as the oscillating two stream

instability and the modulational instability of a Langmuir wave, both of

which can be derived in a similar way [10]. In the self-focusing instability

the Stokes and anti-Stokes waves are of course electro-magnetic whereas in

the latter two cases they are both Langmuir waves.
Finally, we can solve equation (9) for the spatial growth of the insta-
bility

K ﬁws %
qV1x=Q+i'}’T-i|:'§—2"2_—u"‘2 - ﬁzj! . (14)
S

When Q =0 we obtain the spatial growth corresponding to the threshold

given by equation (11).

The above analysis was carried out for the case where the low frequency
density perturbation was in the y-direction. An exactly similar analysis

can also be performed for the case where the incident wave couples to a



density perturbation in the z-direction. In this case, the polarization of
the Stokes and anti-Stokes waves are such that the magnetic field is in the
y-direction. The threshold for instability is almost equal to that for the
previous case but is larger by the factor k2*/k2? where k, is again the
magnitude of the wave number of either the Stokes or anti-Stokes wave. This
is in agreement with the result of Kaw et al. [4] and shows that the incident
wave, when it exceeds the instability threshold, will tend to distribute its
energy periodically, transverse to the direction of propagation. This results
in the energy being concentrated into a number of long threads or filaments
(hence the name filamentation). The spacing of the threads is given by the
wave number Es of the density perturbation. A preferred Es will be that

corresponding to the threshold minimum,

3(4ii) Now consider a generalization of the previous model. This is shown
in figures 2(a,b). In this case we consider the coupling between
electromagnetic waves and ion waves which propagate at an arbitrary
angle (subject to the matching relations, of course) to the incident
wave. It is clear from these diagrams that the ion wave in figure
(2a) is unrelated to the ion wave in figure 2(b). The two scat-
tered electromagnetic waves are therefore unrelated and so there will
be no self-focusing. There will of course be the usual three wave
decay, since for this case w1’2 is not restricted to be less than W .
Including the off-resonant ion wave (the dotted line in figures

2(a,b) in the interaction the dispersion relation for the interaction

shown in figure 2(a) is
- + 8+ 0- +w + i + W +iy
(n-q Vi A 1']/T) ( qe +tw 1’Ys)(Q qe - W 1’)5)

2
-2c ¢ 1'8 (wsf-q cs) =0, (15)

ol

An analogous dispersion relation describes the interaction shown in
figure 2(b). This dispersion relation gives the usual decay instability
when 6 > O (wo > w and therefore W > wz) and also a modified decay insta-

bility [1l] when 6 < 0. The threshold for modified decay is usually much

higher than simple decay, except when Yp P4 ws. Thus, the thresholds are
given by
K=4-2+ v for 6>0 (16a)
ws TT ] .



K =2[6]w for 6 <0 (16b)
when TT &« Wg and by
K = a'ﬁrqg for 6 >0 (17a)
B = Loy, for 6 <0 (17b)
when 7, P4 Wy - (N.B. K was defined after equation (9) ).
3(iii) Finally, we wish to point out an electromagnetic modulational insta-

bility for the back scattering problem [12]. This instability has not

been noted before.

First, consider the one dimensional problem of a standing electro-
magnetic pump wave. The two travelling waves which make up the pump
wave can each give rise to a back-scattered electromagnetic wave and an
acoustic wave travelling in the direction of the travelling wave com-
ponent of the pump. Treated as three wave decays, these two interactions
are independent. However, since the acoustic frequency is so low com-
pared with the pump frequency, the acoustic wave in the first decay must
also be included in the second decay, as was donme in the self-focusing

problem. The resulting dispersion relation is then

2
3 B _ i 3 o ’ ’ -
(Q+6+iy) (-6 +iv)(Q-w_+iv )(Q+w, 1ys)+4csoc01|60|aws 0
(18)
where the pump wave has been taken as 2 80 cos kox cos wo t. For this

case, the coupling coefficients are ¢ =w_ 2/4n w _ ;
so pe oo

F = n'oe2 wS/4 me2 7, VT?éwoul' Equation (18) gives the usual threshold field

C
agé initial growth rate for the Brillouin back scattering instability
[12]. However, equation (18) is in the same form as Nishikawa's general
dispersion relation [9] and therefore gives instability for & < O.
This instability is purely growing, i.e. the ion response is purely
growing and the excited electromagnetic wave is a standing wave but of

a shorter wavelength than the pump wave. The minimum threshold for

this 'modulational' instability is

m
1}
~

™
=,
=
H
e
<

(19)



which is equal to the threshold for the oscillating two stream insta-

bility [13]. Well above threshold, the growth rate for this instability

is given by
1 2 2]
72=—{62+w2—[(62-w2) - 4Kw_b (20)
2 s s s f

where K =4 ¢ ¢ |80|2

. For & »uW we obtain
SO 01 s

1 Vo
Y= T (21)
which is the same as the growth rate for the filamentation instabil-
ity obtained by Drake et al. [5] and derived earlier in
this paper. This electromagnetic modulational instability can also
occur at the critical density i.e. when ko = 0. Under these conditions
the instability represents the resonant limit of the instability found
by Volkov, i.e. the limit when both Stokes and anti-Stokes waves reson-
ate with natural electromagnetic modes (NB Volkov did not consider the
effect of damping and therefore did not find any threshold). 1In this
region this electromagnetic modulatiomal instability would be a compet-

itor with the modulational instability of Langmuir waves for which the

threshold is the same [10].

4. CONSERVATION OF WAVE ACTION DENSITY

We may derive an equation for the incident wave EO in the filamentation
problem by an exactly similar procedure to the one used to obtain equations
(5) and (6). Starting from equation (4) we pick out the non-linear terms
which give a phase close to that of Eo(g,t). For simplicity, we restrict
the 2nalysis to be very close to threshold where ¥ « W, (The same results
can be obtained without this restriction but this simplifies the analysis).
The expression for the density perturbation is then simplified and is

i n_e

v B . (22)

5 e
es k T zZ X
s e

Again, selecting the quadratic terms which give a phase close to that of

ng and substituting into the equation for E0 we finally obtain

a5

k
, o & . T 2 2 * i26t
< +C2€'—+ Yo )So(x,t) = u_1{|81| Co + 18| & +28,€, 8, ¢ }(23)

t cx

I3P)

where I' = elwpd/mwgw, vpd  and

- 8 =



where go(x,t) is the slowly varying amplitude of the incident wave EO(Est)-
Using equation (22) with equations (5) and (6) we can obtain the corres-

ponding equations for €, and €, which are

2 2 | I 2 2 o% - 126t)
< = Yl'ﬁg + %, :)81(§’t) =1 5; {j|80| E +E& € e | (24)
3 - 126t
8 8 . I 2 2 gx T 7
( = b EZ.EE + Yy ) € (x,t) =1 G;'{ 1€6] €,+¢&, 81 e } (25)

In order to see the connection between the wave action densities in its

o

simplest form we shall neglect the damping term and assume é; = 0. Let us
introduce the new amplitudes defined by
% L
€ €
W (2)e {3
€ < @ ,
and @, = ( 70> 52 e 126t .

The significance of the a's is that lan|2 is the total energy density of

mode n in the absence of the interaction. Similarly, !an|2/wn is then
the action density. Using equations (23) - (25) and these new amplitudes

it 1is straightforward to derive the following conservation relation,

EARRIAS ||
= a, a, 1 5 1%
O B o e— e——
3 |, % 5, )" T8 w, (26)

This may be contrasted with the corresponding conservation relation (Manley-

Rowe) for parametric (or three wave decay) instability which is

2 2 2
9 |a1| 3 |a2| ) Iaol (27)
ot W, at W, ot W,
where a,, a, and a, are the amplitudes of the pump and two excited

waves and W, , W, and W, their frequencies respectively. Comparing (26)
and (27) we see that the filamentation (and related phenomena) instability
corresponds to a process whereby two pump 'quanta' are required to produce

two excited 'quanta'. The decay interaction corresponds to one pump 'quantum'

- 10 -



breaking up into two excited 'quanta'. In other words, the filamentation
g q >

instability is a four wave effect.

The conservation of momentum is trivially satisfied since we have assumed
the matching of the k-vectors from the outset. However, we have been unable
to derive the corresponding conservation relation for the wave energies.

This is evidently due to the fact that the excited waves do not satisfy the
linear dispersion relation and therefore ,al,zlz does not represent the

total energy of the excited electromagnetic waves.

5. DISCUSSION AND CONCLUSIONS

In this paper we have considered those instabilities in which an electro-
magnetic wave generates an ion wave and another electromagnetic wave. The
simplest case is, of course, the Brillouin back scatter instability which
has been discussed by many authors. The generalization of this case is when
the ion wave and electromagnetic wave are excited at an angle to the incident
transverse wave. The decay type instability then includes all possibilities
from back scatter to side scatter (where the excited transverse wave propa-
gates at right angles to the incident wave). Since the acoustic frequency
is so low, the ion acoustic wave propagating in the reverse direction to
the resonant ion acoustic wave is only off resonant by a small mis-match.
When this off resonant acoustic wave is included in the interaction the
modified decay [1l] instability is then obtained. In all these cases the

Stokes and anti-Stokes waves are independent of each other.

There are two cases however when the inclusion of the off resonant ion
wave results in the Stokes and anti-Stokes electromagnetic waves becoming
coupled. This occurs when the acoustic wave vector is either parallel or
perpendicular to the incident wave vector and in both cases a purely growing
instability results. The purely growing instability for the parallel case
has not been pointed out before. It can occur in an under-dense plasma
provided the pump wave is a standing wave. At the critical density its
threshold is the same as that for the oscillating two stream instability
and its growth rate is equal to the filamentation instability which is the
purely growing instability which occurs when the ion wave vector is perpen-
dicular to the incident wave. The filamentation instability does not require
the pump to be a standing wave. This instability can also occur at the
critical density where its threshold is also equal to that for the oscillat-

ing two stream instability. At the critical density, the filamentation

- 11 -



instability and the electromagnetic modulational instability are closely
related. Both generate standing electromagnetic waves at the pump frequency.
In the filamentation case the excited electromagnetic wave vectors are con-
verging - hence the filamentation or self-focusing - whereas in the modula-
tional case they are parallel to each other. It is worth pointing out the
similarity between these two instabilities and the modulational instability
of a Langmuir wave. Finally, we have derived an action density conservation
relation for the filamentation case (in fact, the analysis would cover other
cases of modulational instability since the equations are of similar form).
This conservation relation is the analogue of the Manley-Rowe relations for
a three wave process and shows clearly that filamentation is a four wave

process where two pump 'quanta' produce two other 'quanta'.
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Fig.l Wave number configuration for the filamentation instability.
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Fig.2 Wave number configuration for two possible decay instabilities.

Configurations (a) and (b) are independent and the symbols have the same
meaning as for figure 1.
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