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ICARUS - A One-dimensional Plasma Diffusion Code

ABSTRACT

The development of a physical model for one-dimensional
diffusion in an axisymmetric, toroidal plasma contaimment
device of the Tokamak type to one which simulates well the
behaviour of an ST discharge, is monitored by the method

of introduction of flux and source terms into the computer
code, ICARUS. The basic model of neoclassical diffusion
can be replaced readily by pseudo-classical or Pfirsch-
Schlliter scaling laws, which can give results in good
agreement with experiment provided that the presence of
impurities and neutral particles is taken into account.

The basic version of the code, ICARUS, employs simple
models for the effects of impurities and neutral particles,
but in accordance with the spirit of the OLYMPUS programming
system, provides the interfaces necessary for easy develop-

ment of the physical model.
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I. Introduction

One-dimensional plasma diffusion codes (Dnestrovskii et al.,1970;
Dory and Widner, 1970; Duchs, 1970; Mercier and Soubbarameyer, 1970;
Duchs et al., 1971; Hogan et al.,1971; Keeping et al.,1972; Watkins et al.,
1975) are used to study the temporal evolution of plasma and poloidal
magnetic field in axisymmetric, toroidal, plasma containment devices of
the Tokamak type (Artsimovich et al.,1969; Dimock et al.,1971; Bol et al.,
1972; Drummond et al.,1973; Gibson et al.,1973; Itoh et al.,1973;

Kelley et al.,1973; Rebut et al.,1973). The motion of the plasma is con-
sidered to be sufficiently slow for dynamical effects to be neglected,

so that the configuration evolves through a series of quasi-equilibrium

states satisfying the equatiom

Yp =JXB (1)

where p 1is the plasma pressure, B is the magnetic field and J 1is
the current density®, The magnetic surfaces are surfaces of constant
pressure and form a nested toroidal set centered on the magnetic axis.
An appropriate set of coordinates for the problem is (r,0,¢) where r
and © are polar coordinates referred to the magnetic axis of the torus
which has major radius,R, and ¢ 1is the azimuthal angle measured along
the magnetic axis (Fig.l). The intersections of the magnetic surfaces
with a cross-sectional plane, ¢ = constant, are the field lines of the

poloidal magnetic field, B_ = (B_, B,.). If the minor radius of the torus
- 0

P r
is denoted by a and the inverse aspect ratio is defined to be e(r=a) =a/R,
the limit of small inverse aspect ratio, €(r=a) = 0, corresponds to the

assumption of cylindrical symmetry. However, even for present-day experi-

ments, usually e(r=a) » 0.1,-30 that toroidal effects are important.

Tokamak calculations of current interest are concerned with the

* The S.I. system of units is used throughout this article.
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equilibrium, stability and evolution of a magnetically confined plasma.
Given a two-dimensional equilibrium configuration which satisfies Eq.(1) at
any given time, diffusion, heating and other entropy-generating processes
will modify the plasma-field parameters and lead, by adiabatic re-adjustment
to a new equilibrium configuration at a slightly later time. At each stage

the configuration should be tested for stability.

At present, however, a complete two-dimensional calculation which would
follow the time-evolution of the plasma-field configuration has not been
undertaken. Although two-dimensional equilibrium caiculations are considered
routine (Feneberg and Lackner,1973; Von Hagenow‘and Lackner,1973) and magneto-
hydrodynamic stability calculations, which were first developed in one
dimension (Newcomb, 1960; Friedberg, 1970; Shafranov, 1970; Goedbloed and
Hagebeuk, 1972), are now being extended to two dimensions (Bateman et al..,
1974; Sykes and Wesson, 1974) with some promise of realistic three-dimensional
calculations in the near future (Wooten et al.,1974), most of the evolutionary
calculations for Tokamaks are still carried out in one-dimensional cylindrical
geometry with the toroidal corrections modifying the transport coefficients.
There are several reasons for retaining the one-dimensional model for the
diffusion. First, it is not yet clear which two-dimensional set of equa-
tions should be used, since the timescale for establishing pressure and
temperature equilibrium on a magnetic surface is some orders of magnitude
shorter than that for transport across the surfaces. Almost certainly the
standard two-dimensional, magnetohydrodynamic equations do not apply. The
physical processes taking place in the Tokamak plasma are unclear, but are
likely to be dominated by effects such as wall interaction, turbulent
transport and the presence of impurities and neutral gas. Second, implicit,
two-dimensional, numerical methods capable of handling efficiently the high

Alfven speed and long evolutionary timescale characteristic of Tokamaks are

not yet available.



It seems preferable to establish a semi-quantitative agreement between
computation and experiment in one-dimensional geometry before moving on to
the more complex and expensive two-dimensional case. Nevertheless there
exists some pioneering work on two-dimensional evolutionary calculations
for Tokamaks (Winsor et al.,1970; Potter and Tuttle, 1973; Sharp and

Taylor, 1973).

Since there are so many processes that may be important in Tokamaks,
and since an adequate agreement between theory and experiment has not yet
been achieved, it is expedient to plan any new, one-dimensional diffusion
code as a versatile research apparatus into which new theoretical or
empirical effects can be incorporated readily and assumptions or parameters
changed with ease. The computer code, ICARUS, (Watkins et al.,1975) has
been designed with due regard being paid to these features. The plasma-
magnetic field configuration is described by a set of essentially
conservative equations for the particle density, n, the electron and ion
pressures, p_, P;, and the poloidal field component, BB' The toroidal
magnetic field, B@’ is considered to be sufficiently large to be unaffec-
ted by the plasma (low-P approximation, where B 1is the ratio of the
thermal to the magnetic pressure)and only enters the calculation through

its effect on the transport coefficients. The model is completed by the

specification of the radial particle and heat fluxes and the toroidal elec-
tric field. Although the basic model employed in the code is that given by
the neoclassical theory applicable to a collision-free plasma (Hazeltine

et al.,1973), small changes in the input data for the code allow the use of
other scaling laws such as those associated with collision-dominated plasmas
(Pfirsch and Schlliter, 1962) or non-classical effects (Yoshikawa, 1970;

Artsimovich, 1971).



The results of diffusion calculations are extremely dependent on the
details of the ad hoc model, so it is necessary to publish together the
model and the results if the literature is to maintaip acceptably high
standards. It is preferable that the code be available for use by other
research groups so that the complex details of the physical and numerical
models and the programming can be checked and the calculations confirmed

and extended.

ICARUS uses the OLYMPUS programming system (Roberts, 1974; Christiansen
and Roberts, 1974) which is intended to meet these requirements. Although
it can be used for a wide variety of problems, OLYMPUS was originally

designed for initial-value calculations of the form

=+G (w =20 3 (2)

where u 1is the solution vector and G is a linear or non-linear operator.
Many calculations in classical physics are of this kind including.those for
which one-dimensional Tokamak diffusion codes were developed. OLYMPUS
codes are written in Standard Fortran and can be run on any computer system
provided that the appropriate version of a Standard Control and Utility
Package has been loaded first into the library. Packages have been
developed for seven types of system so far and  two have been published
(Christiansen and Roberts, 1974; Hughes.gg al.,1975). Each code has the
same underlying modular structure and is well documented so that a listing
of the code is easily understood. Provision is made for ad hoc modifica-
tions for specific calculations without compromising the basic version.

The first published example is the one-dimensional laser fusion code

MEDUSA (Christiansen et al., 1974). This code has been used by a number

of research groups who have checked and extended the test calculations and

recommended a number of minor corrections (Christiansen, 1975).



The purpose of this article is to describe the basic physical model
(Section II) and numerical scheme (Section III) used in ICARUS, together
with the OLYMPUS programming technique (Section IV), and to indicate how

these can be applied to a range of specific Tokamak calculations (Section V).

IT. The Physical Model

A. INTRODUCTION

The computer code ICARUS (Watkins et al.,1975) provides the solution to
a set of N partial differential equations which deseribe the temporal evo-
lution of N dependent variables, u , as functions of time (t) and a single
spatial coordinate (r). The form of the equations to be solved is
represented by the conservation equation in an infinitely long,
cylindrically symmetric device

du

-n 1 o
-gg'(r,t) + 2 3;-r§n(r,t) =8 (r,t), n=1, ...N, (3)

where En(r,t) and §n(r,t) represent respectively the flux and source of
u ~at each position (r,t). These functions have to be supplied explicitly
in terms of gn(r,t) and their spatial gradients. The particular applica-

tions of the code (Section V) involve the representation of En in the

diffusion approximation so that, typically

du

-n
En o . . (&)

When the equations represent predominantly diffusion processes, it is

natural to solve these equations by an implicit technique (Section III).

B. THE NEOCLASSICAL TRANSPORT MODEL
The basic physical model employed in the computer code ICARUS is the
neoclassical transport model of Hazeltine et al. (1973). The fluxes

obtained represent averages over both the toroidal, ¢, and poloidal, ©,



directions in an axisymmetric torus (Fig.l). The velocity moments of the
Boltzmann equation (Chapman and Cowling, 1953) with a Fokker-Planck
collision operator (Rutherford, 1970) give a series of conservation equa-
tions in which the dependent variables are functions of the single spatial
coordinate, r, the distance measured from the geometrical minor axis of

the torus.

The model describes a hot, axisymmetrically-confined, low B plasma
consisting of hydrogen ions (mass, mi) and electrons (mass, me). A strong
magnetic field exists in the toroidal direction, and is specified for all

time to be the Knorr field (Knorr, 1965)

BO
B T=ems § =97

=l N

BO is a reference magnetic field, independent of position and time, and € is
the local inverse aspect ratio. An expansion of the Boltzmann equation to

1
0(€?) indicates the radial diffusion is ambipolar (Rosenbluth et gl.,1972);:

the electron and ion particle fluxes, Ié and I&, are equal

For scale lengths sufficiently large that the plasma may be considered to
be electrically neutral, the electrons and ions are present everywhere in
equal numbers and the temporal variation of the particle number density, n,

is described by the equation of continuity

i rI‘ = O (5)
X

|

+

o/
=~

E
The electron and ion heat balance equations may be written in con-

servative form for the electron and ion energy densities, &y and Gi

€ -¢ aT
3 1 d . e % 130 0.172
dt ee e r Or rQe - E¢ J$ B ( T > - I‘Ti (p or T, 5r> , (6)
eq i
= oT
3 19 % ei) (1 3  0.172 i)
4ty ™ T ( Teq * T ke dor T, or (7



The heat fluxes, Qe and Qi’ represent both thermal and particle transport
of energy. Energy input to the plasma is by virtue of the ohmic heating

term, E.J , which involves only the toroidal electric field, E_ ,

for the Tokamak ordering procedure in which the poloidal magnetic field,
BG’ is assumed to be small in comparison with the externally applied

toroidal magnetic field, B(P . The energy is transferred from electrons to

ions by virtue of the equipartition term characterized by the time

T —
€q

M| =
EIH?

el
e

where T . is the electron-ion collision time given by Braginskii (1965)

I, 2 2
3m 2(kT ) (4me )
T, = = < 2 .
et 4f2m 0 e” logeA

(k 1is the Boltzmann constant; EO is the permittivity of free space; e 1is

the charge on the electron; T, is the electron temperature).

The Coulomb logarithmic function, log./, is (Braginskii,1965)

kT \ kT
& 30.3 - 1.15 log n + 3.45 log \=~—),—= < 50 eV
A - 10 10 e e

log, T\ kT,
t 32.2 - 1.15 log n + 2.3 log (—&),— > 50 eV
10 0\ e e
The electron and ion energy equations are coupled also by the last term on

the right-hand sides of Eqs.(6)-(7) representing ion motion along the

magnetic field.

Equations (6)-(7) may be used to describe the temporal evolution of
the electron and ilon pressures, P, and P;s by means of equations of state
of the form applicable to a perféct gas

P, nk T p; kT

e T (-1 D T G-D  G-D

, (8)

5
where Y is the ratio of the specific heats, assumed to be /3, and Ti

is the ion temperature.

The toroidal current density, J _, may be determined from Maxwell's

(PJ

form of Ampere's law



" 1
r

3
OJQP 5 Be ; (9)

(MO is the permeability of free space)
with the poloidal magnetic field being given by Faraday's Law
aBe
t

3
R : (10)

Consistent with the Tokamak ordering procedure it is valid to consider
changes only in the poloidal magnetic field, Be.
The plasma is described by the three dependent variables, n, p , p.,

e’ Fi

representing respectively the particle number density and electron and

ion pressures. The conservation equations for these quantities

are closed by the specification of the radial particle flux, the radial

electron and ion heat fluxes and the toroidal electric field applicable to
the diffusion of plasma in a torus (Galeev and Sagdeev, 1968; Kadomtsev and
Pogutse, 1971). In such a system a charged particle may execute three types
of nearly periodic motions. These are gyration about a magnetic field line,
motion along the field line resulting in transit around the system or
bouncing between mirror points, and drifting across the field lines in
response to electric fields and the gradient and curvature of the magnetic
field. The relation between the frequencies associated with these motions
and the frequency for electron-ion collisions, vei = T;i ;, determines the

exact form of the diffusion coefficient, which is given, in general, by an

equation of the form
D~V ,62 3 (11)

where Vv 1is the effective collision frequency and £ is a characteristic
step size for a random walk process. The relative forms of the diffusion
coefficients in the high-frequency ('classical'), intermediate-frequency

("plateau") and low-frequency ('banana") regimes are summarized in Fig.2.

The frequencies that separate these regimes are representative of the
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bounce frequency, Vv, , of trapped particles and the transit frequency, v

b .

of untrapped particles.

The expressions for the fluxes in the low frequency regime are given
most concisely by Hazeltine et al. (1973). Corresponding to the forces,
Am(m =1, 2, 3) which result from gradients in the particle density,
electron and ion temperatures and the electric field there exist three

fluxes, Jl(l =1, 2, 3)

3(p +p.) 3T AT

s =1 e 17 5.1 ‘e _2ypm1 1
AT B Allpe P or 2 Te or + @y Z)Te or
A, = B2 o 7t ogp R Te
2 kTepe e or
Ay = A3 =By (12)
J] = T
JZ = Qe

-3

= kT J -0 E

J3 ( e) (QP . CP)

The fluxes and forces are related through the transport coefficients, le

3
Jp= - ZlimAn , 1=1, 2, 3.
In addition, the total ion heat flux is given by
oT,
_ _ -1 -2 i
Jg =yTkT, - L k™ T,° =— , (13)

The parameter, y, has been introduced so that A2 is dependent only on the
gradient of the electron temperature. To within a reasonable degree of
accuracy the transport coefficients, le, are given by the simple ansatz

(Hazeltine et al.,1973)

Ly =%, ¢ +PB ¢ . (14)

This gives exact results in the limits €20, €21, In the code ICARUS it
has been found most useful to provide the forces, Am, (m = 1, 2, 3) and the

corresponding transport coefficients, RLIm, (1, m = 1, 2, 3) in terms of the
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classical diffusion coefficient in the poloidal magnetic field, Dg, and the
Spitzer conductivity, US, defined according to

C 2 2
D, = Vo, = .
8 Pel Yot = ¥y, EE /me Vei s {(15)

where the electron gyro radius, peG’ in the poloidal magnetic field is

given by

. 2me kTe
pee - 2g2 (16)
€ g
The following definitions for the transport coefficients apply
Dg L
RL11 = e (CAll €® + CBll € + CCil)
e
D [
_RL21 _ "8 %
RL12 = T (CAl2 e “+ CBl2 € + CCl2)
e e
n %
RL13 = -nRL31 = - (CAl3 €+ CB13 ¢ + CCL3) (17)
]
RL22 = DB (CA22 e® 4 cB22¢ + CC22)
P %
RL23 = -p_ RL32 = E—-(CAZB €°+ CB23 € + CC23)
e f

L
RL33 = 0_ (CA33 €2 + CB33 € + CC33)

l'l'l.T 2 L
v ) DS (CAI €2 + CBI € + CCI)
\\me T 6

%

y = CAY €° + CBY € + CCY

The numerical values of the constants (CAll, ....,CCY) employed in the
definitions of the tramnsport coefficients are summarized in Table I. The
range of validity of the transport expressions may be extended to the
intermediate frequency ("plateau") regime with the aid of "smoothing
functions" (Table II). These functions effect a smooth transition of the

diffusion coefficients as the collision frequency increases to a value
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greater than the bounce frequency, vb (Fig.2).

The transport model applicable to low and intermediate values of the

collision frequency forms the basic physical model employed in ICARUS.

C. BOUNDARY AND INITIAL CONDITIONS

The code employs a finite-difference mesh that is mapped onto a con-
tinuous domain (Section III) in such a way that the physical boundaries of
a wal! (or limiter), at radius r = a, and the minor axis at radius r = o,
coincide with mesh-cell boundaries rather than mesh-cell centers at which
the dependent variables are defined. The physical boundary conditions
apply to the fluxes, T, J¢, Qe’ Qi' On the minor axis of the torus at
radius, r = o, all radial components of vector quantities must be zero,
with the result that the gradients of the dependent variables, n, P> Pi>
must also be zero. On the other hand the toroidal current density, J¢’
should exist and can be related in general to the poloidal magnetic field,

BB’ at a position T, (near r=o0) by Ampere's Law applied to a cylinder

about the axis 2B
J = -.-.-.—e_-.
P 5 :

o]

The boundary conditions at the outer radius, r = a, are more difficult
to treat. The simplest method is to employ the use of '"pedestal walues
for the dependent variables at the first mesh point with a radius, r > a
the boundary values of the dependent variables are set to a fixed fraction

of the central values at time, t = o, by specifying the functional forms

£ 3 (1-(1-P)xl)m, f = {n,T,T.},
(0] e 1

J

l;n _ T
o J0 (1 -x , x=1Y/a

The indices {1,m} are przset to values applicable to parabolic distri-
butions and the fractional pedestals, P, are set to 10%. These may be

modified through data inpwuii, as also may the maximum values, fo’ and the

= 1% =



total toroidal current

I = 2m J rdr

The pedestal values are maintained at the first mesh point with r > a

for all time.

ITI. The Numerical Model

A. INTRODUCTION TO ONE-DIMENSIONAL FINITE-DIFFERENCE METHODS

The equations to be solved may be written concisely in the form of
Eq.(2) with u(r,t) being the column vector {n, Pes Py, BB} and G being
an operator dependent on u and its spatial derivatives. The problem
formulated by Eq.(2) is an initial-value problem so that u is determined
for all time given its initial-value, g(r,o), together with the specifi-

cation at all times of the spatial boundary conditions,

In general, it is not possible to express the solutions to Eq.(2) in
terms of known functions. Numerical methods rather than analytical methods

have to be employed. The vector, u, and the operator, G, are defined on

3

the mesh points of a grid (Fig.3) mapped onto a continuous domain
bounded by the positions, r = o and r = a ., Temporal differencing

assumes a discrete set of lattice points along the time axis.

The general difference analogue of Eq.(2) is obtained by integration

t:m+1=_r:n + AR
T = - G (wdt . (18)
tn

e
1

The solution to this equation may be approximated by replacing the right-

hand side of Eq.(18) by some temporal average

gPHL L yf . Ef,g(gn+1) + (1-0) Q(gn):l A (19)
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where

When G is of such a form that Eq.(2) is parabolic in (r,t), fully
implicit methods of solution ({=1) are particularly effective (Richtmyer

and Morton, 1967).

B. THE METHOD OF SOLUTION EMPLOYED IN ICARUS
In the diffusion approximation the model equations which can be written
to conform with Eq.(3) contain fluxes, F, and source terms, S, that can be

functions of the dependent variable u

e}
F(u) = fE(g) 5 U ;
S(u) = s (u) u
- u

+
On the finite~difference mesh the values of En 1 at the time, tn+l, and

positions, r = T 1 rj, rj+1, may be related by the matrix equation

n+1 0 ¢203
* Beow, . * B = €., = D, 20
=j -J+]- = =] =j _J_]_ -] 2

where A, B, and C are 4x4 matrices and D is a 4-vector. Equation (20)

is solved as a linear system by means of the algorithm given by Richtmyer
and Morton (1967)

JH1= n+{um{+§qﬂ

1, u , j = N-1, N-2..... 2s (21)
i je1 A

I[ep]
s

where the matrix, G, and the vector, H, are determined from the recurrence

relations -1
QI_H_]' ( I_51:1+1 _ Qn +1 GI.1+1) ] Al:1+1 , (22)
=3 =] =] " =3-1 =j
ﬁﬁ1—<§?”-dﬁ¥gwﬁ> .<D.+ it ‘”1/ ) (23)
= =] =] ~ ==l =] = = -J 1

The calculation involves inverting a 4 x4 matrix at each mesh point. Given
the boundary conditions in finite-difference form this can be performed

easily (Potter, 1973).
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As a result of the non-linear nature of Eq.(20) with the coefficients

+1 +1 ..
of u" being functions of En it is necessary to solve Eq.(20)

"iteratively in order to obtain accurate values for the coefficients.

i ¢ n n , n : ;
Initially, én,g and C are evaluated at time, t , and a trial solution,

13(1) (1) 2(1), g(1)

is obtained. The iteration is repeated with A 7, to obtain

(2) (p-l), E(p—l)’ g(p—l)

u and is continued using A E(p)

to determine until

. . n+l i :
the solution approximates u to within the desired accuracy. Convergence
of the iterative procedure is checked by imposing that the fractional change

in u at the pth and (p—l)th iteration be less than the specified converg-

ence tolerance, du

p)_ ,fp-
Ma H Ejl I_j | I < bu for all 1<3j<N
(p) (p-1) ( ~ s a J
lus]+ley |

If the relative deviations are below specified values, convergence is
assumed to be established. If convergence is not achieved within a fixed
number of iterations the complete timestep is repeated with a reduced value
for the timestep. At the completion of a timestep the comservation of
particle number and total energy is checked. Since the total energy is not
a variable that is involved in the Eqs.(5)-(10), this check provides a very

sensitive guide to the behaviour of the numerical procedure.

The implicit method of solving parabolic equations guarantees a
numerically stable solution (Richtmyer and Morton, 1967) and the choice of
the timestep only serves to determine the accuracy. To monitor the temporal

variation of u, the timestep is restricted according to
ntl n

gl * 1Y |
n+l n

el = [l

The variation im the timestep is restricted by

A1

AL < a min , for all 1<j <N

where a and a, are constants o(1).
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IV. Programming Techniques

A, THE OLYMPUS SYSTEM

The purpose of the OLYMPUS programming system (Roberts, 1974 ;
Christiansen and Roberts, 1974) is to establish a clear standard structure
for Fortran programs of a similar kind. The first application is to the
generalized initial-value problem (Eq.(2)) which predicts the evolutionary
behaviour of a physical system. Initial-value problems are familiar in
many areas of classical physics and the Tokamak diffusion calculation for
which ICARUS has been designed provides a typical example. The concepts
on which OLYMPUS is baéed are adapted from disciplines such as mathematics,
theoretical physics, engineering and architecture and from the field of
scientific publishing (Roberts, 1969 and 1971). It is intended that the
programs together with their write-ups should be published in tested and
refereed form in journals such as Computer Physics Communications and the
associated CPC Program Library (Burke, 1970). This has the advantage of
making the programs available for general use and criticism just like
other scientific publications. Particular attention is paid therefore to
methods of documentation and layout, the eventual aim being to reach a
level of program intelligibility similar to that expected of a mathematical

textbook (Roberts, 1969).

Standardization is practicable because all programs that solve problems
of type (2) have many similar duties to perform, irrespective of the
specific equations that are used. Once-and-for-all decisions can be made
concerning questions such as overall program structure, control techniques,
terminology, notation and iayout, and a powerful library of general-
purpose routines can be provided to deal with the frequently-encountered

housekeeping duties. Automatic techniques for program generation also

- 17 -



become possible. All this can relieve the individual programmer of a
considerable amount of effort provided that the system has been suffic-
iently developed and the programmer has understood how to use it. The
programmer's work is made more accessible to other people since they know

what to expect.

Similar ideas have been accepted in mathematics and theoretical
physics for a long time and are known to be very powerful. Typical
examples are the abstract formalisms of group theory and of Hamiltonian
dynamics. One of the aims of the OLYMPUS system is to translate these
ideas, so far as is possible, into programming practice. The Hamiltonian
analogy is particularly useful since it specifically applies to equations

of type (2).

Each OLYMPUS physics program consists of a set of subprograms written
in Standard Fortran (National Computing Centre, 1970) and running under
the supervision of a universal main program and an associated control
routine, COTROL, which form part of a Standard Control and Utility Package
(Christiansen and Roberts, 1974). This package is contained in a local
system library and a version is provided for each different type of com-

puter system on which OLYMPUS has been implemented (currently, OLYMPUS

has been installed on seven types of computer system). The versions are
written mostly in Fortran and are similar. However, they need to take
account of system-dependent features such as word and byte length, channel
conventions and supervisor calls. Segregation within the OLYMPUS package of
system-dependent features makes it possible to transfer large programs from

one type of computer system to another with only minor changes, provided

that the recommended conventions have been followed.

- 18 -



The control routine COTROL described by Christiansen and Roberts (1974)
expects the programmer to supply a set of primary subprograms with the
names and functions defined in Table III: standardization of the nomen-
clature and overall structure is ensured. These primary subprograms can
call secondary subprograms whose names and functions are chosen by the
programmer to reflect the type of calculation performed (Table IV and
Fig.4). Dummy versions of the primary subprograms are provided within the
package as part of the OLYMPUS library and are useful during program
development. Taken in their entirety they constitute a dummy program
called CRONUS that has the same structure as other members of the OLYMPUS
family but solves a null set of equations. An OLYMPUS program package con-
tains also a number of utility and diagnostic routines in binary form that
may be regarded as an extension of the library of Standard Fortran
Functions (National Computer Centre, 1970), a set of standard COMMON blocks,
a preprocessor program (where this is not already provided by the computer
system itself (Hughes et al.,1975) ), test programs and data, and documen-

tation files.

B. PROGRAM STRUCTURE
Four aspects of program structure are taken into account in the design
of an OLYMPUS program, namely architecture, dynamics, control and

diagnostics.

It is often convenient to exploit a mechanical or electrical analogy in

which the program (software) is compared to a real physical machine

(hardware).

Architecture 1is a static concept and is concerned with the underlying

plan on which the program is based. In Fortran this plan is the division

of the program into subprograms and COMMON blocks, each of which has a
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specific duty to perform. This corresponds to the design of a real machine
as represented by a set of blueprints or a stationary model. The archi-

tecture of OLYMPUS programs is developed further in Section 1V, C.

Dynamics 1is concerned with how the program actually works. It is
useful to exploit the analogy with Hamiltonian dynamics in which there
exists the concept of the state of a dynamical system changing with time
according to certain laws; the state is represented by a set of coordinates
and momenta (q,p) and the laws of motion by the Hamiltonian, H. In the
case of a program it is necessary to have a clear understanding of the
amount of information needed to determine the "state of the computation'
in order that the program may be checked out thoroughly. The dynamics of
OLYMPUS programs will not be discussed in this article, except to remark
that it is simplified considerably by the choice of Standard Fortran
(National Computer Centre, 1970) which excludes ENTRY and RETURN i state-
ments, so making subroutine jumps easier to follow. The dynamics of
programs written in extended versions of Fortran, in Algol 60 and 68, in
PL/I and especially in assembly language can become progressively more
difficult to understand unless some extra restrictions are accepted by the

programmer.

Control 1is corcerned with the operation of the program by the user,
either for routine calculations or for thoserequiring ad hoc modifications.
Three standard techniques which are used in OLYMPUS programs will be des-

cribed in Section IV, E,

Diagnostics may be compared to the measurements or observations that
are made on a physical mechanism or electrical apparatus in order to moni-
tor its working and to check that it is performing correctly. Usually

these measurements do not disturb the working of the system, and the same
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criterion should be applied to the diagnostics in a computer program
(although there will result a slight reduction in running speed and a
small increase in the storage requirements in order to accommodate the
diagnostic routines themselves). The diagnostic facilities of a program
are required to moniter

(a) The working of the program

(b) The validity of the numerical scheme

(c) The behaviour of the ﬁhygical model which the

calculation is describing.
The OLYMPUS system per se deals only with (a).

C. ARCHITECTURE
Every OLYMPUS program has a similar architecture which consists of two

main parts

INSTRUCTIONS

L4

DATA STRUCTURE

The instructions are represented by the Fortran subprograms which are

currently organized into seven classes

0 Control 4 Epilogue

1 Prologue 5 Diagnostics

2 Calculation U Utilities .
3 Output

Each subprogram is assigned a decimal number {m.n) as indicated in Table III.
The control class O 1is common to all programs as also is the utility

class U and most of the diagnostic class 5. The subprograms of classes l-4,
which represent respectively the initialization, calculation, output and -

termination operations of the code, will differ from one program to another
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although the names of the primary subprograms must always be present since
these are called by the permanent control subprogram {0.3) COTROL. As a
real program is developed, working subprograms replace the dummy versions
otherwise loaded from a library. In this way a program is constructed in
a standard and methodical way enabling sections of the program to be

tested independently.

The data structure is represented by labelled COMMON blocks which are

organized into five groups

1. General OLYMPUS data
2. Physical problem

3. Numerical scheme

4. Housekeeping

5. Input, output and diagnostics.

These groups are subdivided into decimally numbered blocks [Cr.s] as
indicated in Table V. Blank COMMON is not normally used but has the label
[C9.0]. It is useful to visualize the COMMON blocks as operands and the
subprograms as operators which act on the data and change the values of the
variables and arrays in the same way as the Hamiltonian, H, acts on the
coordinates and momenta (S’E) in dynamics. In order to take advantage of
this simple picture all information relevant to the ''state of the
calculation'" is stored in COMMON rather than in local storage, and is
transmitted via COMMON rather than through subprogram argument lists.

This is easier to understand and has the advantage that the diagnostic
routines are able to examine COMMON and provide a "snapshot" of the current
state. Alphanumeric indices and subprogram maps are used to make the

architecture as clear as possible.
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Precautions are taken to avoid the duplication of non-local names by
the use of different initial letters to denote variables and arrays of
different status (COMMON, local, loop index, formal parameter). Only one
copy of each COMMON block is used throughout the program. This is inserted
automatically by means of a file substitution facility. A preprocessor

control statement such as

// SUBSTITUTE COMTOK

for the ICL 4/70 or IBM 360/370 computers results in the named file being
inserted in place of the control card. Corresponding facilities are built

into the CDC and Univac systems.

The COMMON blocks in Group 1 are intended to be standard library ver-
sions which are available to all programs. So far two have been published,
namely [C1.1] COMBAS which contains basic system parameters and [C1.9]
COMDDP which contains parameters used during the development and checking
of a program. Other blocks will contain fundamental physical constants,

character codes and other general-purpose information.

The physics of the step-by-step calculation is controlled always by
{2.1) SUBROUTINE STEPON, which in turn calls other Class 2 subprograms to
perform the actual calculation as illustrated in Fig.4 and Table IV.

There is considerable advantage in separating this part from the rest of
the program, which is concerned mainly with practical matters (although

(1.6) INITAL sets up the physical initial conditions).

D. INITIALIZATION

Experience indicates that in order to make a program easy to develop,
to understand and to-use, it is important to initialize the data struc-
ture in a logical way. Although programmers often employ a sequence of
data cards which may have quite complex and varied formats and are not

necessarily all read at the same position in the program, it is possible
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to use in most cases, a much simpler scheme which requires only a single
READ statement

READ (NREAD , NEWRUN) " (24)
Statement (24) is the same for all OLYMPUS programs: NREAD is the input
channel number, and NEWRUN is the name of a NAMELIST containing a list of

all variables and arrays whose default values may require to be changed.

Data initialization is the main purpose of the Prologue (Class 1)
which functions as follows: variables and arrays are cleared to zero in
(1.2) CLEAR prior to a sequence of three subroutines being entered

(1.3) PRESET
(1.4) DATA

(1.5) AUXVAL

PRESET assigns suitable default values to all those variables which can be
independently set. For clarity this is performed block-by-block with the
names arranged in alphanumeric order. DATA is called in order to change
any of these default values, and finally AUXVAL computes the values of
auxiliary Qariables which depend on the input data, such as the deter-

mination of
NM]. = N-l 3

where N 1is the number of mesh points. This procedure is organized block-

by-block where practicable.

NAMELIST data input has the effect of overwriting the values of vari-
ables and array elements that are referenced by name and leaving all others
unchanged. This facility is flexible, concise and symbolic so that it is
well-adapted to on-line working. The input file can be kept quite short if

appropriate default values are chosen, as illustrated in Table VI.

(1.6) INITAL is intended to provide the physical initial conditions for

the calculation. Frequently this is performed best by calling function
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subprograms such as FRHO (density), FTE (electron temperature) which
contain generalized functions whose parameters are acceptable in the
NAMELIST NEWRUN. {1.8) START performs any housekeeping duties necessary

before the run can begin.

E. CONTROL

Three standard methods are used to control an OLYMPUS calculation
1. NAMELIST data
2. Modification of the initial functions

3. The EXPERT facility.

Method 1 has been explained in Section IV,D, while Method 2 simply requires
that a new load module be generated with a different choice of one or more
of the initial functions FRHO, FTE ete. Usually this means copying the
source file and changing a few well-identified statements using an editor
facility. Method 3 is more powerful, and its purpose is to enable exten-
sive ad hoc modifications to be made to an existing source program without
compromising the original version, which may have been carefully tested

and which may be in current use by other people.

At appropriate points throughout an OLYMPUS program calls are inserted

of the form
CALL EXPERT(ICLASS,ISUB,IPOINT) . (25)

The formal parameters, ICLASS and ISUB, are local variables defining the
decimal code number (ICLASS.ISUB) of the subprogram from which the call is
made, and IPOINT is an integer which specifies the precise point within
that subprogram., These calls are not placed of course inside inner loops.
Subroutine (0.4, EXPERT(KCLASS,KSUB,KPOINT) is contained in skeleton
form in the OLYMPUS library and is used to control the diagnostics, but the
user is free to provide his own version which can be used to insert ad hoc

sections of coding. If an insertion is to be made at the point (2.13.3)
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(and possibly also at other points) a convenient technique is to employ

the statements

ICODE=10000*KCLASS+100*KSUB+KPOINT

IF(ICODE.EQ.21303)GO TO 21303
RE TURN
21303 CONTINUE
[Additional coding for point (2,13,3)]

RETURN

(0.4) EXPERT has access to all COMMON variables and arrays (provided that
the corresponding // SUBSTITUTE statements are included) and it can call
subprograms itself, if necessary. However, it must not call any sub-
programs that already contain statements of the form (25). This difficulty
can be avoided by including a switch of the form

IF (NLEXPT) CALL EXPERT (ICLASS,ISUB,IPOINT) . (26)

This is turned off as soon as EXPERT is entered and restored to its

original setting as soon as the return is made.

Provided that EXPERT is arranged in a logical way, a listing of this
file together with that of any additional subprograms constitutes a
generalized form of data input and sufficiently defines the ad hoc modi-

fications that have been made.

A further technique that can be used is to maintain a master version
of EXPERT on-line in a file called MASTER, which also contains all the
control statements needed to compile EXPERT, to link-edit or compose the

new version of the program and to run the job. The line numbers in this
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file are coordinated with the decimal numbering scheme used by OLYMPUS so
that it is easy to incorporate changes without making mistakes. The

ICL 4/70 Multijob Editor uses a command of the form
EDIT B/C s 5 5 5k

in order to edit corrections contained in file A into file B to produce a
new file C. The files A and B and the line numbers are left unchanged.
In order to insert ad hoc modifications and to run a new case commands of
the following form need to be typed

[Edit file MOD2]

EDIT MASTER/CASE2,,,, MOD2

REMJOB CASE2(S)

The job will be queued in the appropriate remote batch stream and

executed. Alternatively it could be executed on-line.

F. DIAGNOSTICS

Facilities are provided by OLYMPUS for tracing the flow of a program,
for switching-off selected subprograms, for printing messages, and for
displaying the contents either of selected COMMON blocks or of individual
variables or arrays. Diagnostic output is arranged in convenient form and
can largely be controlled by switches set in NAMELIST data input. For

example, the input line

NLREPT=T, NPDUMP=20701, NVDUMP=100,

would cause all COMMON variables (but not arrays) to be displayed at the
point (2,7,1), arranged decimally by blocks and alphanumerically within
the blocks in the form

{name} = (value)

This output forms a properly organized index to the current state of the

calculation. Other switch settings can be used to select only certain of

.



the blocks, or to display the arrays.

If the local system supports the facility, certain classes of error
cause the supervisor to re-enter the program at a point where the Fortran

statements

CALL CLIST(0,0)

CALL ARRAYS(0,0)

are used to generate an index for all COMMON variables and arrays. This is
preferable to the octal or hexadecimal dump that is provided by most com-

puter systems.

These facilities are useful during program check-out: the switches can
be visualized as part of an "engineer's test panel" and calls of the form
(26) as the "cables" which connect the panel to the program under test.
The OLYMPUS utility routines are also useful during ad hoc modifications,
since, for example, the statement

CALL RARRAY(S8HBTHETA ,BTHETA,MAXMSH)

in EXPERT will output the array containing the values of the poloidal mag-
netic field, By, without the need to construct FORMAT statements in the

usual way.

G. DOCUMENTATION

OLYMPUS programs together with their documentation are arranged in a
standard format as illustrated in Fig.5. This format is based on that
of a mathematical textbook and is intended to be as easy to follow as is
possible. The subprograms are divided into decimally numbered sections and
subsections each of which has an appropriate heading. Indentation is used
to improve the layout. In Fig. 5 the comments have been printed in
lower case on a General Electric Termi Net 300 to make them stand out from
the statements. It is planned to publish a number of programs in this form

for training purposes.
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V. Applications

A, INTRODUCTION

Recent publications (Dimock et al.,1973; Hinnov et al.,1973;
Berry et al.,1974) on the behaviour of Tokamak plasmas in a variety of
devices have provided a detailed description of the temporal behaviour of
the discharge. In particular, detailed measurements of not only the ohmic

heating current and voltage, but also the radial profiles of the electron

temperature and density have been obtained.

The predictions of neoclassical theory can be examined and are found
to be incorrect. It is therefore of paramount importance to be able to
omit selectively parts of the model, and to replace complete sections of the
model. The development of the physical model to one which simulates well
the behaviour of an ST discharge (Dimock et al.,1973) is monitored by the
method of introduction of additional flux and source terms into the code
ICARUS. Physical effects that may be present in the next generation of

Tokamaks can be incorporated readily into the code.

B. PRESENT GENERATION TOKAMAKS

1. The results of neoclassical simulations

The various codes which solve the full set of neoclassical equations
give essentially the same results. In Fig.6 the radial profiles of particle
density, n, electron and ion temperatures, Te and Ti’ as predicted by the

Duchs code (Hinton et al., 1972) and ICARUS (Watkins et al., 1975) are
plotted for conditions applicable to a low density discharge in a device

such as ST at a time of 60 ms.

The codes predict narrow, almost linear, density profiles coupled with
much broader thermal distributions. The density distribution results from

the dominance in the neoclassical equations of the Ware pinch effect
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(Ware,1970), which depletes of plasma the outer regions of the discharge
while the density near the axis increases. Since the temperature gradients
exist only near the edge where the density becomes low, the thermal losses

are also low.

However, the numerical predictions for existing Tokamaks are not in
accordance with experimental results. For conditions applicable to a high
density discharge in a device such as ST (Dimock et al.,1973) the experi-
mental profiles at 35 ms are very different from thosepredicted numerically
(Fig.7). As a result the energy balance is found experimentally to be domin-
ated by electron thermal conduction and recycling of particles rather than by ion
thermal conduction and radiation as is predicted numerically. The experi-
mental replacement times for the particle density, TP , electron and ion

4
T ., and total energy, T_,, are at least an order of magni-

o
Ee’ Ei E

tude smaller than those obtained numerically (Table VII).

energies,

A further deficiency of neoclassical theory is its inability to des-
cribe the current rise phase in Tokamaks. In this case, if the transport
were purely neoclassical the skin current would persist for extremely long
times (Duchs et al.,1971). This is not observed experimentally although the
ST discharge (Dimock et gl.,l973) appears to exhibit a mild skin effect
which is probably not negligible for the purposes of a detailed analysis of
the energy balance, but which reaches a saturation level. It is found
(Rosenbluth and Kaufman, 1958) that in a vacuum region the magnetohydro-
dynamic equations break down as a result of the joule heating term (which is
independent of number density) being shared between fewer and fewer particles
with the result that a singularity in the electron temperature can be
produced. In the case of the neoclassical equations,Furth et al.(1970) have

indicated that the skin effect during the rise of the plasma current could
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result in the excitation by surface heating of an unstable thermal mode

which will then augment and perpetuate the skin effect.

To circumvent this difficulty, the computer codes usually run with the
current initially distributed throughout the plasma volume and with the
total current maintained constant for all time. Nevertheless, skin currents

can result if too low a value for the density pedestal is maintained (Fig.8).

2. The Development of the Physical Model

The model of a Tokamak plasma as formulated by the neoclassical theory
gives the discharge a temporal behaviour which relates very little to an
experimental discharge. It is necessary to be able to omit or replace
easily sections of the model. This implies that the solution be determined’
in such a way that the physical model is separated from the numerical model
in the sense that changes in the physical model can be undertaken readily
and will‘be transmitted automatically in the correct form to the numerical
model. An interface may be constructed which will transform the flux, Es
and source, S, terms supplied by a user as functions of the dependent vari-
ables and of their spatial gradients into the block-tridiagonal, matrix

representation of the finite-difference equations.

The fluxes and source terms are determined respectively as coefficients,

FXoB and SCoB so that Eq.(3) is assumed to be of the form

d¢ 1 d OB\ _ =
"a'"E" <+ - g <I'%l FXoB 'é;) = %BSCQ'B » 2,B = {n’pe’Pi’Be} - (27)

In general, for a system of N-equations in N-dependent variables it
would be most advantageous to define the coefficients as two-dimensional
arrays FX(o,B), SC(«,B) so that looping over the indices 1-N may be used to

introduce even further independence.
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= Additional Flux Terms

a. Pseudo-classical diffusion. The pseudo-classical scaling laws

(Yoshikawa, 1970; Artsimovich, 1971) may be incorporated into the code
ICARUS in a number of different ways which highlight the versatility of the
OLYMPUS system. The definitions for the fluxes of particle density, elec-
tron and ion thermal energy densities and current density are defined

according to

r = =KD°<1+T-1—>B—“
=n - 0 T or
e
T op
= - — RS, N i
i nog (10 20) (T )
1
m T 2 ap
. i e c i 3n 5
= = i e e I —
Q, n T1> Dg (ar T, Br)(CAI e*+CBI €+CCI)
(28)
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1
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where (Spitzer, 1962)
"~ 0.457
K - I, A S
zeff {1.077 * Togs + 0.29 ] . (29)

The expressions for the fluxes incorporate no cross-terms sO that I is
dependent on an/ar only and Q is dependent on aT/Br only. In partic-
ular the trapped particle pinch terms in the neoclassical expressions

are not present. Since the ion transport is found experimentally to be
predominantly neoclassical, these terms are retained. The effect of a
relatively small population of heavy impurity ions (such as iron or tung-
sten) is to dominate the effective ionic charge, Zeff’ of a hydrogen plasma
and so modify the resistivity and the ofher transport coefficients in

accordance with Eqs.(28)-(29) (Spitzer, 1962).
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For a set of fluxes as given by these equations, the coding for the
neoclassical fluxes contained in the subroutine (2.6) FLUXES (Fig.4) may be
completely replaced by a new version. This would be the procedure if the
neoclassical version were now to be disregarded and the code were to be
based completely on the pseudo-classical model. The ad hoc inclusion of
the pseudo-classical model could be achieved by a suitable call to the
{0.4) EXPERT routine after the determination of the neoclassical fluxes.
The appropriate section of the user-supplied EXPERT would over-write or

append the fluxes with those appropriate to the pseudo-classical model.

However, for the particular pseudo-classical model given by Egs.(28)-
(29) examination of the equations indicates that they form a subset of the
basic model, provided that the numerical coefficients are chosen correctly.
In Table VI(a) the changes necessary to run the code in the pseudo-classical

mode are listed in the NAMELIST NEWRUN that may be read in as input data.

The NAMELIST NEWRUN indicates additionally how this facility enables
certain parts of the physical model to be temporarily removed in order to
estimate the effect of these terms. For example, the setting of CEOB equal
to zero enables all trapped—particle pinch terms to be omitted from the
calculation. The selective omission of terms in an equation facilitates
both the debugging of the code during development work and the under-

standing of the model equation during production work.

b. Pfirsch-Schliuter Diffusion. The model for plasma diffusion in the

highly collisional regime (vei >> vt) (Rosenbluth and Kaufman, 1958;
Taylor,1961) and modified by Pfirsch and Schluter (1962) to take into
account the effects of toroidal geometry is known to give diffusion losses
which are too small in comparison with tﬁose observed in present-day
Tokamaks. Nevertheless, Mercier and Soubbaramayer (1974) have found that

the Pfirsch-Schliter form of the diffusion coefficient modified by a large
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multiplicative factor, A >> 1 , is sufficient to simulate Tokamak behaviour
in TFR (Rebut et al.,1973) and ST (Dimock et al.,1971) experiments. The
modified Pfirsch-Schluter diffusion may be represented by the following

definition of the diffusion coefficient

2

D = .6q°
M1 + 1.6qg )vei pe@ )

MPS (30)

where q and P are respectively the Tokamak safety factor and the

eqp

electron gyro radius in the toroidal magnetic field

rB 2m kT
g ==t  5E oL E
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The code ICARUS may be used to investigate the behaviour of a collision-
free plasma in which the electron diffusion is determined by the modified
Pfirsch-Schliiter diffusion coefficient and the ion thermal transport is deter-
mined by that given by the neoclassical model. The changes necessary to run

the code in this mode are given in the NAMELIST reproduced in Table VI(b).

However, the use of neither a pseudo-classical nor a modified
Pfirsch-Schluter model is sufficient to be able to describe the "bell-shaped"
;lectron temperature profile observed in the ST experimental discharge
(Fig.7). Although the replacement times are reduced as a result of the
enhanced diffusion processes (Table VII), the diffusion alone is unable to
induce central peaking of the electron temperature, even though the Pfirsch-
Schluter diffusion coefficient peaks outwardly. It is necessary to invoke

additional mechanisms to reproduce the experimental profiles.

4, Additional Source Terms

The addition of source terms to those already incorporated in the basic
model may be accomplished in the first instance by the use of the EXPERT
facility which will contain coding that modifies the arrays that contain

the relevant source terms. Subsequent to the successful inclusion of these
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terms, the coding in EXPERT may be transferred to a single, self-contained
subroutine which is concerned exclusively with a particular aspect of the
physical model. For example, it is reasonable to define in a single sub-
routine the radiation losses associated with bremsstrahlung and cyclotron
processes (Fig.5). These are purely source terms wifh power losses

given respectively by Rose and Clark (1961) and Rosenbluth (1970)

3

6 u c
A effe /8T, _ L
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(h is Planck's constant and ¢ is the velocity of light. In the last expression

above, e is the base for natural logarithms, and not the charge on the electron.

The coefficient CBREM is a function only of the fundamental constants.
During the initialization procedure it is cleared to zero in subroutine
(1.2) CLEAR , defined equal to unity in subroutine (1.3) PRESET and cal-
culated as the product of CBREM and the fundamental constants in subroutine
(1.5) AUXVAL. Accordingly, the magnitude of the bremsstrahlung losses may
be modified in subroutine {1.4) DATA by defining the value of CBREM differ-
ent from uﬁity. In particular, setting CBREM equal to zero allows the

removal of bremsstrahlung radiation effects.

The complete omission of all radiation effects contained in subroutine
(2.10) RAD may be achieved by setting in the NAMELIST NEWRUN the logical

array element

- 35 -



NLOMT2(10) = T

A logical IF statement at the beginning of each CLASS 1, CLASS 2 and CLASS 3
subroutine can allow the return to the calling subroutine before any cal-
culation is performed. Any physical effect that is incorporated entirely

within onme subroutine can be suppressed by means of this facility.

Although radiation cooling is a process that will tend to make the
Tokamak discharge thermally unstable (Furth et al.,1970) its effect is to
reduce the central temperature of the discharge and encourage outward
peaking of the electron temperature (Fig.8). If a cooling mechanism is
required to induce central peaking of the electron temperature then it is
necessary that this mechanism be effective in the outer, low-density
regions of the discharge. Experimentally, it is observed that although
there is a large outflow of particles to the limiter of the Tokamak,
recycling of particles occurs to such an extent that the total number of
particles contained in the torus remains approximately constant.
Penetration into the plasma of these recycled particles occurs with the
result that they are ionized and afford a source to the particle distri-

bution and a sink to the electron emergy distribution.

Detailed calculations of the effect of a neutral gas component have been
1
performed by Duchs et al. (1972), Girard et al. (1972) and Hogan and Dory
(1972), and take into account both the ionization of the neutral population

and the production of hot neutrals as a result of charge exchange with the

background plasma ion population. The source terms which enter the particle
density equation (5) and electron energy equation (6) as a result of the

ionization of the neutral species may be written
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where the interaction of the background plasma population, n, with the
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neutral species, n o, is determined by the cross-section, (GV>I, for ioniz-
ation,together with an average energy loss of the electrons per ionizing

collision, E To indicate the predominant effect of the neutral gas,

I "
namely the depression of the electron temperature on the outside of the
discharge and the elevation of the electron temperature in the central
region of the discharge, a very simple model for the neutrals will be used
for the purposes of this article. The source terms in Eq.(33) are

replaced by an heuristic model which maintains constant the total particle

content of the torus

& r L
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a a
5 - : 2] 0 (34)
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8t a I'a
The penetration of the neutral species may be achieved by setting m to
an appropriate value. In ST the neutrals penetrate well into the plasma

(Dimock et al.,1973) so it is reasonable to choose m = 2, which corresponds
to a distribution that is parabolic in r. Although both the pseudo-
classical and modified Pfirsch-Schluter diffusion models give electron
temperature profiles that have an inflexion point (Figs.9 and 10), the
experimental values for the particle density and temperatures are approxi-
mated more accurately by the modified Pfirsch-Schluter scaling law
(Table VII) as a result of the greater outflow of particles which induces
more peaking of the electron temperature on axis.
C. NEXT GENERATION TOKAMAKS

Extrapolations of the results of both neoclassical and pseudo-classical

theory to the regime applicable to the next generation of larger Tokamaks
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give optimistic predictions. In both cases conditions are favorable for
thermonuclear burning to take place without the aid of additional heating
mechanisms and provided that the mean particle density is less than

5 x 10°° m® and the toroidal current is greater than 3MA (Fig.1ll). On
the other hand the Pfirsch-Schluter model, which gave the best simulation
of the ST device, produces less favorable results when applied to a large
Tokamak. Shallow penetration (m=6) of a large influx of "neutrals" cools
the plasma considerably near radius, r =a, with the result that the mean

temperature is low (Table VIII).

The neoclassical model has the advantage that an isolated pinch is
formed as a result of the Ware pinch effect. The input energy is dissi-
pated almost entirely by bremsstrahlung radiation losses so that the
predicted energy replacement time is comparatively long (Table VIII).
However, the neoclassical solution is thermally unstable (Duchs et al.,
1971) with off-axis peaking of the temperatures occurring to different
extents depending on the initial conditions. Although the replacement
_times predicted by the pseudo-classical diffusion model are less than
those corresponding to the neoclassical formulation, the solution is
independent of the initial conditions and greater central and mean tempera-
tures are obtained as a result of channelling of the toroidal current along

the minor axis.

Within the context of the simple model for the neutral recycling, the
pseudo-classical model produces the most optimistic results. Nevertheless
it is anticipated that additional heating mechanisms will be necessary in
order to ensure thermonuclear burning in future Tokamaks. The injection
of a neutral beam of particles into a Tokamak (Kelley et al.,1972;

Stewart et al.,1973; Aldcroft et al.,1973; Dei-Cas et al.,1973; McNally,1973;

Cordey et al.,1974; Rome et al.,1974) in order to elevate the temperature
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above that set by ohmic heating alone is an illustration of an experimental

technique for which theoretical progress is very rapid (Sweetman, 1973;
Callen et al., 1974; Connor and Cordey, 1974; Cordey, 1974; Cordey and Core,

1974; Rome et al., 1974).

The incorporation into a diffusion code of the effects of a beam of
fast neutral particles may be performed in a sequence of separate opera-

tions which illustrate the versatility of the OLYMPUS system.

Provided that the energies of the fast neutrals are sufficiently high

a
Ef > 2 x 10 Af eV

(where A is the atomic mass of the fast neutrals), the number nf(r,t)drdt

f
of fast neutrals that are deposited in the radial interval r = r +dr and
the time interval t = t+dt is given by Riviere (1971)
X = X=a
r " n N

1 . e s - . -
nf(r,t) =|:q—ffL- n, (rllLexp JLJ r;‘_e (x)dx}+exp ‘[-— ‘CJ, Te (x)de]exp {-‘cj) Te (x)dx}
)

(35)

where If and q are respectively the neutral beam equivalent current

and charge, and n, is the electron number density.

The function, L, defined according to

Lf sin &

L:—--_—-—---——
Zeff(r)

is a measure of the penetration of the beam and is affected by the effec-

tive charge, the angle, 6, at which the beam is inclined to the

Zoff?
magnetic field, and the penetration "length", Lf, which for sufficiently

high energies may be approximated (Sweetman, 1973) by

4 Ef -
L, =5.5x 10* s (m 2]
£
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The determination of nf(r,t) forms a well-defined unit that is not affected
by the calculations that follow. It is performed therefore in a single
subroutine (2.12) INJECT which, during the initial stages of development,
called (0.4) EXPERT in order to calculate the birth-profile, S(r,t), of
electrons resulting from the ionization of the neutral beam. This involves
distributing the beam around the toroidal and poloidal azimuths. A simpli-
fied model applicable to a finite pencil beam of neutrals, has been

incorporated into the code ICARUS. This model defines

'ﬂf(r,t)

{ e
${r,t) 4 TR

(36)

where R 1is the major radius of the torus. The use of the EXPERT facility
allows the model for the calculation of the birth profile to be sub-
sequently developed - even by physicists who have no other connection with

the rest of the code.

The distribution of injected power to the electrons and ions can be
determined analytically (Stix, 1972; Sweetman, 1973). The model of
Sweetman (1973) is incorporated at present into ICARUS with the electrons

and ions receiving fractions fe and fi of the total injected power

5] -
£, =|1+0.34X , £ =1-f_,
1 e 1

2
al® —g
X = [}__i___:}_i. ,
a6 A |T, 0

where Ai and Af are respectively the atomic masses of the plasma ions

(37)

and fast neutrals.

The effect on the temperature distributions of a beam of injected hot
neutrals is dependent on the penetration of the beam (Fig.12). For injec-
tion at high energy (Ef=8x 104eV, If=10 A) there is deep penetration of

the beam with the result that the central temperature is strongly increased.
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This can result in a tendency for the plasma to be thermally unstable

when q{(r =o0) becomes less than unity. On the other hand, for injection at
low energy (Ef =2 x 10% eV, If=40 A) the energy is deposited in the outer,
low density regions with the result that the elevationsof temperature and
particle concentration increase the flow of particles and energy out of

the discharge.
VI. Summary

Using the Tokamak code ICARUS as an example, this article has des-
cribed the construction of a computer model which simulates the physical
behaviour of a plasma discharge. The ICARUS code has been designed to be
a versatile research apparatus which is able to examine various theoretical
assumptions that may be represented by sets of coupled one-dimensional
diffusion equations. By using the programming conventions and library
facilities provided by the OLYMPUS system, it is possible to insert into
the basic version of the code a selection of flux and source terms which
are additional to those contained in the neoclassical diffusion model.
Particular features of the code not only can be tested independently but
also can be replaced easily, so that different physical assumptions,

numerical techniques and input/output facilities can readily be used.

The predictions of neoclassical diffusion in an axisymmetric, toroidal
containment device have been compared with the results of experiment, with
the predictions of a pseudo-classical model, and with those of the Pfirsch-
Schluter model modified by a numerical factor chosen to make the associated
diffuéion coefficient comparable with that for pseudo-classical diffusion
at radius r ® 0.5a. Within the context of an heuristic model for neutral
recycling, which serves to maintain constant the total particle content and

to provide an energy sink for the electrons, the modified Pfirsch-Schluter
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diffusion provides the best description of a small Tokamak discharge. On
the other hand the pseudo-classical model provides the most optimistic

predictions for the behaviour of a future-generation large Tokamak.

In extrapolating from one regime to another it is of paramount
importance both to have confidence in the behaviour of the computer code
and to have the theoretical assumptions clearly stated. To this end the
OLYMPUS system imposes rigorous standards of structure and documentation
which enable the physics, numerical techniques and programming methods to
be understood and the code to be run by other workers on their own

computers.
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TABLE I.

The numerical values of the constants

in the neoclassical transport coefficients for

a collision-free plasma

CAll = Lol2 CBll = - 0.62 CCll = 0.0
CAl2 = 1.27 CBl2 = - 0.77 CCl2z = 0.0
CAl3 = 2.44 CB13 = - 1.44 CCl1l3 = 0.0
CA22 = 2.64 CB22 = - 0.93 CC22 = 0.0
CA23 = 4.35 CB23 = - 1.85 CC23 = 0.0
CA33 = - 1.95 CB33 = 0.95 €c33 = 1.0
CAI = 0.48 CBI = 0.23 CCI = 0.0
CAY = 0.0 CBY = 1.17 CCY = 1.33
TABLE II. The'"smoothing functions"used to extend

the range of validity of

model to more collisional plasmas.

the neoclassical transport

SMTH11

SMTH12

SMTH13

SMTH22

SMTH23

SMTH332

SMTHI

1.0/(1.0

1.06/(1.0
= 1,0/(1.0
= 1.0/(1.0

= 1,0/(1.0

1.0/(1.0

Il

1.0f¢1.0

+ 1.76 v
+ 0.66 v

+ 0.85 v

+ 0,35 V

+ 0.40 Vv

+ 1.00 v _,

ei

"Smoothing functions",SMTHoB, act to transform

i 1
(CAxBe? + CBaB €+ CCaP) into (CAXB €*+ CBoB € )x SMTHoB + CCoB.

The normalized collision frequencies, Voi and V.. ,

are defined as

where

\) . —
el

2 ii
b

el v,. = _ii
LV

11

Vv, is the bounce frequency of trapped particles.

b
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TABLE III. The names, identification numbers and titles
of the primary subroutines called by the main control

subroutine (0.3) COTROL,

NAME NUMBER TITLE
LABRUN 1.1 Label the run
CLEAR 1.2 Clear variables and arrays
PRESET 1.3 Set default values
DATA 1.4 Define data specific to run
AUXVAL 1.5 Set auxiliary values
INITAL 1.6 Define physical initial conditions
RESUME 1.7 Resume run from previous record
START 1.8 Start the calculation
STEPON 2.1 Step on the calculation
OUTPUT 3.1 Control the output
TESEND 4.1 Test for completion of run
ENDRUN 4.2 Terminate the run
EXPERT 0.4 Modify standard operation of program
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TABLE IV,

The names, identification numbers and titles

of the Class 2 subroutines which perform the diffusion

calculation in the computer code, ICARUS.

NAME NUMBER TITLE

STEPON Z. 0 Step on the calculation

BLKSET 2,2 Set up the matrix form of the difference equations

BNDRYO 253 Set up the boundary conditions at radius, r = o

BNDRYN 2.4 Set up the boundary conditions at radius, r = a

PHYSIN 2.5 Organize the determination of the transport model

TRANS 2.6 Evaluate the neoclassical transport coefficients

SOURCE 2.7 Evaluate the neoclassical source terms

RIPPLE 2.3 Evaluate the transport resulting from modulations
in the toroidal field

TRAP Z.9 Evaluate the transport resulting from trapped
particle instabilities

RAD 2,10 Evaluate the radiation losses

ALPHA 2,11 Evaluate the effect of alpha particles

INJECT 2.12 Evaluate the effect of the injection of a beam of
neutrals

BLKSLV 2.13 Solve the block tridiagonal system of linear
equations

LUF 2,14 Form the Lower and Upper factors

FANDB Z.15 Forward and Backward substitution

FANDBV 2.16 Vector Foward and Backward substitution

CHECK 2,17 Check the accuracy of the solution

RESET 2.18 Reset variables so that the timestep may be repeated

ADCOMP 2.19 Evaluate the effect of adiabatic compression

STORE 2.20 '| Determine the variables to be stored periodically
in time
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TABLE V. The labelled common blocks which define the

"state of the calculation" in the computer code, ICARUS.

NAME NUMBER TITLE
COMBAS 1.1 Basic system barameters
COMFUN 1.4 Fundamental constants
COMDDP 1.9 Development and diagnostic parameters
COMPHY 2.1 Physical quantities
COMCNS 2.2 Physical constants
COMTOK 2.3 Machine parameters
COMFLX 2.4 Flux variables
COMSRC 2.5 Source variables
COMESH 3 .l Mesh wvariables
COMSTO 3.2 Temporally accumulated variables
COMXSN 3.3 Averages over the minor cross-section
COMADM 3.4 Administrative variables
COMCON 4.1 Control variables
COMPLT 5.1 Graph plotting variables
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TABLE VI.

for the computer code, ICARUS, in order to model

The namelist NEWRUN used as input data

(a) pseudo-classical diffusion in a small Tokamak

(b) modified Pfirsch-Schluter diffusion in a small Tokamak

(¢) neoclassical diffusion in a large Tokamak

(a)
SMALL TOKAMAK RUN

75/01/01
PSEUDO-CLASSICAL DIFFUSION

(b)

SMALL TOKAMAK RUN

75/01/01

n
MODIFIED PFIRSCH-SCHLUTER DIFFUSION

(c)
LARGE TOKAMAK RUN

75/01/01
NEOGCLASSICAL DIFFUSION

NEWRUN
NLOMT2(12)= T,
CEOB = 0.0,
XN = 1.0
CB1l1 = 0.0,
CB12 = 0.0,
CB13 = 0.0,
CB22 = 0.0,
CB23 = 0.0,
CBL = 0.0,
CAll = 0.0,
CAl2 = 0.0,
CA22 = 0.0,
CAY = 0.0,
CBY = 0.0,
ge1l = 1.0,
(353 . = 1.5,
cEa2a = 3.25,
] 94 = 1.5,
PIQ(12) = 2.0,
PIQ(13) = 1.0,
PIQ(14) = 40.0,
END

RESET

END

& NEWRUN
NLOMT2(12)

CEOB
XE
XN
CB11

CB12
CB13
CB22
CB23
CBL
CAll
CAl2
CA22
CAY
CBY
ccl1
ccl2
€c22
ccY
PIQ(12)
PIQ(13)
PIQ(14)

& END
& RESET
& END

Il
]

Il

200.0,

]
o
o

= 0.0,
= 0.0,
= 100,
= 0.0,
= 0,0,
= 0.0,
= 0.0,
= 0.0,
= 0.0,
= 0.0,
= 0.0,
= 1.0,
= 1.5,
= 5.95,
= 1.5,
= 2.0,
= 1,0,
= 40.0,

& NEWRUN
RMAJOR = 2.93,
RMINOR = 1.28,
RPLSMA = 1.28,
CURENT = 3.0E+06,
DENMAX = 9.1E+19,
TEMAX = 1000.0,
TIMAX = 1000.0,
NLOMT2(12) = T,
CB1l1 = 0.0,
CBl2 = 0.0,
CB13 = 0.0,
CB22 = 0.0,
CB23 = 0.0,

CBI = 0.0,

& END

& RESET

& END

= 47 -




B=d.1 = On
(RN 8 g PR an § e MY
.Hﬂ.u.. .m_H Hu = ! apx U-H. qu = o
o ’ opmquﬂHﬂ MOT
B=1_Q mw On e_1 ipiu E ® o
m ¢ H_Ad_w.ﬂ.\.rnv o _”_Hhu o] n mm
_ m& r_ mk = A_H_v apaiu lluAcv ,
API(T1 + 2z)3u o ipa = 4 9 Z %
2 B
e e apagvu
. B
(su %¢)
(A4 7% 1T 9 GZ¢'0 9¢'0 | 8Z'0 Z9°0 691 8¢'0 |00 06 0 9°¢ 9°¢C 00T ¥
193n1YO§-Y2SITIJ
11
il
(su mmu
€T 19 0¢ €C 1€°0 8G°0 | S€°0 S9°0 9°'1 0z |%¢'0 9%°0 €0°1 0°'¢ Lzo9yg
1BOISSETIO-0pPNasg
(su %¢)
86 709 901 9061 || 0770 ¢S50 | Sh'0 8S°0 €9°1 ¢°'¢€ 8070 I6°0 L9°0 G°¢g L3109y,
1BOTSSBID039N
(su Gg)
- 61 £l 91 - |st0 - 9.°'0 8 1 9°0 [9€'0 | 9%0 22 L°2 juawriadxy IS
. (a3 [ (33 | (= _01%) (B8 [ (A5%) | (8o | (,_®_,01%)
TH °d | d ) E) T 2 7 1 o
;) L " L g 8¢ |1y | (1) (u) b a L L a me| Suiiess
._.AmEu S2UWT] U.GGENUNHQ.MM—— 3 SenieA UBIR SenTeA TBIJUI)
)
"(LL'E = m.ﬁoouf“

NeweyoJ T]BWS B UT

3

3
A

931eyosTp A3TSudp Y31y B JO SOTISTIDIOBIBRYD [BISUDY

Hgr0T X L'T~(U) “WWI'0=® ‘W0 =1¥)

"IIA JT4dVIL

- 48



o B=1 =] o
P Ba) (1A O oy [Conja-4) o = " ey
apx .H.H. Nu - = L aApx .W.H Hu = s nw—
e prpiu " ongf
2 e
= ° - apaiu
nts o i . 2
- (I-A) =~ _ & = A —_B _ ipiu = _ /u
wpa(fr + oy , ipra, T Y4 g= e = g -
L) e 1paryu E
e
N
: (50" %)
£ < 1 Z°0 ¢1'0 j¢1°0 €1 €1 0°¢ S9°0|110°0 9°¢ 9'¢ 0°9 00C*
I2INTYIS-YIs1TH
(59°%)
L& 66¢ 9 IAVAE 720 | %20 9°¢ 97 0°¢ £L°012TI0°0 1°¢ 1°€ 1°8 £a09yg,
TBOISSB[D~-0pnasyg
. . . : . . . : . : (8%°6)
L% | 6L%e-| 11 SgE- || 12°0 [12°0 | 2°¢ T ¢'S LT'T|€T0'0 | 12 1°¢ L AR000% A11BT3ITUT 39S
Xeuw U_H. yatm
: ‘ ; : . ‘ : 5 . . (8676) £103yg
00S | 6%E€EL | 91 Tv6=||61°0 |61°0 | 0°2 0% 1°6 BZ'T|%10°0 | 6°1 6°1 12¢ e 6oy [eosseTo08Y
(Ae¥) | (A93) | (_w _ 0TX) (=UA) [(A9) | (a23) [ (W _ 0TX)
ol SRR 4 e e Ty | Py | bl Z | | % u net Surreos
AMUp_-mmE..nu UENEMUMHQUM :mw._u._..mP Ue9 mMSHmP Tea3u=)H
d b
(1€="9d ‘VHE= T ¢ = B ‘ugg g = )

Jeweoy], @81e] B uy 931BYISIP B JO SOT]ISTIDIOBIBYD [BIBUIY

e UeOT X076 = (uy ‘w gz T

"IITA 19V

- 49



References

Aldcroft, D., Burcham, J., Cole, H.C., Cowlin, M., and Sheffield, J. (1973).

Nucl.Fus. 13, 393.

Artsimovich, L.A. (1971). Sov.Phys.- JETP Lett.l3, 70.

Artsimovich, L.A., Anashin, A.M., Gorbunov, E.P., Ivanov, D.P., Petrov, M.P

259

and Strelkov, V.S. (1969). Sov.Phys.- JETP Lett.10, 82.

Bateman, G., Schneider, W., and Grossmann, W. (1974). Nucl.Fus. 14, 669.

Berry, L.A., Clarke, J.F., and Hogan, J.T. (1974). Phys.Rev.Lett. 32, 362.

Bol, K., Ellis, R.A., Eubank, H., Furth, H.P., Jacobsen, R.A., Johnson, L.C.,

Mazzucato, E., Stodiek, W., and Tolnas, E.L. (1972). Phys.Rev.Lett. 29, 1495.

Braginskii, S§.I. (1965). In "Reviews of Plasma Physics" (M.A.Leontovich,ed.),
Vol.I, pp. 205-311. Consultants Bureau, New York.

Burke, V.M. (1970). Computer Phys.Commun. 1, 473.

Callen, J.D., Colchin, R.J., Fowler, R.H., McAlees, D.G., and Rome, J.A.

(1974). Proc.5th Int.Conf.on Plasma Physics and Controlled Nuclear Fusion

Research, Tokyo, TAEA-CN-33/Al6-3.

Chapman, S., and Cowling, T.G. (1953). "The Mathematical Theory of Non-

Uniform Gases." Cambridge University Press, New York.

Christiansen, J.P., and Roberts, K.V. (1974), Computer Phys.Commun. 7, 245.

- 50 =



Christiansen, J.P., Ashby, D.E.T.F., and Roberts, K.V. (1974). Computer

Phys.Commun. 7, 271.

Christiansen, J.P. (1975). To be submitted for publication in Computer

Physics Communications,

Connor, J.W., and Cordey, J.G. (1974). Nucl.Fus. 14, 185.

Cordey, J.G. (1974). Proc.5th Int.Conf. on Plasma Physics and Controlled

Nuclear Fusion Research, Tokyo, IAEA-CN 33/Al6-1.

Cordey, J.G., and Core, W.G.F. (1974). Phys.Fluids 17, 1626,

Cordey, J.G., Hugill, J., Paul, J.W.M., Sheffield, J., Speth, E., Stott,P.E.,

and Tereshin, V.I. (1974). Nucl.Fus. 14, 441.

Dei-Cas, R., De Sacy, S., Druaux, J., Marty, D., and Rebut, P.H. (1973).

Proc.3rd Int.Symp.on Toroidal Plasma Confinement, Garching, E9.

Dimock, D,, Eckhartt, D., Eubank, H., Hinnov, E., Johnson, L.C.,

Meservey, E., Tolnas, E., and Grove, D.J. (1971). Proc.4th Int.Conf.on

Plasma Physics and Controlled Nuclear Fusion Research, Madison 1, 451.

Dimock, D.L., Eubank, H.P., Hinnov, E., Johnson, L.C., and Meservey, E.B.

(1973). Nucl.Fus. 13, 271.

Dnestrovskii, Y.N., Kostomarov, D.P., and Pavlova, N.L. (1970). Proc.4th

European Conf. on Control Fusion and Plasma Physics, Rome 1, 17.

Dory, R.A., and Widner, M.M. (1970). Bull.Am.Phys.Soc. Ser.II, No.1l1l, 1418.

- 51 -



Drummond, W.E., Nielsen, P., Phillips, P., Medley, S., Jancarik, J., and

Bengston, R. (1973). Proc.3rd Int.Symp. on Toroidal Plasma Confinement,

Garching, B6.

Dlichs, D.F. (1970). Bull.Am.Phys.Soc. Ser.II, No.ll, 1488.

Dichs, D.F., Furth, H.P., and Rutherford, P.H. (1971). Proc.4th Int.Conf.on

Plasma Physics and Controlled Nuclear Fusion Research, Madison 1, 369.

Duchs, D.F., Furth, H.P., and Rutherford, P.H. (1972). Proc.5th European

Conf. on Controlled Fusion and Plasma Physics, Grenoble 1, 14.

Feneberg, W., and Lackner, K. (1973). Nucl.Fus. 13, 549.

Friedberg, J.P. (1970). Phys.Fluids 13, 1812.

Furth, H.P., Rosenbluth, M.N., Rutherford, P.H., and Stodiek, W. (1970).

Phys.Fluids 13, 3020.

Galeev, A.A., and Sagdeev, R.Z. (1968). Sov.Phys.- JETP 26, 233.

Gibson, A., Bickerton, -R.J., Cole, H.C., Haegi, M., Hugill, J., Paul, J.W.M.,
Reynolds, P., Sheffield, J., Speth, E., and Stott, P.E. (1973). Proc.3rd

Int.Symp. on Toroidal Plasma Confinement, Garching, B16-I.

Girard, J.P., Khelladi, M., and Marty, D. (1972). Proc.5th European Conf.

on Controlled Fusion and Plasma Physics, Gremoble 1, 105.

Goedbloed, J.P., and Hagebeuk, H.J.L. (1972). Phys.Fluids 15, 1090.

Hazeltine, R.D., Hinton, F.L., and Rosenbluth, M.N. (1973). Phys.Fluids 16,

1645.

- 52 -



Hinnov, E., Dimock, D.L., Johnson, L.C. and Meservey, E.B. (1973). Proc.3rd

Int.Symp.on Toroidal Plasma Confinement, Garching, B13.

Hinton, F.L., Wiley, J.C., Duchs, D.F., Furth, H.P., and Rutherford, P.H.

(1972). Phys.Rev.Lett. 29, 698.

Hogan, J.T., and Dory, R.A. (1972). Proc.5th European Conf. on Controlled

Fusion and Plasma Physics, Grenmoble 1, 40.

Hogan, J.T., Widner, M.M., and Dory, R.A. (1971). Phys.Rev.Lett. 36A,3, 217.

Hughes, M.H., Roberts, K.V., and Roberts, P.D. (1975). Computer Phys.Comm.

9, 51.

Itoh, S., Fujisawa, N., Funahashi, A., Kunieda, S., Takeda, T., Matoba, T.,
Kasai, 5., Sugawara, T., Toi, K., Suzuki,N., Maeno, M., Inoue, K., Ohta, M.,
Matsuda, S., Ohga, T., Arai, T., Yokokura, K., and Mori, S. (1973).

Proc.3rd Int.Symp. on Toroidal Plasma Confinement, Garching, B4.

Kadomtsev, B.B., and Pogutse, 0.P. (1971). DNucl.Fus. 11, 67.

Keeping, P.M., Grimm, R.C., and Killeen, J. (1972). Proc.5th European

Conf. on Controlled Fusion and Plasma Physics, Grenoble 1y 38.

Kelley, G.G., Morgan, 0.B., Stewart, L.D., and Stirling, W.L. (1972).

Nucl.Fus. 12, 169,

Kelley, G.G., Barnett, .C.F., Berry, L.A., Bush, C.E., Callen, J.D.,
Clarke, J.F., Colchin, R.J., Dory, R.A., England, A.C., Hogan, J.T.,
McNally, J.R., Murakami, M., Neidigh, R.V., Roberts, M., Rome, J.A., and

Wing, W.R. (1973). Proc.3rd Int.Symp. on Toroidal Plasma Confinement,

Garching, B3-I.

- 53 -



Knorr, G. (1965). Phys.Fluids 8, 1334.

McNally, J.R. (1973). Report ORNL TM 4363, Oak Ridge.

Mercier, C., and Soubbaramayer. (1970). Proc.4th European Conf. on

Controlled Fusion and Plasma Physics, Rome 1, 16.

Mercier, C., and Soubbaramayer. (1974). Private communication.

National Computing Centre Limited. (1970). ‘"Standard Fortran Programming

Manual."  The National Computing Centre Limited, Manchester, England.

Newcomb, W.A. (1960). Ann.Phys.(NY) 10, 232.

Rebut, P.H., Bariaud, A., Breton, C., Bussac, J.P., Crenn, J.P.,
Dei-Cas, R., Michelis, C.De., Delmas, M., Ginot, P., Girard, J.P.,
Gourdon, C., Hennion, F., Huguet, M., Launois, D., Lecoustey, P.,
Marty, D., Mattioli, M., Mercier, C., Morriette, P., Platz, P.,
Plinate, P., Sledziewski, Z., Smeulders, P., Soubbaramayer., Tachon, J.,

Torossian, A., and Ya 'akobi, B. (1973). Proc.6th European-Conf. on

Controlled Fusion and Plasma Physics, Moscow 2, 20.

Richtmyer, R.D.,, and Morton, K.W. (1967). "Difference Methods for

Initial-Value Problems." Wiley, New York.
Riviere, A.C. (1971). Nucl.Fus. 11, 363.

Roberts, K.V. (1969). Computer Phys.Commun. 1

=
>
=

Roberts, K.V. (1971). Computer Phys.Commun. 2, 385.

= Bl -



Roberts, K.V. (1974). Computer Phys.Commun. 7, 237.

Rome, J.A., Callen, J.D., and Clarke, J.F. (1974). Nucl.Fus. 14, 141.

Rose, D.J., and Clark, M. (1961). '"Plasmas and Controlled Fusion."

MIT Press/Wiley, New York.

Rosenbluth, M.N. (1970). Nucl.Fus. 10, 340.

Rosenbluth, M.N., and Kaufman, A.N. (1958). Phys.Rev. 109, 1.

Rosenbluth, M.N., Hazeltine, R.D., and Hinton, F.L. (1972). Phys.Fluids 15,

116.

Rutherford, P.H. (1970). Phys.Fluids 13, 482.

Pfirsch, D., and Schluter, A. (1962). Report MPI/PA/7/62, Max-Planck

Institute for Physics and Astrophysics, Munich.

Potter, D.E. (1973). '"Computational Physics." Wiley, New York.

Potter, D.E., and Tuttle, G.H. (1973). Proc.6th European Conf. on

Controlled Fusion and Plasma Physics, Moscow 1, 217.

Shafranov, V.D. (1970). Sov.Phys.- Tech.Phys. 15, 175.

Sharp, W., and Taylor, J.C. (1973). Proc.6th European Conf. on Controlled

Fusion and Plasma Physics, Moscow 1, 45.

Spitzer, L. (1962). "Physics of Fully Ionized Gases." Wiley/Interscience,

New York.

- 55 -



Stewart, L.D., Callen, J.D., Clarke, J.F., Davies, R.C., Dory, R.A.,
Hogan, J.T., Jernigan, T.C., Morgan, 0.B., Rome, J.A., and Stirling, W.L.

(1973). Proc.3rd Int.Symp. on Toroidal Plasma Confinement, Garching, ES.

Stix, T.H. (1972). Plasma Phys. 14, 367.

Sweetman, D.R. (1973). DNucl.Fus. 13, 157.

Sykes, A., and Wesson, J.A. (1974). Nucl.Fus. 14, 645.

Taylor, J.B. (1961). Phys.Fluids 4, 1142.

Von Hagenow, K., and Lackner, K. (1973). Proc.3rd Int.Symp. on Toroidal

Plasma Confinement, Garching, F7.

Ware, A.A. (1970). Phys.Rev.Lett. 25, 916.

Watkins, M.L., Hughes, M.H., Keeping, P.M., and Killeen, J. To be sub-

mitted for publication in Computer Physics Communications.

Winsor, N.K., Johnson, J.L., and Dawson, J.M. (1970). J.Comp.Phys. 6, 430.

Wooten, J., Hicks, H.R., Bateman, G., and Dory, R.A. (1974). Report

ORNL TM4784, Oak Ridge.

Yoshikawa, S. (1970). Phys.Rev.Lett. 25, 353.

- 56 -



..A&nonhv wa31sAs

93BUTPI00D 3Y] JuTIELDTPUT SNI03 2Yyj jo weiSeIp JIjBWSYDY 1°814

SIXV JOrvin

HONIW




Fig.2

N
I 0O W
T Az S
ZW 5 <Z3
o > O—«
t—5<LLIN —Ts)
VZs o N <
== 9 N o
=20 <[U-Q.
OSN' o 'S
O o OO0 >
>‘
@)
o
E - D
o~ | —1~> O
T " ¥
o - I o
Sw 2 | L
=0 |
Wwao & 5
- | o
z W 1
= O ] n
\ -
o
L \ 0 Q
2% W 1k
OCQqx > \
v - NMo
SJwW e
3 5
2
IULLD

a "LN312144302 NOIsSNn44ia

Schematic representation of the neoclassical diffusion

coefficient, D, as a function of the electron-ion collision
frequency, V., in the collision-free (vei< vy )s intermediate
v, <v ., <v ollision-dominat V.2V i ‘

( L i t),and collision-dominated ( i t) regimes

The "smoothed" approximation for the diffusion coefficient

used in the computer code, ICARUS, is also indicated together

with the coefficient for classical diffusion in a cylinder.
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Comparison of the radial profiles of particle density, n,

electron temperature, Te’ and ion temperature, Ti’ for con-
ditions applicable to a low density discharge in a Small

Tokamak (R=1.09m, a=0.14m, {n’ =6x101_8m_3; I.=40 kA,

¢
B$==3T) at 60 ms as given by the code, ICARUS (—), and
that of Duchs (+,0,A), using the neoclassical diffusion

model.
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Comparison of the radial profiles of particle density, n,

electron temperature, Te’ ion temperature, Ti

]

for conditions

applicable to a high density discharge in a Small Tokamak

(R=1.09m, a=0.14m, {n) = 1.65x10"%n >, I=

ks

60 kA, BCP=3.7 T)

given at 35 ms by the code, ICARUS, using the neoclassical

diffusion model (—), and the laboratory experiment (Dimock

t

—

1., 1973) (-===).
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Fig.8 The radial profiles of the electron temperature, Te, for

conditions applicable to a high density discharge in a

Small Tokamak (R=1.09m, a=0.l4m, {n) = 1.65x 10'°

I@=60 kA, B¢==3.7 T), given by the code, ICARUS, to indicate
the neoclassical "skin-effect" when (a) a 5% density pedestal
is maintained at r = a for all time, and (b} the

bremsstrahlung radiation losses are enhanced by a factor of

10000.0.
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The radial profiles of particle density, n, electron tempera-
ture, Te, ion temperature, Ti’ for conditions applicable to
a high density discharge in a Small Tokamak (R = 1.09m,
a = 0.lm, {n) = 1.65x10""m™, I,= 60 ka, B,=3.7 T) given
at 33 ms by the code, ICARUS, using the pseudo-classical

diffusion model and a "neutral species" represented by m=2

and EI =40 eV,
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Fig.1l0 The radial profiles of particle density, n, electron

temperature, Te’ ion temperature, Ti’ for conditions applic-

able to a high density discharge in a Small Tokamak

=3

(R=1.09m, a =0.14m, (n) = 1.65%x10"°m ", I~ 60 kA,

B
<)

Pfirsch-Schluter diffusion model with A = 200.0 and a

3.7 T) given at 34 ms by the code, ICARUS, using the

"neutral species" represented by m=2 and EI = 40 eV.
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Fig.1ll The radial profiles of number demsity, n, and electron

temperature, Te’ for a large Tokamak (R = 2.82m, a = 1.28m,
(n) = 5.0 x 1019, qu 3MA, BLP = 3T). The results are
obtained by the code, ICARUS, using

(a) the neoclassical model (—)

(b) the pseudo-classical model (=—o—)

(c¢) the Pfirsch-Schluter model, with A = 200.0 (----).

In (b) and (c) the particle content is maintained constant

by a "nmeutral species" represented by m = 2 and EI = 40 eV.
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Fig.12 The radial profiles of number density, n, and electron

temperature, Te’ for a large Tokamak (R = 2.82m, a = 1.28m,

{n) = 5.0 x 10*° m™°, I~ 3MA, B = 3T). The results are

obtained by the code, ICARUS, using the pseudo-classical

diffusion model in which the particle content is maintained

constant by a "neutral species" represented by m = 2 and

EI = 40 eV, and increased by the injection of a beam of fast
neutrals at (a) high energies (Ef = 80keV, I, = 10A,—),
(b) low energies (Ef = 20 keV, I, = 4OA, — . —).















